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Abstract. In this paper we will use b -groups to construct coordinates for the Teichmüller
spaces of 2 -orbifolds. The main technical tool is the parametrization of triangle groups, which
allows us to compute explicitly formulæ for generators of b -groups uniformizing orbifolds. In this
way, we obtain a technique to pass from the abstract objects of deformation spaces to concrete
calculations with Möbius transformations. We explore this computational character of our work
by finding the expressions of certain classical isomorphisms between Teichmüller spaces.

0. Introduction

One of the most active lines of research in geometric function theory nowadays
deals with the problem of finding parametrizations of Teichmüller spaces that are
useful for computations ([4], [7], [9], [15], [16], [17], [20]). This paper makes a two
fold contribution to this aspect of complex analysis: we will give coordinates for the
Teichmüller spaces of b -groups with torsion (or equivalently, for the Teichmüller
spaces of 2-orbifolds) and we will use our coordinates to compute explicit formulæ
of well known isomorphisms between deformation spaces. Our coordinates are
good from a computational point of view because, given a point α in the Teich-
müller space of a b -group, T (p, n; ν1, . . . , νn) , we have a technique to compute a set
of Möbius transformations that generate a Kleinian group Γ, whose coordinates
in the space T (p, n; ν1, . . . , νn) are α .

Given an orbifold S , defined over a surface of genus p with n special points,
and a maximal partition C on S (that is, a way of decomposing S into ‘pairs
of pants’), we can find a Kleinian group Γ, acting discontinuously on a simple

connected open set ∆ of Ĉ , such that ∆/Γ ∼= S . Besides S , the group Γ
uniformizes a finite number of rigid orbifolds. Therefore, the Teichmüller space
of Γ T (Γ) is a model for T (S) , the Teichmüller space of the orbifold S . This
last set is important in the study of Riemann surfaces because it is the universal
covering space of the Riemann space R(S) , which parametrizes the biholomorphic
classes of complex structures on S . The advantage of using the deformation space
of the group over the deformation space of the orbifold lies in the fact that one
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can do explicit computations with Möbius tranformations, obtaining in this way
some properties of T (S) .

Using the partition C , we can decompose the group Γ into a set of subgroups,
Γ1, . . . , Γ3p−3+n , with the property that T (Γj) has dimension 1. By a theorem

of B. Maskit, the restriction mapping T (Γ) → ∏3p−3+n
j=1 T (Γj) is one-to-one and

holomorphic. Therefore, to give coordinates on T (Γ) it suffices to study the one-
dimensional cases. This is done in detail in Section 3 of this paper. Putting
together our computations with the above embedding, we get the following general
result, which generalizes the torsion-free case studied by I. Kra.

Theorem 10 ([7] and Section 3.7). Let S be an orbifold with hyper-

bolic signature σ = (p, n; ν1, . . . , νn) , and let C be a maximal partition on

S . Then there exists a set of global coordinates for the deformation space

T (S) = T (p, n; ν1, . . . , νn) , say (α1, . . . , αd) , where d = 3p − 3 + n , and a set

of non-negative numbers, y1
1 , . . . , y

d
1 , y1

2 , . . . , y
d
2 , which depends only on the signa-

ture σ and the partition C , such that

{(α1, . . . , αd) ∈ Cd; Im(αi) > yi
1, ∀ 1 ≤ i ≤ d} ⊂ T (p, n; ν1, . . . , νn)

and

T (p, n; ν1, . . . , νn) ⊂ {(α1, . . . , αd) ∈ Cd; Im(αi) > yi
2, ∀ 1 ≤ i ≤ d}.

Given a point α = (α1, . . . , αd) in T (p, n; ν1, . . . , νn) , it is possible to find explictly

a set of 2p+n Möbius transformations that generate a group Γ , whose coordinates

in that Teichmüller space are α .

The Kleinian groups that we will use are known as terminal regular b -groups
(see Section 1 for the definition). They are built from triangle groups by a finite
number of applications of the Klein–Maskit combination theorems. Therefore, to
prove the above theorem, we first need a way of computing generators for triangle
groups. This is the content of the following result, which is the main technical tool
of our work.

Theorem (Sections 2.2 and 2.6). Given three distinct points (a, b, c) in the

Riemann sphere, and a signature σ = (0, 3; ν1, ν2, ν3) , which is either hyperbolic

or (0, 3;∞, 2, 2) , there exists a pair of Möbius transformations A and B , uniquely

determined by the parameters (a, b, c) , such that the group generated by them is

a triangle group of signature σ . The transformations A and B are explicitly

computable from (a, b, c) and σ .

