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Abstract. We prove that the Teichmuller space of genus g > 1 surfaces with the Teichmuller
metric is not a Gromov hyperbolic space.

1. Introduction

The Teichmüller space of surfaces of genus g > 1 with the Teichmüller metric
is not nonpositively curved, in the sense that there are distinct geodesic rays
from a point that always remain within a bounded distance of each other ([Ma1]).
Despite this phenomenon, Teichmüller space and its quotient, moduli space, share
many properties with spaces of negative curvature: for instance, most converging
geodesic rays are asymptotic [Ma2], and the geodesic flow on the moduli space is
ergodic [Ma3].

One can ask whether these properties can be explained by Teichmüller space
having non-positive curvature in a sense weaker than that of Busemann used in
[Ma1], which declared a space X to be negatively curved if the endpoints of two
segments from p ∈ X are spread more than twice as far as the midpoints.

In his study of hyperbolic groups, Gromov ([Gr], see also [GdlH]) introduced a
notion of negative curvature, now called Gromov hyperbolicity, that still captured
many of the qualitative aspects of Riemannian negative sectional curvature, but
was less restrictive than that of Busemann. Specifically, Gromov declared a space
X to be hyperbolic if there existed a number M so that for any p ∈ X and any
triangle in X with vertex at p , the leg of the triangle opposite p would be within an
M -neighborhood of the legs of the triangle emanating from p . Thus, for instance,
the flat Euclidean strip {(x, y) ∈ R2 | 0 < x < 1} would be Gromov hyperbolic
but not Buseman negatively curved; moreover, the fact that there are pairs of
rays emanating from p ∈ Tg which do not diverge does not, in itself, preclude
Teichmüller space with the Teichmüller metric from being Gromov hyperbolic.
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Nevertheless, the goal of this paper (Theorem 3.1) is to show that Teichmüller
space is not Gromov hyperbolic. This, of course, also immediately implies that any
metric quasi-isometric to the Teichmüller metric is also not Gromov hyperbolic,
so any Gromov hyperbolic metric on the Teichmüller space is quite different from
the Teichmüller metric.

In this connection, one needs to observe that the isometry group of the Teich-
müller metric is the mapping class group ([Roy]), which contains large rank abelian
subgroups, and so is not a Gromov hyperbolic group (with the word metric).
This in itself does not seem to imply immediately that Teichmüller space is not
Gromov hyperbolic. For example there are Kleinian groups with rank 2 abelian
subgroups acting on hyperbolic 3 space, a Gromov hyperbolic space. It does
suggest that good candidates for triangles to contradict Gromov’s condition might
be constructed with vertices at images of a single point p under high iterates of
commuting isometries.

In fact, this is the approach we take, showing (Theorem 3.1) that with respect
to the Dehn twists τβ1

and τβ2
about disjoint curves β1 and β2 on a surface F ,

the triangles determined by the points x , τn
β1

· x , τ−n
β2

· x contradict Gromov’s
condition: the legs of this triangle are given by the Teichmüller geodesics whose
corresponding Teichmüller maps from x are described explicitly in [MM], and the
distances between points on the legs are estimated from below in terms of estimates
of relevant extremal lengths.

We organize our discussion as follows. In Section 2, we recall the background
information we will need, and set the notation. In Section 3 we state and prove
our main result.

The authors are indebted to M. Kapovich for bringing this question to their
attention.

2. Background and notation

2.1. Teichmüller space, metric, maps. Let M be a closed C∞ surface
of genus g ≥ 2; everything in this note extends to punctured surfaces with only
additional notation, so we concentrate on the closed surface case. We consider the
Teichmüller space Tg with the Teichmüller metric d(·, ·) . Recall that points in
Teichmüller space are equivalence classes of Riemann surface structures S on M ,
the structure S1 is equivalent to the structure S2 if there is a homeomorphism
h: M → M , homotopic to the identity, which is a conformal map of the structures
S1 and S2 .

