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Abstract. Suppose that Γ1 and Γ2 are geometrically finite, convex co-compact, discrete
groups of isometries of real hyperbolic space H3 whose domains of discontinuity are diffeomorphic.
We show that if the respective scattering matrices S1(s) and S2(s) differ from each other by a trace-
class perturbation on the unitary axis Re(s) = 1 , then Γ1 and Γ2 are conjugate in PSL(2, C) .
This result reflects the rigidity of hyperbolic three-manifolds.

1. Introduction

In this note, we prove a rigidity theorem for the scattering operator associated
to a co-infinite volume, convex co-compact discrete group of isometries of hyper-
bolic three-dimensional space H3 , modelled as the unit ball in R3 with geometric
boundary S2 . The group of isometries of H3 may be realized as PSL(2,C) . Let
Γ be a discrete group of isometries of H3 , let Ω(Γ) denote the domain of discon-
tinuity of Γ acting on S2 , and let Λ(Γ) denote the limit set of Γ. The group Γ
is said to be geometrically finite if it admits a finite-sided fundamental domain,
to have co-infinite volume if vol (H3/Γ) is infinite, and to be convex co-compact

if the fundamental domain does not touch the limit set of Γ. In what follows, we
will always assume that Γ is geometrically finite, has co-infinite volume, and is
convex co-compact. For such groups, it is known that M = H3/Γ is a smooth Rie-
mannian manifold whose geometric boundary (boundary at infinity) is a compact
manifold B conformally equivalent to Ω(Γ)/Γ. The manifold B is a finite union
of connected components each of which are compact manifolds without boundary
equipped with a natural conformal structure.

Associated to such a manifold M is the scattering operator for the Laplacian
∆ on M . The scattering operator S(s) for a complex parameter s is a pseu-
dodifferential operator with a known singularity mapping smooth, Γ-automorphic
forms of complex weight 2− s on Ω(Γ) to smooth, Γ-automorphic forms of com-
plex weight s . It connects incoming and outgoing generalized eigenfunctions for
the Laplacian on M and its values along the axis Re(s) = 1 give the contribution
of the continuous spectrum in the Selberg trace formula for Γ.
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It is natural to ask under what circumstances the scattering matrices for two
hyperbolic manifolds M1 and M2 may be compared, i.e., under what circum-
stances it is possible to do ‘geometric perturbation theory’ of Laplacians. Intu-
itively two manifolds should have comparable ‘geometry at infinity’ for perturba-
tion theory to be possible.

If M1 = H2/Γ1 and M2 = H2/Γ2 with Γ1 and Γ2 convex co-compact and
co-infinite volume, the scattering matrices for M1 and M2 may be compared so
long as the boundaries B1 and B2 are diffeomorphic. This simply means that
M1 and M2 have the same number of ends since the ends of such hyperbolic
surfaces are isometric to cylinders and the boundary components are all circles.
In this case, the difference of scattering matrices, suitably defined, is a trace-
class operator on an appropriate Hilbert space of functions on the boundary. One
can then exploit the methods of trace-class scattering theory and the theory of
Fredholm determinants on trace-class operators to produce a useful relative trace
formula (see [9]).

It is natural to ask whether a similar procedure will work in three dimensions,
i.e., whether two manifolds M1 = H3/Γ1 and M2 = H3/Γ2 with diffeomorphic
boundaries B1 and B2 can be compared in the same way. In order to compare
the scattering operators, it is necessary to assume also that the diffeomorphism
ψ that maps B1 to B2 lifts to a diffeomorphism of the domains of discontinuity
Ω(Γ1) and Ω(Γ2) that induces an isomorphism of the groups Γ1 and Γ2 . This
is essentially equivalent to requiring that ψ induce an invertible map from Γ1 -
automorphic forms on Ω(Γ1) to Γ2 -automorphic forms on Ω(Γ2) .

We will prove:

Theorem 1.1. Suppose that Γ1 and Γ2 are two geometrically finite, co-

infinite volume discrete groups of isometries of H3 with domains of discontinuity

Ω(Γ1) and Ω(Γ2) and scattering matrices S1(s) and S2(s) , and suppose that there

is an orientation-preserving diffeomorphism ψ: Ω(Γ1) → Ω(Γ2) with the following

properties:

(i) ψ induces an isomorphism of Γ1 and Γ2 , and

(ii) the operator Srel(s) = S1(s) − Ψ∗S2(s) is a trace-class operator for some s
with Re(s) = 1 .