The explicit character of our coordinates allows us to compute some classical
isomorphisms between different Teichmüller spaces as follows. Let S be a sur-
face of genus 2, unformized by a b -group Γ. Since all surfaces of genus 2 are
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hyperelliptic, we have a conformal involution j on S with 6 fixed points. The
quotient orbifold S′ = S/〈j〉 has signature (0, 6; 2, . . . , 2). It is a classical result
([19]) that the spaces T (S) and T (S′) are biholomorphically equivalent. To find

a mapping between them, we first find the lifting of j , say A
1/2
2 , to the cover-

ing determined by Γ. We have that the group generated by Γ and A
1/2
2 is a

b -group uniformizing S′ . Using explicit calculations on T (Γ) and T (Γ′) , we get
the following result.

Theorem 11 (Section 4.1). The mapping

(τ1, τ2, τ3) 7→ ( 1
2τ1, 1 + τ2, 1 + 1

2τ3)

gives an isomorphism between T (2, 0) and T (0, 6; 2, 2, 2, 2, 2, 2) .

This paper is organized as follows. Section 1 contains non-standard back-
ground on Kleinian groups and Teichmüller spaces. In Section 2 we compute
generators for triangle groups. These computations are used in Section 3 to de-
velop coordinates for Teichmüller spaces of terminal regular b -groups; in particular
we prove Theorem 10. In Section 4 we prove Theorem 11, and indicate how our
methods can be used to prove similar results.

The content of this paper is part of the author’s Ph.D. thesis. I would like
to thank my advisor, Irwin Kra, for all his help during my years as a graduate
student; and thank Chaohui Zhang and Suresh Govindarajan for many useful
conversations and comments on my work. I also want to thank the referee for
making many useful comments which have improved a first, and very hard to
understand, version of this paper.

1. Background

1.1. Throughout this paper, we will identify the group of Möbius trans-
formations with the projective special linear group, PSL(2,C) . The mapping

z 7→ (az + b)/(cz +d) will be identified with

[
a b
c d

]
. The square brackets denote

an element of PSL(2,C) ; that is, a class of matrices of SL(2,C) . If we take a
particular lifting of an element of PSL(2,C) to SL(2,C) , we will use parenthesis.

An elliptic transformation of finite order q is called geometric if it can be
conjugated in PSL(2,C) to z 7→ exp(±2πi/q)z . Observe that only ‘minimal
rotations’ are geometric. For example, every element of order 5 is conjugate to a
transformation of the form z 7→

(
exp(2kπi/q)

)
z , for k = 1, . . . , 4, but only those

with k = 1, 4 are geometric.
An element A of a group G of Möbius transformations is called primitive if

the only solutions of the equation Bn = A , with B ∈ G and n ∈ Z , are given by
B = A±1 .
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1.2. Let G be a non-elementary finitely generated Kleinian group. An iso-
morphism θ: G → θ(G) ⊂ PSL(2,C) is called geometric if there exists a quasicon-
formal homeomorphism of the Riemann sphere w , such that θ(g) = w ◦ g ◦ w−1

for all g ∈ G . Two geometric isomorphisms θ1 , θ2 , are equivalent if there exists a
Möbius transformation A , such that θ1(g) = A ◦ θ2(g) ◦ A−1 , for all g ∈ G . The
set of equivalence classes of geometric isomorphisms of G is the Teichmüller (or
deformation) space of G , T (G) . It is a well known fact that T (G) is a complex
manifold ([2], [5], [11]).

1.3. A signature is a set of numbers σ = (p, n; ν1, . . . , νn) such that p, n ∈
Z+ , νj ∈ Z+ ∪ {∞} , νj ≥ 2. We will say the signature is hyperbolic, parabolic

or elliptic if the quantity 2p − 2 + n − ∑n
1 (1/νj) is positive, zero or negative,

respectively. The pair (p, n) is called the type of the signature.
A (2-)orbifold S of signature σ , is a compact surface of genus p from which

finitely many points have been removed (as many as ∞ ’s are in σ ) and such that
S has a covering which is locally νj -to-1 over certain points, where the νj ’s
are the finite values appearing in σ . The νj ’s are called ramification values of
the signature or of the orbifold. A maximal partition C on an orbifold S with
hyperbolic signature σ is a set of 3p− 3 + n simple unoriented disjoint curves on
S ′ = S − {xj; νj < ∞} , such that no two curves of C are freely homotopically
equivalent on S′ , and no curve of C is freely homotopically equivalent to a loop
around a point or a puncture of S ′ . To avoid trivial cases, when we talk about
maximal partitions we will assume that the signature of the orbifold satisfies 3p−
3 + n > 0.

1.4. The following result of B. Maskit provides us with a uniformization
of orbifolds by Kleinian groups that are better for computational purposes than
Fuchsian groups.

