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ON THE EXISTENCE OF JENKINS–STREBEL

DIFFERENTIALS USING HARMONIC

MAPS FROM SURFACES TO GRAPHS

Michael Wolf

Rice University, Department of Mathematics

Houston, TX 77251, U.S.A.; mwolf@rice.edu

Abstract. We give a new proof of the existence ([HM], [Ren]) of a Jenkins–Strebel differential
Φ on a Riemann surface R with prescribed heights of cylinders by considering the harmonic map
from R to the leaf space of the vertical foliation of Φ, thought of as a Riemannian graph. The
novelty of the argument is that it is essentially Riemannian as well as elementary; moreover, the
harmonic maps existence theory on which it relies is classical, due mostly to Morrey ([Mo]).

1. Introduction

In a series of pathbreaking papers ([Je], [Str1], [Str2]) in the 1950’s and 1960’s,
Jenkins and Strebel proved the existence of holomorphic quadratic differentials on
a Riemann surface R , the complement of whose critical trajectories were Euclidean
cylinders foliated by closed curves; the metrics associated to these differentials
uniquely solved natural extremal length problems ([Je]), or the free homotopy
classes of the core curves of the cylinders and the ratio of the moduli of the
cylinders could be uniquely specified ([Str1]). Later, Renelt ([Ren]) and Hubbard
and Masur ([HM]) showed that the homotopy classes of these core curves and the
heights of the cylinders could also be specified. The goal of this note is to provide
another proof of the existence of these differentials with prescribed heights on R

based on energy-minimizing maps from R to graphs.
Our method is somewhat unusual in the subject of quadratic differentials

on Riemann surfaces in that our techniques are essentially Riemannian, with the
basic existence theory due mostly to Morrey [Mo] in 1948; the conformal type
of the Riemann surface R is involved because of the conformal invariance of the
total energy of the map. Our holomorphic quadratic differential on R is the Hopf
differential, known classically (and emphasized recently by Schoen [S]) to result
from a stationary point I: R → N of a conformally invariant functional (here,
it is important that I be stationary with respect to reparametrizations of the
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domain R ). A novel feature of our argument is its use of maps with domain R ,
rather than, say, maps of cylinders into a range Riemann surface R .

Here, roughly, is the proof. Draw the foliation with k prescribed cylinders
on R , and suppose for now that the leaf space is a boundaryless graph T (see
Figure 1).

Figure 1.

The lengths of the graph are given by the heights of the corresponding cylin-
ders. It then follows that there is a continuous energy-minimizing map f : R → T
in the homotopy class of the projection along leaves π: R → T : this follows be-
cause T is non-positively curved. (In this form, this result is a special case of the
far deeper result of Schoen in [GS]. In the present situation, a more elementary
proof is possible, and is effectively in the literature: we shall include a proof in the
appendix for the sake of completeness.) The Hopf differential Φ is then holomor-
phic. Moreover, if the vector V is tangent to a regular vertical trajectory of Φ,
then V f = 0, from which it follows that f is constant along leaves of the vertical
foliation of Φ. Since the homotopy class of f is non-constant, the leaves must
be nowhere dense, and hence closed. It also follows that the map f is given pre-
cisely by projecting along the vertical leaves of the foliation of Φ to the (vertical)
leaf space of Φ. Thus both f and π are defined by projecting along leaves of a
(singular) foliation of R by closed leaves: we show that these two foliations are
Whitehead equivalent (defined below) by using that f and π are homotopic to
show that the vertical foliation of Φ has the same k cylinders of the same heights
as F . This concludes the argument in the case where the leaf space T of F is
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a boundaryless graph. In the case where T has boundary, we approximate F

by a foliation Fε whose graph Tε is boundaryless (Tε is constructed from T by
attaching a small loop at each boundary point of T ) and obtain the quadratic
differential representative of F as a limit.

We organize this paper as follows. In the second section, we define our terms,
set our notation and recall some background information. In Section 3, we prove
the main result. The paper concludes with an appendix giving a reasonably ele-
mentary proof of the existence of harmonic maps from surfaces to boundaryless
graphs.