We define the Teichmüller distance d({S1}, {S2}) by

d({S1}, {S2}) = 1

2
log inf

h
K(h)

where h: S1 → S2 is a quasiconformal homeomorphism homotopic to the identity
on M and K[h] is the maximal dilatation of h . This metric is well-defined, so we
may unambiguously write S1 for {S1} .
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An extraordinary fact about this metric is that the extremal maps, known as
Teichmüller maps, admit an explicit description, as does the family of maps which
describe a geodesic.

Specifically, let q ∈ QD(S) denote a holomorphic quadratic differential on S .
A horizontal (respectively vertical) trajectory is an arc along which q(z) dz2 > 0
(respectively q(z) dz2 < 0) except at the zeros of q . A trajectory is critical if it
passes through a critical point; otherwise it is regular. If z is a local parameter
near p ∈ S with q(p) 6= 0 and z(p) = z0 , then w =

∫ z

z0

q(z)1/2 dz is the natural

parameter q near p . The line element |q(z)|1/2 |dz| defines the q -metric on S .

Teichmüller’s theorem asserts that if S1 and S2 are distinct points in Tg , then
there is a unique quasiconformal h: S1 → S2 with h homotopic to the identity on
M which minimizes the maximal dilatation of all such h . The complex dilatation
of h may be written µ(h) = kq̄/|q| for some non-trivial q ∈ QD(S1) and some k ,
0 < k < 1, and then

d(S1, S2) = 1

2
log(1 + k)/(1 − k).

Conversely, for each −1 < k < 1 and non-zero q ∈ QD(S1) , the quasiconformal
homeomorphism hk of S1 onto hk(S1) , which has complex dilatation kq̄/|q| , is
extremal in its homotopy class. Each extremal hk induces a quadratic differential
q′k on hk(S1) , with critical points of q and q′k corresponding under hk ; further-
more, to the natural parameter w for q near p ∈ S1 there is a natural parameter
w′

k near hk(p) so that

Re w′

k = K1/2 Re w and Im w′

k = K−1/2 Imw,

where K = (1 + k)/(1 − k) .

The map hk is called the Teichmüller extremal map determined by q and k ;
the differential q is called the initial differential and the differential qk is called
the terminal differential. We can assume all quadratic differentials are normalized
in the sense that

‖q‖ =

∫

|q| = 1.

The Teichmüller geodesic segment between S1 and S2 consists of all points hs(S1)
where the hs are Teichmüller maps on S1 determined by the quadratic dif-
ferential q ∈ QD(S1) corresponding to the Teichmüller map h: S1 → S2 and
s ∈ [0, ‖µ(h)‖∞] .

The mapping class group Diff+(M)/ Diff0(M) acts on Tg . If {Uα, zα} is an
atlas defining the Riemann surface structure S , and f is a diffeomorphism of M ,
then f ·S is the Riemann surface structure defined by the atlas {f(Uα), zα ◦f−1} .
The map f : S → f · S is then a conformal map between these two structures.
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2.2. Modulus, extremal length, Jenkins–Strebel differentials, Dehn

twists. The modulus of a flat cylinder C of circumference l and height h is
mod(C) = h/l . For a simple closed curve γ ⊂ M , we define the modulus modS(γ)
of γ to be the supremum of the moduli of all cylinders embedded in M with core
curve isotopic to γ .

The extremal length extS(γ) of a curve γ on a surface M is defined to be

sup
̺

(

l̺([γ])
)2

/A̺,

where ̺ ranges over all conformal metrics on S with area 0 < A̺ < ∞ and l̺([γ])
denotes the infimum of lengths of simple closed curves homotopic to γ . One shows
that extS(γ) = 1/ modS(γ) .