Theorem 1 (Maskit [10], [13]). Given an orbifold S with hyperbolic sig-

nature σ and maximal partition C , there exists a (unique up to conjugation in

PSL(2,C)) geometrically finite Kleinian group Γ , called a terminal regular b -
group, such that:

1. ∆/Γ is conformally equivalent to S ;
2. for each element aj of the partition C , there is a curve ãj in ∆ , precisely

invariant under a cyclic subgroup 〈Aj〉 of G , generated by an accidental

parabolic transformation Aj , and such that ∆ ⊇ ãj
π→π(ãj) = aj ⊆ S ,

where π: ∆ → S is the natural projection.

3.
(
Ω(Γ)−∆

)
/Γ is the union of the orbifolds of type (0, 3) obtained by squeez-

ing each curve of C to a puncture and discarding all orbifolds of signature

(0, 3; 2, 2,∞) that appear.

From a Teichmüller theory point of view, the only interesting surface uni-
formized by a terminal regular b -group Γ is the one corresponding to the invariant
component, since the deformation spaces of orbifolds of type (0, 3) are points. The
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space T (Γ) is then equivalent to the deformation space of the orbifold T (S) . When
convenient, we will denote T (Γ) by T (p, n; ν1, . . . , νn) . Its complex dimension is
3p − 3 + n .

1.5. The uniformization theorem of Maskit allows us to embed T (Γ) into a
product of one dimensional Teichmüller spaces as follows. Let Tj be the connected
component of S − {ak; ak ∈ C , k 6= j} containing the curve aj . Let Dj be
a connected component of π−1(Tj) , and let Γj be its stabilizer in Γ; that is,
Γj = {γ ∈ Γ; γ(Dj) = Dj} . The Γj ’s are terminal regular b -groups of type
(0, 4) or (1, 1), and therefore T (Γj) is a one-dimensional manifold ([6]). It is clear
that any geometric isomorphism of Γ induces an geometric isomorphism of Γj by
restriction.

Theorem 2 (Maskit [12], Kra [6]). The mapping defined by restriction,

T (Γ) →֒ ∏3p−3+n
j=1 T (Γj) , is holomorphic and injective with open image.

We will call this mapping the Maskit embedding of the group Γ.

1.6. Throughout this paper, for a signature (p, n; ν1, . . . , νn) , qj and pj will
denote cos(π/νj) and sin(π/νj) , respectively, j = 1, . . . , n .

2. Triangle groups

2.1. A triangle group is a Kleinian group Γ generated by two Möbius trans-
formations, A and B , such that |A| = ν1 , |B| = ν2 and |AB| = ν3 . Here |T |
denotes the order of the transformation T , with parabolic elements considered as
elements of order equal to ∞ . A triangle group Γ with hyperbolic signature can be
constructed, for example, by taking a triangle on H with angles π/νj , j = 1, 2, 3,
and considering the group of transformations Γ∗ generated by reflections on the
sides of the triangle. Then Γ is the index 2 subgroup consisting of the orientation
preserving transformations. A similar construction can be carried out for the case
of parabolic groups. Our goal is to correctly choose the position of the vertices of
such triangles.

Hyperbolic groups. 2.2. Let (a, b, c) be three distinct points on Ĉ . Let Λ

be the circle determined by these points. Let ∆ = {z ∈ Ĉ ; Im
(
cr(a, b, c, z)

)
> 0} ,

where cr denotes the cross ratio of four different points of the Riemann sphere,
chosen such that cr(∞, 0, 1z) = z (remember that there are six possible definitions
of cross ratio). Let L and L′ be the circles orthogonal to Λ and passing through
{a, b} and {a, c} , respectively.

Definition 1. Let z1 and z2 be two distinct points in L ∩ ∆. We will say
that they are well ordered, with respect to (a, b, c) , if one of the following set of
conditions is satisfied (they are not mutually exclusive):

1. z1 = a ;
2. z2 = b ;
3. z1 6= a , z2 6= b and cr(a, z1, z2, b) is real and strictly bigger than 1.
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For example, if a = ∞ , b = 0 and c = 1, we have that L is the imaginary
axis, and ∆ is the upper half plane. If z1 = λi and z2 = νi , then these two points
are well ordered with respect to (∞, 0, 1) if and only if λ > ν > 0.

Given this definition, we can state the concept of ‘good’ generators.