Then ψ is a Möbius transformation, M1 and M2 are isometric, Srel(s) = 0 , and

Γ1 and Γ2 are conjugate in PSL(2,C) .

Remarks. 1. There exist quasiconformal maps satisfying (i) but not (ii);
we show this below. 2. We will define the pullback of S2(s) in Section 2, where
we also specify the Hilbert space in which S1(s) and Ψ∗S2(s) act. 3. The line
Re(s) = 1 corresponds to the continuous spectrum of the Laplacian.

Our result uses the following isomorphism theorem of Marden [4] which, as
Marden remarks, is an analogue of Mostow’s celebrated rigidity theorem [5], [6].
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Theorem 1.2. Suppose that G and H are Kleinian groups such that

(i) G has a finite-sided fundamental polyhedron,

(ii) there exists an orientation-preserving homeomorphism f : Ω(G) → Ω(H) which

induces an isomorphism ϕ: G→ H .

Then there exists a quasiconformal homeomorphism of the closed ball B3 → B3

which induces ϕ . If f is quasiconformal, f has a quasiconformal extension to

∂B3 . If f is conformal, then ϕ is an inner automorphism.

To prove Theorem 1.1, we use the known singularities of the scattering oper-
ator and the trace-class condition to show that the diffeomorphism ψ must be a
Möbius transformation on each connected component of Ω1 . Marden’s theorem
shows that ψ is in fact a single Möbius transformation so that M1 and M2 are
isometric and Ψ∗S2(s) = S1(s) . The result should be viewed as a reflection in
scattering theory of the rigidity of hyperbolic 3-manifolds.

To appreciate the meaning of Theorem 1.1, let B1 and B2 be compact Rie-
mann surfaces with fundamental groups G1 and G2 such that B1 and B2 are
homeomorphic but carry distinct conformal structures. We assume that each has
genus 2 or higher. There exists a quasiconformal homeomorphism from B1 to B2

which lifts to a quasiconformal homeomorphism ϕ of the Poincaré upper half-plane
to itself (see Lehto [3, Theorem V.1.5]). This map induces an isomorphism of G1

and G2 . By the uniformization theorem, G1 and G2 can be viewed as discrete
subgroups of PSL(2, R) and, by the embedding of PSL(2, R) into PSL(2,C) , they
can be viewed as discrete groups Γ1 and Γ2 of isometries of H3 . The quotients
M1 = H3/Γ1 and M2 = H3/Γ2 are cylinders diffeomorphic to R × Bi , i = 1, 2.
The domains of discontinuity are both a union of two copies of H2 and the qua-
siconformal homeomorphism ϕ induces a quasiconformal homeomorphism from
Ω(Γ1) to Ω(Γ2) which satisfies hypothesis (i) of Theorem 1.1. It can only satisfy
hypothesis (ii) if Γ1 and Γ2 are conjugate in PSL(2,C) , i.e., G1 and G2 are
conjugate in PSL(2, R) and B1 and B2 carry the same conformal structure.

In Section 2, we recall some basic facts about the scattering operator: see for
example [7], [8] for further details and references. In Section 3 we give the proof
of Theorem 1.1.

Acknowledgements. It is a pleasure to thank Charles Epstein for a helpful
conversation. I am also happy to thank Caroline Series for pointing out Marden’s
isomorphism theorem and for hospitality at the Mathematical Institute, University
of Warwick during part of the time that this work was done.

2. The scattering operator

To define and discuss the scattering operator, it will be convenient to work
in the upper half-space model of H3 with geometric boundary R2 ∪ {∞} . In this
setting the domain of discontinuity Ω(Γ) is a subset of R2 ∪ {∞} .
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Before we define the scattering operator associated to a discrete group Γ,
we define the objects on which it acts. A smooth function f on the domain of
discontinuity Ω(Γ) is called a Γ-automorphic form of complex weight s if for every
γ ∈ Γ the identity

f
(

γ(x)
)
∣

∣γ′(x)
∣

∣

s
= f(x)

holds. Here
∣

∣γ′(x)
∣

∣ denotes the conformal dilation of the Möbius transformation
γ at a point x . We denote by Γ(s) the space of smooth, Γ-automorphic forms
of complex weight s . If F is any fundamental domain for the action of Γ on
Ω(Γ) and f is a form of weight 2, the integral

∫

F
f(x) dx is independent of

the choice of F ; thus Γ(2 − s) and Γ(s) are dual spaces under the dual pairing
〈f, g〉 =

∫

F
f(x)g(x) dx . If Re(s) = 1, complex conjugation maps Γ(s) to Γ(2−s)

and we may define an inner product on Γ(s) by the formula

(f, g) =

∫

F

f(x)g(x)dx.