Kerckhoff [K] has given a characterization of the Teichmüller metric d(S1, S2)
in terms of the extremal lengths of corresponding curves on the surfaces. He proves

(2.1) d(S1, S2) =
1

2
log sup

γ

extS1
(γ)

extS2
(γ)

where the supremum ranges over all simple closed curves on M .
Jenkins [J] and Strebel [Str] proved the existence of quadratic differentials

q ∈ QD(S) with some prescribed trajectory topology. Specifically, they (see [Str],
e.g.) showed that one could specify m disjoint simple loops γ1, . . . , γm , with
1 ≤ m ≤ 3g− 3, on S representing distinct non-trivial free homotopy classes, and
m positive numbers M1, . . . , Mm , and that then one could find a unique (up to
scalar multiple) quadratic differential Q = Q(z) dz2 ∈ QD(S) with the following
property: if S′ is the result of removing the critical trajectories of Q(z) dz2 from
S , then S′ is the union of annuli A1, . . . , Am with Aj homotopically equivalent
to γj and the modulus of Aj was Mj , up to some fixed (independent of j ) scalar
multiple. Further S − S′ is the union of a finite number of analytic arcs, the
smooth pieces of the critical trajectories.

Consider a point S ∈ Tg and consider the effect of a Dehn twist τα about a
curve α ⊂ M yielding a point τα ·S ∈ Tg . It is natural to ask for a characterization
of the Teichmüller map h: S → τα ·S , or more generally, for a characterization of
the Teichmüller map hn from S → τn

α · S in terms of the data α , S and n ∈ Z .
This was described by Masur and Marden [MM] as follows. Let qα = qα(z) dz2

denote the Jenkins–Strebel differential determined, as above, by α ⊂ M , and
suppose that α ⊂ S has modulus R . Set

m = (log R)/2π

σn = tan−1(2m/n)

and
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kn =
|n|/2m

(

1 + (n/2m)2
)1/2

.

Then [MM] the extremal map hn: S → τn
α ·S is the Teichmüller map determined by

[

exp
(

−i(σn +π)
)]

qα and kn . Furthermore, if we pull back the terminal quadratic
differential q′α on τn

α ·S to S via the (tautologically) conformal map τn
α : S → τn

α ·S
between the pullback structure S and the structure τn

α · S , then the pull-back
differential (τn

α )∗q′α satisfies

(2.2) (τn
α )∗q′α = eiθqα

so that, in particular, the metrics |qα| and |(τn
α )∗q′α| agree.

2.3. Gromov hyperbolicity. Let X be a geodesic metric space, that is,
a metric space (X, d) where every pair of points x , y ∈ X can be connected by
the isometric image of the segment [0, d(x, y)] . In such a space, we can define the
notion of a triangle with vertices x , y and z ∈ X to be the union of geodesic
segments [xy] , [yz] , and [xz] connecting x and y , y and z , and x and z ,
respectively. Naturally, Teichmüller space with the Teichmüller metric is a geodesic
metric space.

Gromov (see [GdlH]) introduced a notion of when such a space would share
a number of qualitative properties with hyperbolic space, his definition now being
commonly called “Gromov hyperbolicity”. We will say that

Definition 2.1. The geodesic metric space X is Gromov hyperbolic if

(∗) There is a number δ ≥ 0 so that for every triangle ∆ = [xy]∪ [yz]∪ [xz] and
every u ∈ [xy] , we have d(u, [yz] ∪ [zx]) ≤ δ .

Hyperbolic space, (Riemannian) negatively curved manifolds, trees, Euclidean
strips, free groups with the word metric and spheres are easily shown to be Gromov
hyperbolic. On the other hand, the fundamental group of a non-compact finite
volume hyperbolic n -manifold with n ≥ 3, equipped with the word metric, is not
hyperbolic, because of the large rank (parabolic) abelian subgroup stabilizing a
point at infinity (cusp).

3. Main theorem

The goal of this section is to prove

Theorem 3.1. Teichmüller space with the Teichmüller metric is not Gromov

hyperbolic.