Definition 2. Let (a, b, c) be three distinct points of Ĉ , and let Λ, ∆, L and
L′ be as previously defined. Suppose that Γ is a triangle group with hyperbolic
signature (0, 3; ν1, ν2, ν3) and whose limit set is Λ. Let A and B be elements
of Γ. We will say that (A, B) are canonical generators of Γ for the parameters
(a, b, c) if they generate the group Γ and the following conditions are satisfied:

1. |A| = ν1 , |B| = ν2 , |AB| = ν3 ,

2. A and B have their fixed points on L , and AB on L′ ,
3. if z1 and z2 are the fixed points of A and B on L ∩ ∆, then they are well

ordered with respect to (a, b, c) ,

4. A and B are primitive elements, and geometric whenever elliptic.

Our main result about existence and uniqueness of canonical generators for
hyperbolic triangle groups is the following:

Theorem 3. Given three different points (a, b, c) in the Riemann sphere, and

a hyperbolic signature σ = (0, 3; ν1, ν2, ν3) , there exists a unique pair of Möbius

transformations (A, B ), such that they are canonical generators of a triangle group

with signature σ and for the given parameters.

In the case (a = ∞, b = 0, c = 1) , these generators are given by:
1. Signature (0, 3;∞, ν1, ν2) , νi ≤ ∞ :

A =

[
−1 −2
0 −1

]
, B =

[
−q1 b

q1 + q2 −q1

]
, b =

q2
1 − 1

q1 + q2
.

2. Signature (0, 3; ν1, ν2, ν3) , where all the νi are finite:

A =

[
−q1 −kp1

k−1p1 −q1.

]
, B =

[
−q2 −hp2

h−1p2 −q2

]
.

Here k = (q2 + q1q3 + q1l)/(p1l) , h = kp1p2/(q1q2 + q3 + l) , and l =√
q2
1 + q2

2 + q2
3 + 2q1q2q3 − 1 with the square root chosen to be positive.

For any other set of parameters, (a, b, c) , the generators are given by con-

jugating the above transformations by the unique Möbius transformation T that

maps a, b, c to ∞, 0, 1 respectively.

Observe that the transformations in the second case of the above theorem
converge to those of the first case when ν1 goes to ∞ .

2.3. The following two technical results are needed to prove Theorem 3.
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Proposition 1. Let Γ be a triangle group with signature (0, 3; µ1, µ2, µ3)
and let l2 = q2

1 + q2
2 + q2

3 +2q1q2q3 −1 . Then l2 is positive, zero or negative if and

only if the signature is hyperbolic, parabolic or elliptic, respectively.

Proof. The elliptic and parabolic cases can be checked by computing the
values of l2 . In the hyperbolic case, first observe that the expression of l2 is
symmetric on νj ’s, so we can assume, without loss of generality, that ν1 ≤ ν2 ≤ ν3 .
It is also clear that l2 is increasing with νj , so we need to compute its values
only for the cases of small signatures. More precisely, it suffices to consider the
cases (0, 3; 2, 3, 7) and (0, 3; 3, 3, 4). For the first of these signatures we have
l2 = cos2(π/7) − 3

4
> cos2(π/6) − 3

4
= 0, while for the second signature we get

l2 = 1 + 3
4

√
2 > 0.

Proposition 2. Let A and B be canonical generators for the group

Γ(ν1, ν2, ν3; a, b, c) . Assume that Ã and B̃ are liftings of A and B , respectively,

to SL(2,C) , both having negative trace. Then the product ÃB̃ also has negative

trace.

Proof. We start with the observation that all the ramification values should
be bigger than 2, since involutions have matrix representatives with zero trace,
and then the proposition would not make sense. Since the trace of a matrix is
invariant under conjugation, we are free to choose (∞, 0, 1) as parameters for the
group; this will simplify our computations.

Let us first look at the case of Γ(∞, ν2, ν3;∞, 0, 1). Assume that Ã and B̃

have negative trace but ÃB̃ has positive trace. We have the following expressions
for the liftings of A and B :

Ã =

(
−1 −α
0 −1

)
, B̃ =

(
a b
c −a − 2q2

)
.

From the definition of canonical generators for the above parameters we get the
following conditions:





trace (ÃB̃) = −2q1 ≤ 0 ⇔ 2q2 − αc = 2q3

Re (fixed points of B) = 0 ⇔ 2a + 2q2 = 0
Re(fixed points of AB) = 1 ⇔ −αc − 2q2 − 2a = −2c.

Solving these equations we get

Ã =

(
−1 −2
0 −1

)
, B̃ =

(
−q1 b

q1 − q2 −q1

)
, b =

q2
1 − 1

q1 − q2
.

The Schimizu–Leutbecher lemma [14, p. 18] implies that |q2 − q3| ≥ 1
2 or q2 =

q3 . The second situation cannot happen as it would imply that the group is
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Figure 1. A possible fundamental domain for a group with no parabolics.

elementary. In the first case, the only possible solutions are q2 = 1, q3 = 1
2 or

vice versa. This implies that the possible signatures of the group are (0, 3;∞,∞, 3)
or (0, 3;∞, 3,∞) . But in both cases we obtain an element of order 2, namely ABA
and AB−1 respectively, which is not possible because of the signatures.