2. Notation and background

2.1. Quadratic differentials. A measured foliation (F , µ) on a differen-
tiable surface F 2 consists of a foliation of F with isolated singularities so that
the foliation at the singularities has k -pronged singularities, and a translation-
invariant measure µ supported on arcs transverse to the foliation F . We will be
interested in foliations all of whose leaves are closed. We will say that two mea-
sured foliations are Whitehead equivalent if the foliations can be forced to agree
by a series of Whitehead moves and measure preserving isotopies of the underlying
surface (see [FLP]).

A holomorphic quadratic differential Φ on a Riemann surface R is a tensor
given locally by an expression Φ = q(z)dz2 , where z is a conformal coordinate on
R and q(z) is holomorphic. Such a quadratic differential Φ defines a measured
foliation in the following way. The zeros Φ−1(0) of Φ are well-defined; away
from these zeros, we can choose a canonical conformal coordinate ζ =

∫ z √
Φ so

that Φ = dζ2 . The local measured foliations ({Reζ = const}, d(Reζ)) then piece
together to form a measured foliation known as the vertical measured foliation
of Φ. There is a corresponding horizontal measured foliation constructed out of
the local foliations ({Imζ = const}, d Imζ) .

Relative to the vertical foliation of a holomorphic quadratic differential, the
Riemann surface decomposes into two types of dense open domains: cylindrical do-
mains, foliated by closed curves all freely homotopic to the same closed curve, and
spiral domains, in which all leaves are non-compact and dense (see [Str3] and [Gar]
for details). We will be interested in quadratic differentials, and more generally,
measured foliations, whose foliations consist entirely of cylindrical domains: these
are uniquely determined (up to equivalence, in the measured foliation case) by the
free homotopy classes of the core curves and the heights of the cylinders ([Str3;
§ 20]).

2.2. Energy-minimizing maps. Given a map w: R → (T, h) from a
Riemann surface R to a locally finite Riemannian complex T , we define the
energy form to be the tensor edz ⊗ dz̄ = (‖w∗∂z‖2

h + ‖w∗∂z̄‖2
h)dz ⊗ dz̄ ; the energy

of the map is E =
∫

edz ∧ dz̄ . An energy minimizing map is a minimum for
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this functional in a homotopy class. We define the Hopf differential Φ for a map
w: R → T by Φ = Φdz2 = 4〈w∗∂z, w∗∂z〉hdz2 . Note that ‖Φ‖ = ‖Φ‖L1 < 2E .

R. Schoen has emphasized [S] that a map for which the energy functional is
stationary under reparametrizations of the domain has a Hopf differential which
is holomorphic: one uses suitable domain reparametrizations to show that the
Hopf differential satisfies the Cauchy–Riemann equations weakly, and then Weyl’s
lemma forces the Hopf differential to be (strongly) holomorphic. We observe that
in this argument, the range manifold may be singular.

The vertical and horizontal foliations of the Hopf differential for w: R → T
integrate the directions of minimal and maximal stretch of the gradient map dw ,
for smooth energy minimizing maps w: R → T .

3. Main result

Let R be a Riemann surface and choose k mutually disjoint homotopically
non-trivial Jordan curves γ1, . . . , γk on R no pair of which are freely homotopic
(an admissable system; see [Str3; §2.6]). Also choose k positive numbers h1, . . . , hk

to serve as heights, and construct the measured foliation (F , µ) on R consisting
entirely of cylinders Cj of height hj with core curves γj and compact singular
curves. The leaf space T of F is a compact 1-complex, possibly with boundary
and/or a finite number of finite valence vertices corresponding to the singular
curves (see Figures 1 and 2); T inherits a metric d = dT = π∗µ by pushing
forward the measure µ by the natural projection π : R → T along the leaves. We
reprove

Figure 2.