Proof. We consider a sequence of triangles Tn so that there does not exist a
δ ≥ 0 with condition (∗) (in Definition 2.1) holding for all Tn .
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All the triangles Tn will have a common vertex x0 ∈ Tg , chosen arbitrarily.
The other vertices of the triangle Tn are the points y1 = τn

β1
·x0 and y2 = τ−n

β2
·x0 ,

where β1 and β2 are disjoint simple closed curves on the surface M of genus g > 1.
We wish to estimate the Teichmüller distance from a point y ∈ [y1y2] to the

other legs [x0y1] and [x0y2] . To this end, we let J1 dz2 ∈ QD(x0) be the Jenkins–
Strebel differential with core curves homotopic to β1 , and we suppose that the
union of its regular trajectories determine an annulus of modulus R1 . We let

m1 = (log R1)/2π , tan τ1 = 2m1/n , and k1 = |n|(2m1)
−1

(

1 + (n/2m1)
2
)

−1/2
,

so that the Teichmüller map from x0 to y1 is determined by exp
(

−i(τ1 + π)
)

J1

and k1 .
Let γ1 be a simple closed curve on M which crosses β1 but not β2 , and let

γ2 be a simple closed curve on M which crosses β2 but not β1 . Then we claim

Lemma 3.2. For x ∈ [x0y1] ⊂ Tn ⊂ Tg , the extremal length, extx(γ2) , of

γ2 on x is bounded independently of n .

Proof of Lemma 3.2. We begin with some more notation. Consider a quadratic
differential q ∈ QD(x0) and the associated singular flat Euclidean metric |q| . For
a |q| -geodesic segment α , let the horizontal and vertical q -lengths of α be denoted

hq(α) =

∫

α

|Re q1/2|

vq(α) =

∫

α

| Im q1/2|.

Then

(3.1) |α|q =
(

hq(α)2 + vq(α)2
)1/2

,

where |α|q is the q -length of α . We observe that under the Teichmüller map
determined by q and K with terminal quadratic differential q′ , we will have the
arc α remaining a q′ -geodesic arc and

(3.2)

hq′(α) = K1/2hq(α),

vq′(α) = K−1/2vq(α) and

|α|2q′ = Khq(α)2 + K−1vq(α)2.

Of course, for fixed hq(α) and vq(α) , equation (3.2) expresses |α|q′ as a
convex function of K > 0.

We now specialize to the case in the statement of the lemma, where J1 ∈
QD(x0) determines the Teichmüller geodesic arc [x0y1] ⊂ Tg and J ′

1 is the termi-
nal differential on y1 . Since τn

α (β1) = β1 , (2.2) implies

|β1|J1
= |β1|J ′

1
.
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The convexity of |β1| in K along [x0y1] forces |β1|Jx
< |β1|J1

= |β1|J ′

1
for any

of the quadratic differentials Jx ∈ QD(x) associated to the Teichmüller geodesic
segment [x0y1] and any x ∈ [x0y1]

0 . On the other hand, because a Teichmüller
map is area preserving, this forces

(3.3) mod
x

(β1) > mod
x0

(β1) = mod
y1

(β1)

where modx(β1) refers to the modulus of the β1 annulus on x ∈ [x0y1] .
We use (3.3) in considering an alternative description of the Teichmüller map

between x0 and x ∈ [x0y1] . Specifically, by the same technique of proof as that
for Lemma 2.1 in [MM] (see also the statement for the annulus in [MM; §1.3]), we
can represent the Teichmüller map between x0 and x ∈ [x0y1] as Tα ◦ Sa where
Tα is a “partial” Dehn twist of the initial Jenkins–Strebel annulus by an angle
2πα and Sa is a radial expansion or (possibly) contraction of that annulus: we
observe however that by (3.3), the map Sa is always an expansion.

Thus, we can build a model of any terminal Jenkins–Strebel differential Jx ∈
QD(x) with x ∈ [x0y1] as given by an operation of conformal plumbing followed
by a partial Dehn twist, as follows. We cut the conformal cylinder along a core
curve. We then glue in one cylinder to each edge of the cut, again leaving a pair
of boundary components. Finally, we glue these free edges together after twisting
by some angle.