The case of the group Γ(ν1,∞, ν3;∞, 0, 1), with ν1 < ∞ , can be reduced
to the previous situation as follows. Let x ∈ R − {0} be the end point of the
geodesic in H joining 0 and the fixed point of AB . Then B and (AB)−1 are
canonical generators for Γ(∞, ν3, ν1; 0, x,∞) . Let T be the Möbius transforma-
tion that takes 0, x,∞ to ∞, 0, 1 respectively. Then TΓ(∞, ν3, ν1; 0, x,∞)T−1 =
Γ(∞, ν3, ν1;∞, 0, 1), and we are in the situation already discussed.

Consider now the case of Γ(ν1, ν2, ν3;∞, 0, 1), where all the ramification val-

ues are finite. Assume again that ÃB̃ has negative trace. Then an easy computa-
tion shows that the matrix representatives of A and B are given by the following
expressions:

Ã =

(
−q1 −mp1

m−1p1 −q1

)
, B̃ =

(
−q2 −np2

n−1p2 −q2

)
,

where m = (q2 − q1q3 + q1r)/p1r , n = (mp1p2)/(q1q2 − q3 + r) , and r is the
positive square root of q2

1 + q2
2 + q2

3 − 2q1q2q3 − 1.
If m > 0, then consider the triangle of Figure 1, where the vertices v1 , v2 and

v3 are fixed by A , B and AB , respectively, and the angle at vj is π/νj . It is not
hard to see that A(∞) < 0 and AB(∞) < 1, so the action of the transformations
A and AB are as indicated in the figure. Reflect the triangle on the geodesic
joining v1 and v3 to get a similar triangle with vertices v1 , v3 and v4 . Since
A and B are isometries in H , a look at the figure shows that ABA fixes v2 .
This implies that ABA = Bn for some integer n . If n = 0, we have that the
group is elementary, which is not possible. If n 6= 0, we use the fact that AB =
(B−1A−1)ν3−1 , to get Bn = ABA = (B−1A−1)ν3−1A = (B−1A−1)ν3−2B−1 .
Therefore Bn+1 = (AB)ν3−2 . But this equality can be satisfied only if ν3 = 2,
contrary to our assumptions.

The case of m < 0 is solved as above by considering the element A−1B−1A−1

instead of ABA .



Coordinates for Teichmüller spaces of b -groups with torsion 287

We are now in a position to prove Theorem 3.

2.4. Proof of Theorem 3. First case: the signature is (0, 3;∞, ν1, ν2) . By
the same trick used in the proof of Proposition 2, we can reduce all the signatures
with punctures to this case. The element A is a parabolic transformation fixing
∞ , so it is of the form A(z) = z+α , with α ∈ C−{0} . Consider now the element
B(z) = (az + b)/(cz + d) . Choose liftings of A and B to SL(2,C) with negative
traces. We then have the following equations:





trace (B̃) = −2q2 ≤ 0 ⇔ a + d = −2q2,
Re (fixed points of B) = 0, ⇔ a − d = 0,

trace (ÃB̃) = −2q3 ≤ 0 ⇔ −a − αc − d = 2q3,
Re (fixed points of AB) = 1 ⇔ a + αc − d = 2c,

det B̃ = 1 ⇔ ad − bc = 1.

Solving these equations we get the matrices of Theorem 1.

Second case: the signature is (0, 3; ν1, ν2, ν3) , where all the ramification values
are finite. The canonical generators will be of the form A(z) = (αz + β)/(γz + δ)
and B(z) = (az + b)/(cz + d) . Choosing matrix representatives of these transfor-
mations with negative traces, we get the equations:





trace (Ã) = −2q1 ≤ 0 ⇔ α + δ = −2q1,
Re (fixed points of A) = 0 ⇔ α − δ = 0,

trace (B̃) = −2q2 ≤ 0 ⇔ a + d = −2q2,
Re (fixed points of B) = 0 ⇔ a − d = 0,

trace (ÃB̃) = −2q3 ≤ 0 ⇔ αa + βc + γb + δd = −2q3,
Re (fixed points of AB) = 1 ⇔ αa + βc − γb − δd = 2(γa + δc).

Using the fact that the matrices involved in these equations have determinant equal
to 1, it is not hard to see that the only solution is the one given in Theorem 3.

2.5. The following technical result will be needed in Section 2.7.

Proposition 3. If (A, B) and (A, D) are two pairs of canonical generators

for a hyperbolic triangle group with signature (0, 3;∞, ν1, ν2) then there exists an

integer number, n , such that D = An/2BA−n/2 .

In general a Möbius transformation has several square roots, but in the case
of parabolic elements such a situation does not happen. So we have that the
transformation An/2 is well defined for any integer n .