Completing Γ(s) in this inner product gives a Hilbert space H (s) on which the
scattering operator acts as a unitary operator.

The scattering operator S(s) maps Γ(2−s) to Γ(s) and is defined for Re(s) >
2 by the formula

(

S(s)f
)

(x) =

∫

F

σ(x, y)f(y) dy,

where σ(x, y) is the distribution kernel

(2.1) σ(x, y) =
∑

γ∈Γ

∣

∣γ′(x)
∣

∣

s

∣

∣γ(x) − y
∣

∣

2s

and dy denotes area measure on R2 . The formula

(2.2)

∣

∣γ′(x)
∣

∣

∣

∣γ′(y)
∣

∣

∣

∣γ(x) − γ(y)
∣

∣

2 =
1

|x− y|2
,

true for Möbius transformations γ , shows that S(s) has the claimed mapping
properties. In fact, the sum (2.1) converges in the half-plane Re(s) > δ(Γ) where
δ(Γ) is the exponent of convergence for Γ.

It is a deep result of scattering theory that the operator S(s) admits a mero-
morphic continuation to the complex plane and in particular is well-defined on
the line Re(s) = 1 corresponding to the continuous spectrum of ∆. The mero-
morphically continued operator is a pseudodifferential operator whose Schwarz
kernel analytically continues the sum (2.1). It is known to have leading singularity
|x− y|−2s plus a smooth remainder (see for example [1], [7]).
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To compare two scattering matrices, it is necessary to map Γ2(s) to Γ1(s) .
In what follows,

∣

∣Dψ(x)
∣

∣ denotes the Jacobian determinant of the map ψ at x

and
∣

∣γ′(x)
∣

∣ denotes the conformal dilation of the Möbius transformation γ at x .
Suppose that f ∈ Γ2(s) and ψ satisfies the hypotheses of Theorem 1. The function

g(x) =
∣

∣Dψ(x)
∣

∣

s/2
(f ◦ ψ)(x) belongs to Γ1(s) since, for any γ ∈ Γ1 ,

g
(

γ(x)
)

=
∣

∣Dψ
(

γ(x)
)
∣

∣

s/2
f
(

ψ
(

γ(x)
))

=
∣

∣Dψ
(

γ(x)
)
∣

∣

s/2
f
(

τ
(

ψ(x)
))

=
∣

∣Dψ
(

γ(x)
)
∣

∣

s/2
f
(

ψ(x)
)
∣

∣τ ′
(

ψ(x)
)
∣

∣

−s/2

=
∣

∣Dψ
(

γ(x)
)
∣

∣

s/2
f
(

ψ(x)
)
∣

∣(ψγψ−1)′
(

ψ(x)
)
∣

∣

−s/2
=

∣

∣γ′(x)
∣

∣

−s
g(x)

where τ = ψγψ−1 ∈ Γ2 by the hypotheses of Theorem 1. Thus ψ induces a map
ψ∗

s : Γ2(s) 7−→ Γ1(s) by the formula

ψ∗

sf(x) =
∣

∣Dψ(x)
∣

∣

s/2
(f ◦ ψ)(x)

and an inverse map (ψ−1)∗s: Γ1(s) 7−→ Γ2(s) by the formula

(ψ−1)∗sg(x) =
∣

∣Dψ−1(x)
∣

∣

s/2
(g ◦ ψ−1)(x).

Using these maps, we can pull back the scattering operator for Γ2 to an operator
from Γ1(n− s) to Γ1(s) by the formula

Ψ∗S2(s) = (ψ∗

s)S2(s)(ψ
−1)∗2−s.

It is not difficult to see that if S2(s) has integral kernel σ2(x, y) , then Ψ∗S2(s)
has integral kernel

σ∗

2(x, y) =
∣

∣Dψ(x)
∣

∣

s/2∣
∣Dψ(y)

∣

∣

s/2
σ2

(

ψ(x), ψ(y)
)

.

Remark. S(s) can equivalently be viewed as a map between line bundles
Ms(Γ) over B = Ω(Γ)/Γ defined as quotients of Ω×C by the equivalence relation

(x, z) ∼ (x′, z′) if x′ = γ(x) and z =
∣

∣γ′(x)
∣

∣

s
z′.