Theorem 1 ([Ren], [HM]). There is a holomorphic quadratic differential Φ
on R whose vertical foliation is Whitehead equivalent to (F , µ) .
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Remark. The novelty of our proof is that Φ will emerge as the Hopf differ-
ential of the (unique) energy minimizing map f : R → (T, d) .

Proof of Theorem 1. We first consider the case when ∂T = ∅ . Then by The-
orem 2, there is a continuous energy minimizing map f = fπ: R → T homotopic
to π: R → T . The Hopf differential Φ = (f∗d)2,0 is then holomorphic, and does
not vanish everywhere, because this would imply that locally f was either a con-
tinuous conformal map between a Riemann surface and a graph, which is absurd,
or constant, which is excluded by the homotopy between f and π . We consider
its vertical measured foliation. Away from Φ−1(0), we consider the natural co-
ordinate ζ =

∫ p √
Φ and we write ζ = ξ + iy . Of course, in these coordinates

we have Φ = 1dζ2 so that from our definition of the Hopf differential, we have
the two real equations, ‖f∗∂ξ‖2

d − ‖f∗∂η‖2 = 1 and 〈f∗∂ξ, f∗∂η〉d = 0, at least
away from those neighborhoods U in R which are mapped onto three or higher
pronged neighborhoods of the singularities of T . Since away from the singularities
of T , the graph T is a 1-manifold, we can compare those two equations to find, on
those neighborhoods U ⊂ R , that f∗∂ξ‖f∗∂η . We conclude that f∗∂η = 0 and
f∗ maps the vector ∂ξ onto a unit vector tangent to T ; note from the uniform
continuity of f , that in fact this argument applies to neighborhoods of all but
the finitely many arcs in R representing preimages of a singularity of T . Thus,
the map f is in fact a projection along the leaves of the vertical foliation of Φ.
Now, a leaf of a vertical foliation of a quadratic differential is either compact and
contains a point of Φ−1(0), or is closed and avoids Φ−1(0), or is dense in some
open set in R (see [Str3]). If the latter occured, this would force f to be constant
on some open set in R ; this again forces the holomorphic tensor Φ to vanish on
R , a contradiction. The classification of trajectories of a holomorphic quadratic
differential on R then implies that the vertical foliation of Φ is composed of ℓ
cylindrical domains, bounded by some compact trajectories emanating from the
(finite) set Φ−1(0).

Recall the set S of simple closed curves on R . Now f : R → T is homotopic
to π: R → T , so the set Af =

{

[γ] ∈ S | infγ∈[γ] ℓdT

(

f(γ)
)

= 0
}

, of curves
with representatives whose image under f can have arbitrarily small dT -length,
agrees with Aπ . Within Af = Aπ , we can distinguish Bf = Bπ =

{

[γ] ∈ Af |
i([γ], [β]) = 0 ∀[β] ∈ Af

}

.

Lemma. Bπ = {[γ1], . . . , [γk]} , the set of core curves of the foliation F .

Proof of Lemma. It is clear that {[γ1], . . . , [γk]} ⊂ Bπ , since each γj is
clearly in Aπ by construction, and any element [β] ∈ S having an essential
intersection with [γj] would be mapped by π onto a portion of T which would
necessarily include the segment of dT -length hj corresponding to the projection
of the cylinder Cj .

On the other hand, the complement of {[γ1], . . . , [γk]} in Aπ consists of classes
of curves representable by curves in a singular trajectory of F . Consider such
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a curve class [β] and consider a representative β of [β] in a small neighborhood
N of the singular trajectory. Since [β] 6= [γj ] for any j , we may take [β] to be
non-boundary parallel. But then there exists a class [α] of simple closed curves in
N with i([α], [β]) 6= 0. (This follows, once we consider a representative β of [β]
in N : the open manifold N is planar, so β must separate N . But, since β is not
boundary parallel, neither component of the complement of β in N is a cylinder,
so we can find simple arcs in each component which are homotopically non-trivial,
rel β . We then connect these arcs to get the desired curve.) Naturally, then, the
class [α] has a representative α in the singular trajectory, so that ℓdT

(f(α)) = 0,
and so [α] , thought of as an element of S , has [α] ∈ Aπ . We conclude that
[β] ∈ Aπ − Bπ , proving the lemma.