Proof. By conjugation we may assume that A and B are canonical generators
for the parameters (∞, 0, 1), whose expressions are given in Theorem 1. Let Ã
and D̃ be liftings of A and D to PSL(2,C) respectively, with negative trace. By
Proposition 2 we have that ÃD̃ has also negative trace. Computations show that,
under these conditions, A(z) = z+2 and D(z) = (αz + β)/

(
(q1 + q2)z − 2q1 − α

)
,
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z ∈ C , α, β ∈ R . Let T (z) = z +h , where h = (α + q1)/(q1 + q2) (this is the real
part of the fixed points of AD ).Then TBT−1 = D . So T belongs to the normalizer
of Γ in PSL(2,C) , and induces an automorphism of the quotient surface that fixes
one puncture (since TAT−1 = A). This means that either T ∈ Γ or T 2 ∈ Γ,
giving us T = An or T = An/2 as desired.

Parabolic groups. 2.6. The only case of parabolic triangle groups that
we need in this paper is the one of groups with signature (0, 3;∞, 2, 2). For a
treatment of the general case, as well as the elliptic signatures, see [1].

Definition 3. Let Γ be a triangle group with signature (0, 3;∞, 2, 2). Let
A and B be two generators of the group. We will say that they are canonical for
the parameters (a, b, c) if the following conditions are satisfied:

1. |A| = ∞ , |B| = 2 and |AB| = 2,
2. A(a) = a , B(b) = b and AB(c) = c ,
3. A and B are primitive.

Theorem 4. Given three different points (a, b, c) in the Riemann sphere,

there exists a unique pair of Möbius transformations (A, B) , such that they are

the canonical generators of a triangle group with signature (0, 3;∞, 2, 2) and for

the given parameters. We will denote the triangle group with the pair of canonical

generators by Γ(∞, 2, 2; a, b, c) .

Proof. Taking parameters (∞, 0, 1), the proof is reduced to a simple compu-
tation.

Proposition 4 also holds for this type of groups. Since the proof is the same,
we will not reproduce it again.

The geometry of the quotient orbifolds. 2.7. Our next goal is to produce
coordinates on the orbifolds uniformized by the groups studied above. We will use
these coordinates to explore the relation between parameters on Teichmüller spaces
and the construction of Riemann surfaces (see Theorems 6 and 9).

Let Γ = Γ(∞, ν2, ν3; a, b, c) be a group with hyperbolic signature. Let ∆ be
defined as in Section 2.1. Put on ∆ the metric of constant curvature −1. Since
Γ acts on ∆ by isometries, we have a metric on S ∼= ∆/Γ obtained by projection.
A geodesic on S is just a curve that lifts to a geodesic on ∆.

Proposition 4. Let S be a hyperbolic orbifold with signature

(0, 3;∞, ν1, ν2) . Let P 6∈ S be the puncture corresponding to the first ∞ in

the signature, and Q the puncture or branched point corresponding to ν1 . Then

there exists a unique simple geodesic c: I −→ S , joining P and Q such that, if

c is parametrized by arc length s , then:

1. if ν1 = ∞ , I = R , lims→+∞ c(s) = P , and lims→−∞ c(s) = Q .

2. if ν1 < ∞ , I = [0, +∞) , lims→+∞ c(s) = P , and c(0) = Q .
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Figure 2. Fundamental domains for hyperbolic triangle groups.

Proof. The existence part is easy. These orbifolds have no moduli, so we can
assume that the covering space is H , and the covering group Γ has parameters
(∞, 0, 1). As a fundamental domain for our group we can choose (depending on the
signature of the group) one of those in Figure 2 above. The projection of the part
of the imaginary axis that lies in the boundary of that fundamental domain gives
a geodesic on S that satisfies the conditions of the statement of the proposition.

For the uniqueness part, let us assume that there is another geodesic, satis-
fying the properties stated in the proposition. We lift it to H and we can assume
that the lifting is a half-vertical line. We want to prove that this second vertical
line is simply a translate of the imaginary axis under a power of A , and therefore
the projection of the two lines will be the same geodesic in the orbifold.

The end point of our line, say x0 , which corresponds to Q , has to be fixed by
a transformation B1 . Now, if we remove on the orbifold the point corresponding
to ν2 (if ν2 = ∞ , then we do not have to remove anything, since punctures are
not in the orbifold), we are in a situation like the torsion free case, and we get that
A and B1 generate the group Γ (see [7]). Therefore A and B1 will be canonical
generators for some parameters. By Proposition 4, we have that there is an integer
n ∈ Z , such that An/2BA−n/2 = B1 . Our proof will be complete if we show that
n is even.