The homotopy class of γ2 is represented by a union of geodesic segments on
the boundary of the Jenkins–Strebel annulus for J1 . Therefore, we can find an
annulus A2 , embedded around γ2 , and also disjoint from the core curve along
which our initial cut (of the previous paragraph) is made. That annulus A2 will
be unaffected by the plumbing and twisting, and so we can conclude that for all
x ∈ [x0y1] for which x = Ta ◦ Sαx0 , we can find an embedded annulus A2 about
γ2 of modulus bounded uniformly away from zero, independently of n .

Thus the extremal length of γ2 is then uniformly bounded above, indepen-
dently of n , concluding the proof of the lemma.

Remark. The lemma of course holds with γ1 and [x0y2] in place of γ2 and
[x0y1] , by an interchange of notation in the proof.

Conclusion of the proof of Theorem 3.1. Now consider the Teichmüller geo-
desic arc [y1y2] . The Teichmüller map from y1 to y2 is given by taking a negative
twist n times about β1 and about β2 . Consider the Strebel differential Q ∈
QD(y1) of two annuli with core curves homotopic to β1 and β2 , of equal moduli
R (see [Str]). Let m , σn and kn be as in Section 2.2; then the Teichmüller map
from y1 to y2 is determined by exp

(

−i(σn+π)
)

Q and kn . Let Q′ be the terminal
differential on y2 .

By Lemma 3.2 and the fact that Q is a competing metric in the definition of
extremal length, we have

(3.4) |vQ(γ2)| ≤ |γ2|Q ≤ ext
y1

(γ2)
1/2 = O(1).
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Since y2 = τ−n
β2

· x0 , we have

ext
y2

(γ2) = ext
x0

(

τn
β2

(γ2)
)

.

Since τβ2
(γ2) crosses β2 n times, there is a constant c0 > 0 so that

ext
y2

(γ2) ≥ c0n
2.

Moreover, since we can always compare any two normalized metrics on the fixed
surface y2 , conformally equivalent to x0 , we find that

(3.5) |γ2|Q′ ≥ cn

for some c > 0.
Next, since

kn =

(

1 +

(

log R

π|n|

)2)−1/2

we see that

(3.6) Kn =
1 + kn

1 − kn
≍ n2

where a ≍ b if their ratio is bounded above and below away from 0. Then,
applying (3.4), (3.5) and (3.6) to the identity

KnhQ(γ2)
2 + K−1

n vQ(γ2)
2 = |γ2|2Q′

yields

(3.7) hQ(γ2) > c2 > 0.

Next, we observe that −Q is the terminal quadratic differential on y1 for
the Teichmüller map from y2 to y1 , with initial differential −Q′ . Then the same
argument as above shows that h−Q′(γ1) > c′2 > 0, independently of n . We can
then apply formula (3.2) again to conclude that h−Q(γ1) > c3n for some c3 > 0,
which, of course, is equivalent to

(3.8) vQ(γ1) > c3n.

Finally, consider the point y∗ ∈ [y1y2] determined by the Teichmüller map
defined by Q with K1/2 =

√
n ; let Q∗ ∈ QD(y∗) denote the terminal differential.

Then (3.7) and (3.8), along with the relationship (3.2) show that

|γ2|Q∗
≥ hQ∗

(γ2) ≥ c2

√
n and

|γ1|Q∗
≥ vQ∗

(γ1) ≥ c3

√
n.

Since Q∗ is a competing metric for extremal length, exty∗
(γi) ≥ |γi|2Q∗

> c4n .
Finally, we apply Kerckhoff’s formula (2.1) and Lemma 3.2 to estimate the

Teichmüller distance d([x0y1], y∗) : we see that since exty∗
(γ2) > c4n while

extx(γ2) < c5 for x ∈ [x0y1] , then (2.1) forces d(x, y∗) > 1

2
log(c−1

5 c4n) . Since an
analogous estimate holds for d([x0y2], y∗) , we see that the defining condition (∗)
of Definition 2.1 of Gromov hyperbolicity does not hold.
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