Conclusion of the proof of Theorem 1. The lemma, applied to both f and π ,
shows that the vertical foliation for Φ and F share the same core cylinders. The
heights {hj} of the cylinders can be determined by computing infα∈[α] ℓdT

(

f(α)
)

= infα∈[α] ℓdT

(

π(α)
)

= L([α]) for a sufficient number of curve classes [α] ∈ S ,
and solving for heights using the identity L[α] =

∑

j i([α], [γj])hj .
Since the vertical foliation of Φ and the foliation F have the same core curves

and heights, they are Whitehead equivalent as desired.
In the case where the graph T has boundary {p1, . . . , pℓ} we proceed as

follows. The pre-image of a boundary point consists of a singular trajectory.
We consider, for each such boundary point pj , a simple closed curve αj con-
tained in the corresponding singular trajectory (the trajectories are required to
be homotopically non-trivial), and a vector ~ε of small numbers ~ε = (ε1, . . . , εl) .
Our construction gives that the set of curves Γ = {[γ1], . . . , [γk] , [α1], . . . , [αℓ]}
have mutually disjoint representatives, no pair of which are freely homotopic. We
construct the foliation F~ε with core curves from Γ and corresponding heights
{h1, . . . , hk , ε1, . . . , εℓ} ; we have chosen the curves αj so that the corresponding
cylinders C′

j will have both boundary components on the boundary of a cylinder
C corresponding to one of the γi , in fact to the γi whose cylinder projected under
π to a neighborhood of the boundary point pj . We see that the graph of the leaf
space is boundaryless, so that our previous argument yields a quadratic differen-
tial Φ~ε with core curves {[γ1], . . . , [γk] , [α1], . . . , [αℓ]} and heights {h1, . . . , hk ,
ε1, . . . , εℓ} .

We claim that ‖Φ~ε‖ is uniformly bounded: then in that case, as we let ~ε =
(ε1, . . . , εℓ) → 0, the differentials Φ~ε converge uniformly to a quadratic differential
with the prescribed core curves and heights.

To see that ‖Φ~ε‖ is uniformly bounded, we return to the problem of find-
ing an energy minimizing map w~ε : R → (T~ε, d~ε) where (T~ε, d~ε) is the metric
graph obtained from the leaf space of the measured foliation (F~ε, µ~ε) . We con-
struct a competitor w: R → (T~ε, d~ε) to the energy minimizing map w~ε by fix-
ing a vector ~κ = (κ1, . . . , κl) first and considering the energy minimizing map
w~κ : R → (T~κ, d~κ) . Now, we have constructed T~κ and T~ε to be homeomorphic,
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with a canonical map between the vertices of the graph. We construct an affine
map A~κ,~ε : (T~κ, d~κ) → (T~ε, d~ε) given by extending that map of vertices of the graph
to the one-complex in an affine way. The composed map A~κ,~ε ◦ w~ε : R → (T~ε, d~ε)
has total energy E~κ exceeding E(w~ε) because w~ε is energy minimizing; moreover,
since for ~ε with εi < κi for i = 1, . . . , l , the map A~κ,~ε differs from an isome-
try only by being a contraction on the branches of T~κ dual to the core curves
{[α1], . . . , [αl]} , we see that we have the uniform bound E~κ < E0 . This yields the
estimate ‖Φ~ε‖ < 2E(w~ε) < 2E~κ < 2E0 (where we recall the first inequality from
§2), proving the claim.

4. Appendix

We prove, with an argument (see [J1; §4.1], and [GS]) that is already almost
entirely in the literature,

Theorem 2. Let φ: R → (T, d) be a map from a Riemann surface R to

a graph T , where T is equipped with a metric d ; suppose φ ∈ C0 ∩ H1(R, T ) .
Then there is a continuous energy minimizing map u: R → (T, d) homotopic to φ
with the modulus of continuity of u estimable in terms of E(φ) and the modulus

of continuity of φ .