If n is odd, then B1 = A1/2BA−1/2 is conjugate to B in the group Γ, since
both transformations, B and B1 , correspond to the same point Q in S . This
implies that the element A1/2 belongs to the normalizer of Γ in PSL(2,R) and
therefore it induces an automorphism of the quotient orbifold that fixes at least
one puncture (the one represented by A). Since A1/2 does not belong to Γ, the
induced automorphism is not the identity, and so it has to interchange the other
two ramification points. This implies that B and AB are tranformations of the
same order. It is easy to see that, in such case, A1/2BA−1/2 = (AB)−1 . Then we
would have that B and (AB)−1 are conjugate in the group Γ, which is not true
since they correspond to different branch points. Therefore x0 is an even integer
and the geodesics are the same.

2.8. We can use the geodesic of the above proposition to construct coordinates
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on the orbifold S . In this paper we will use only coordinates around punctures,
and the main result in that line is in [7]. His proof can be applied to our situation
since the argument is local. We copy the result here for the convenience of the
reader. For a more general situation see [1].

Proposition 5. Let Γ(∞, ν1, ν2; a, b, c) be a hyperbolic triangle group. Let

S be an orbifold uniformized by this group, and suppose that S has the metric

of constant curvature −1 that comes from its universal (branched) covering space.

Let P 1 6∈ S the puncture corresponding to the ∞ in the signature, and let P 2 be

the ramification point corresponding to ν1 . Let c be the geodesic on S given in

Proposition 4 . Then there exists a biholomorphism z , defined in a neighborhood

N of P 1 , such that z(P 1) = 0 and z maps isometrically the portion of c inside N
into the positive real axis, with the metric of the punctured disc. These properties

define the germ of z uniquely.

2.9. We have similar results for the parabolic case.

Proposition 6. Let S be an orbifold of signature (0, 3;∞, 2, 2) . Let P 6∈ S

be the puncture, and let Q be one of the branched points. Then there exists a

unique geodesic c: [0,∞) → S , such that c(0) = Q , lims→∞ c(s) = P , for s the

arc length parametrization, and c realizes the distance between any two points in

it.

Proof. We first note that there is no loss of generality in taking the group
with parameters (∞, 0, 1), and in assuming that Q lifts to 0. By our definition of
geodesics, any straight line joining zero and infinity will project onto a geodesic of
the orbifold. It is easy to see that the imaginary axis iR satisfies all the required
properties.

To prove uniqueness, suppose first that the geodesic on S lifts to another
vertical line, say L , whose point of intersection with the real axis is x0 . Then,
since x0 and 0 project to the same point on S , we must have that x0 = 2n , for
some integer n . This implies that L is the image of the imaginary axis under the
mapping An , and therefore iR and L give the same geodesic on S .

To study the cases of non vertical lines, identify the complex plane with
R2 , with coordinates (x, y) . Then we can write the lifting of our geodesic as
L′ = {y = mx} , with m a real number. The slope m cannot be zero because
the real axis projects onto a line the joins that two branch points, but it stays
away from the puncture. So we have that m 6= 0. Consider the points 2i on the
imaginary axis and 2 + 2im on L′ . Both points project onto the same point in
the orbifold, since they are equivalent under the transformation A . The distance
from 0 to 2i along iR is 2, while the distance from 0 to 2 + 2im along L′ is
2
√

1 + m2 . Therefore L′ does not satisfy the properties of the proposition.

2.10. We can construct local coordinates on the quotient orbifold as in the
hyperbolic case, but we do not have a defining property as the one in Proposition 8,
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due to the curvature constraint. The expression f12(z) = eπi̺−1(z) gives a local
coordinate on S = C/Γ(∞, 2, 2;∞, 0, 1) around the puncture. Here ̺: C → S

is the natural projection mappping. We will say that the germ of holomorphic
functions defined by f12 is a horocyclic coordinate.

3. Coordinates for the Teichmüller spaces of b-groups with torsion

3.1. This section is devoted to computing coordinates for the Teichmüller
spaces of orbifolds with hyperbolic signature. As we said in the introduction, to
parametrize the Teichmüller spaces of orbifolds, it suffices to consider in detail the
one-dimensional cases. These correspond to the orbifolds of type (0, 4) and (1, 1).
Then, the Maskit embedding theorem gives coordinates in the general deformation
space.

Before starting our computations we need to have a convention about orien-
tation of curves on orbifolds. Assume that a is a simple loop contractible to a
puncture on an orbifold S . Then we orient a by requiring that the puncture lies
to the left of the curve.

Similarly, if A is a parabolic transformation fixing z0 ∈ Ĉ , and L is a horocir-
cle through z0 , we orient L by choosing a point z 6= z0 in L , and requiring that
z , A(z) and A2(z) follow each other in the positive orientation. Observe that
a horocircle passing through ∞ can be understood as a circle on the Riemann
sphere, and therefore it makes sense to talk about its positive orientation.