Thus S(s) is a pseudodifferential operator on line bundles in the sense of Hörman-
der [2, Chapter XVIII]. The hypotheses on ψ in Theorem 1.1 say that ψ induces
a bundle isomorphism from Ms(Γ1) to Ms(Γ2) .
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3. Proof of Theorem 1.1

To prove Theorem 1.1, we prove that: (i) the diffeomorphism ψ must be a
conformal diffeomorphism, (ii) this conformal diffeomorphism must be a Möbius
transformation in each connected component of Ω1 , and (iii) ψ acts as the same

Möbius transformation in each connected component.
To carry out step (i), let σ1(x, y) be the Schwarz kernel of S1(s) and let

σ∗

2(x, y) be the Schwarz kernel of Ψ∗S2(s) . Then the leading-order term in the
difference σ1(x, y)− σ∗

2(x, y) is
∣

∣Dψ(x)
∣

∣

s/2∣
∣Dψ(y)

∣

∣

s/2

∣

∣ψ(x) − ψ(y)
∣

∣

2s −
1

∣

∣x− y
∣

∣

2s

with the remaining terms being smooth. Since Re(s) = 1, in order for the differ-
ence to be nonsingular we must have, for x and y sufficiently close, the equality

∣

∣Dψ(x)
∣

∣

∣

∣Dψ(x)(x− y)
∣

∣

2 =
1

|x− y|2
.

This equality implies that, for each x , the matrix
∣

∣Dψ(x)
∣

∣

−1/2
Dψ(x) is an or-

thogonal matrix: hence ψ is a conformal diffeomorphism. It follows that we may
realize ψ as an analytic function of one complex variable. In what follows, we
denote this function by ψ(z) and its derivatives in the complex sense by ψ′(z) ,
ψ′′(z) , etc.

To carry out step (ii), we Taylor expand the difference

κ(z, w) =

∣

∣ψ′(z)
∣

∣

s∣
∣ψ′(w)

∣

∣

s

∣

∣ψ(z) − ψ(w)
∣

∣

2s −
1

|z − w|2s

for z and w in a small neighborhood. Since ψ is a diffeomorphism,
∣

∣ψ′(z)
∣

∣

is bounded below by a strictly positive constant on any compact subset of Ω1 .
Taylor-expanding ψ(w) and ψ′(w) about w = z , we arrive at the identity

∣

∣ψ′(z)ψ′(w)
∣

∣

(

ψ(z) − ψ(w)
)2 =

1

(z − w)2
(

1 + 1
6
Sψ(z)(z − w)2 +O(z − w)3

)

,

where

Sψ(z) =
(ψ′′′(z)

ψ′(z)
− 3

2

(

ψ′′(z)
ψ′(z)

)2)

is the Schwarzian derivative. It follows from this identity that

κ(w, z) = s
(

1
6
Sψ(z)

)

(z − w)2−2s +O
(

(z − w)3−2s
)

.

Since the function (z−w)2−2s is discontinuous at z = w for any s with Re(s) = 1
and Im(s) 6= 0, Sψ(z) = 0, so that ψ acts locally as a Möbius transformation
(see for example Lehto [3, Theorem II.1.1]).
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Now we carry out step (iii). By what we have already shown, ψ acts as
a Möbius transformation on each connected component of Ω1 . The same holds
true in the ball model of H3 . Since Γ1 is geometrically finite and ψ induces an
isomorphism of Γ1 and Γ2 , it follows from Marden’s theorem that ψ extends to
a quasiconformal homeomorphism of the closed unit ball. By continuity, ψ acts
by the same Möbius transformation in each connected component, so ψ is the
restriction to S2 of a Möbius transformation acting on H3 . This shows that Γ1

and Γ2 are conjugate in PSL(2,C) so that M1 and M2 are isometric.
To see that Srel(s) = 0, we use the formula (2.2) together with the definition

of Ψ∗S1 .

Remark. The analogous calculation in two dimensions considers two scat-
tering matrices defined for Re(s) = 1

2 , corresponding to the continuous spectrum
of the Laplacian on a surface. Here the diffeomorphism ψ acts between one di-
mensional manifolds and the trace-class condition yields no constraint on ψ .

References

[1] Froese, R., P. Hislop, and P. Perry: The Laplace operator on hyperbolic three-
manifolds with cusps of non-maximal rank. - Invent. Math. 106, 1991, 295–333.
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