Remark. We include this proof for the purpose of displaying the analytical
underpinnings of our approach to Strebel’s theorem, not for any claim of novelty.

Proof. The plan is to prove the result first locally, and then to piece together
the local harmonic maps into a well controlled sequence of maps which tend to-
wards a minimizer u: R → (T, d) .

4.1. So consider first a continuous map of the circle g: ∂∆ → (T ∗, d) where
g admits an extension ḡ: ∂∆ → (T ∗, d) of finite energy and the image of g is a
simply connected closed subgraph T ∗ ⊂ T , for instance the intersection of T with
a ball, T ∗ = T∩B(p, r) . We claim that there exists a harmonic map h: ∆ → (T, d)
with boundary values g , and that h minimizes the energy with respect to these
boundary values. We also claim that the modulus of continuity of h can be
estimated in terms of E(ḡ) and the modulus of continuity of g . To see this, take a
minimizing sequence {vi} for the energy in V =

{

v ∈ H1
(

∆, B(p, r∗)
)

, v
∣

∣

∂∆
= g

}

where r < r∗ . (The point here is that our space V makes perfectly good sense for
a singular target being a graph, since we can embed the simply connected graph
T ∗ isometrically in R2 , defining H1(∆, B(p, r∗)) = {v ∈ H1(∆,R2) ; v(z) ∈
B(p, r∗) ⊂ T ∗ ⊂ R2 a.e. z ∈ ∆} and v = v̂ on ∂∆ if v − v̂ ∈ H1

0 (∆,R2)
where H1

0 (∆,R2) is the H1 -norm closure of smooth, compactly supported R2 -
valued maps on ∆.) Now, such a minimizing sequence {vi} has a subsequence
converging weakly in H1 , and the limit h minimizes energy in its class because of
the lower semicontinuity of the energy functional. Since the set

{

v ∈ H1(∆,R2) ,

v
∣

∣

∂∆
= g

∣

∣

∂∆

}

is a closed affine subspace of H1(∆,R2) , it is weakly closed, and
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we conclude that h
∣

∣

∂∆
= g

∣

∣

∂∆
. We can estimate the modulus of continuity of

h as follows: the Courant–Lebesgue lemma ([J1; Lemma 3.1.1]) provides that for
each x ∈ R and ε > 0 there is a ̺ depending only upon ε , E(ḡ) and the modulus
of continuity of g and q ∈ T ∗ so that h

(

∂B(x, ̺)
)

⊂ B(q, ε)∩T ∗ . But then, since

B(q, ε) ∩ T ∗ is convex, the maximum principle forces h
(

B(x, ̺)
)

⊂ B(q, ε) ∩ T ∗ .
Thus we have shown the continuity of h and estimated its modulus of continuity.

Remark. Of course, when T ∗ ⊂ T is an interval, h is given classically by
the Poisson integral formula, so here we are really only interested in T ∗ being
a non-trivial graph, for instance a “Y ”. It would be interesting to have a more
explicit description of the map h: ∆ → T ∗ in this case, in terms of the boundary
values h

∣

∣

∂∆
: ∂∆ → T ∗ .

4.2. To complete the argument, we choose a δ0 sufficiently small so that the
Courant–Lebesgue lemma forces a harmonic map φ with energy E(φ) of the ball
of radius δ < δ0 to be contained in a simply connected subgraph T ∗ ⊂ T ; we
want to be able to apply the construction of the previous paragraph 4.1.

Choose δ < δ0 , and cover R by a finite number M of balls B(xi, δ/2), i =
1, . . . , M ; here we have chosen some suitable background metric on R . Following
[J1; Theorem 4.1.1], we let un be a continuous energy minimizing sequence of
maps homotopic to φ ; we may as well assume that E(un) < E(φ) so that we have
control on un

(

B(xi, δ/2)
)

. Thus, by the Courant–Lebesgue lemma and our choice

of constants, for every n , we can find rn,1 , with δ < rn,1 < δ1/2 and pn,1 ∈ N so
that un

(

∂B(x1, rn,1)
)

⊂ B(pn,1, r
∗) for r∗ so small that B(p, r∗) ⊂ T is always

simply connected. Thus, we can invoke our construction for harmonic maps of balls
into simply connected graphs: we replace un

∣

∣

B(x1,rn,1)
by the harmonic map

hx1,n: B(x1, rn,1) → B(pn,1, r) whose boundary values hx1,n

∣

∣

∂B(x1,rn,1)
agree

pointwise with those un

∣

∣

∂B(x1,rn,1)
of un .

We can assume that rn,1 → r1 and using the estimates on the modulus
of continuity of the harmonic maps hx1,n of simply connected domains, we can
take the replaced maps, say un,1 , to converge uniformly on B(x1, δ − η) for any
0 < η < δ . Naturally E(un,1) < E(un) .

We repeat the argument to find a radius rn,2 with δ < rn,2 <
√

δ and
un,1

(

∂B(x2, rn,2)
)

⊂ B(pn,2, r) and replace un,1 on B(x2, rn,2) by the appropriate
solution to the Dirichlet problem; we denote the new replaced maps by un,2 , and
again assume that rn,2 → r2 .

Now, in the first replacement step, un,1 converged uniformly on B(x2, r2) ∩
B(x1, δ − η/2), and thus the boundary values for our second replacement step
converge uniformly on ∂B(x2, rn,2)∩B(x1, δ−η/2). Of course, we have a uniform
estimate for the modulus of continuity between small disks and portions of graphs
(even after allowing for the difference between our background metric and the
Euclidean metric on the disk): this means that we can assume that the maps un,2
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converge uniformly on B(x1, δ − η) ∪ B(x2, δ − η) for 0 < η < δ . Of course, the
act of replacing lowers energy, and we conclude that E(un,2) ≤ E(un,1) ≤ E(un) .
We repeat the replacement argument in this way obtaining a family of maps un,M

with E(un,M) ≤ E(un) , and which converge uniformly on all balls B(xi, δ/2),

hence on R since R ⊂ ⋃M
i=1 B(xi, δ/2).

We let u denote the limit of un,M as n → ∞ (recall that M is a fixed number
depending only upon δ ). Note that since replacement on disks will not affect the
homotopy class of the maps un,i , the uniform convergence of un,M to u forces u to
be not only continuous but also homotopic to the given φ: R → T . Naturally also,
since un is a minimizing sequence, so is un,M ; we note that since E(un,M) ≤ E(φ) ,
the maps un,M converge weakly in H1(R, T ) (see above comments on proper
definitions), and by the lower semicontinuity of the energy functional with respect
to weak H1 convergence, we get that the limit u of the energy minimizing sequence
uM

n minimizes energy within the homotopy class of φ: R → T .

Remarks. 1) When the image of u is contained in an embedded interval
in the graph, it follows immediately that u is a harmonic function, and hence
real analytic. 2) It is possible to start with φ: R → T being a projection as in
the application (Theorem 1), and then argue that all replacements involve only
Whitehead moves to the resulting Hopf differential vertical foliation. This yields
the desired Jenkins–Strebel differential possibly more constructively.
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[Str1] Strebel, K.: Über quadratische Differentiale mit geschlossenen Trajektorien und ex-
tremale quasikonforme Abbildungen. - Festband zum 70. Geburtstag von Rolf Nevan-
linna (1965/1966), Springer-Verlag, 1966, 105–127.

[Str2] Strebel, K.: Bemerkungen über quadratische Differentiale mit geschlossenen Trajekto-
rien. - Ann. Acad. Sci. Fenn. Ser. A I Math. 405, 1967, 1–12.

[Str3] Strebel, K.: Quadratic Differentials. - Springer-Verlag, Berlin, 1984.

Received 20 December 1993