3.2. Let us start with the case of an orbifold S of signature (0, 4; ν1, . . . , ν4) .
A maximal partition on S consists of a curve a that divides S into two subsets
S1 and S2 , each of them with two ramification points. Without loss of generality,
we can assume that the points with ramification values ν1 and ν2 are in S1 , and
this set lies to the right of a . Cut S along a and glue to each resulting boundary
curve a punctured disc. In this way we complete Sj to an orbifold of type (0, 3).
Denote these new orbifolds by the same letter, and assume for the moment that
both of them, S1 and S2 , are of hyperbolic type. We have that S1 is uniformized
by a triangle group that can be taken to be Γ1 = Γ(∞, ν1, ν2;∞, 0, 1). Since we
are interested on parameters for Teichmüller spaces, we are free to conjugate by
a Möbius transformation, which explains our choice of Γ1 . Its canonical gener-
ators are given in Theorem 3. Since S1 lies to the right of a , our orientation
requirements imply that we are considering the action of Γ1 on the upper half
plane.

The orbifold S2 is uniformized by a triangle group Γ2 = Γ(∞, ν3, ν4; d, e, f) .
We have that the transformation that corresponds to the curve a is the canonical
generator A(z) = z + 2. Since S1 and S2 come both from the same orbifold,
and we want to glue them to obtain S , we must have that the element that
corresponds to a in Γ2 must be either A or A−1 . But S2 lies to the left of the
partition curve, so we get that one of the canonical generators of Γ2 is A−1 . This
implies that Γ2 is conjugate to Γ(∞, ν3, ν4;∞, 0,−1) by a transformation T , such
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that TA−1T−1 = A−1 . Therefore T (z) = z + α , α ∈ C− {0} . The generators of
Γ2 are then given by A−1 and

B−1
α =

[
−q3 − α(q3 + q4) −b∗ − α2(q3 + q4)

−(q3 + q4) −q3 + α(q3 + q4)

]
, b∗ =

1 − q2
3

q3 + q4
.

We have Im(α) > 0, since S1 is uniformized by Γ1 in the upper half plane.
Suppose now that this imaginary part is big enough, say bigger than 2. Then
the curve {Im(z) = Im(α)/2} is invariant under A and lies in the intersection
of the discontinuity sets of Γ1 and Γ2 . So we can use this curve to apply the
first Klein–Maskit combination theorem [14, p. 149]. In this way we obtain that
the group Γα = Γ1 ∗〈A〉 Γ2 := 〈Γ1, Γ2〉 is a terminal regular b -group uniformizing
an orbifold with the above signature. By the classical theory of quasiconformal
mappings, we have that any orbifold of the above signature is uniformized by one
such group Γα .

The parameter α is then a global coordinate for the space T (0, 4; ν1, . . . , ν4) .
It can be expressed in an invariant way as follows. Suppose

Γ = Γ(∞, ν1, ν2; a, b, c) ∗〈C〉 Γ(∞, ν3, ν4; d, e, f)

is a terminal regular b -group uniformizing an orbifold with the above signature.
Then the point corresponding to Γ in the deformation space is α = cr(a, b, c, f) .

Theorem 5. α is a global coordinate, called a horocyclic coordinate, for

T (0, 4; ν1, ν2, ν3, ν4) . The following inclusions are satisfied:

{α; Im(α) > y1} ⊂ T (0, 4; ν1, ν2, ν3, ν4) ⊂ {α; Im(α) > y2},

where

y1 =
1

q1 + q2
+

1

q3 + q4
, y2 = max

( 1

q1 + q2
,

1

q3 + q4

)
.

Proof. We must show only the inclusions. The first one follows from the
above reasoning about how to apply the first combination theorem.

For the second inclusion, we must use the fact that the lower half plane X is
precisely invariant under Γ1 in Γα ; that is, if γ ∈ Γα and γ(X) ∩ X 6= ∅ , then
γ ∈ Γ1 . The point z =

(
−q3 − α(q3 + q4) − i

)
/(q3 + q4) , has negative imaginary

part; and the imaginary part of Bα(z) is equal to Im(α) − 1/(q3 + q4) . This
last number should be positive, giving one condition on the imaginary part of α .
Similarly, we have that the set Y = {z; Im(z) > Im(α)} is precisely invariant
under Γ2 in Γα . Consider the point w = (q1 + i)/(q1 + q2) . Its image under B
has imaginary part equal to 1/(q1 + q2) . So, if Im(α) < 1/(q1 + q2) , we then get
that both, w and B(w) , belong to Y .
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3.3. We can relate the above group theoretical computations to a more geo-
metric construction by means of the plumbing contructions. This is a well known
technique, and we will not explain it here in detail. See [7] for a careful treatment
of it. We will only say that, given two orbifolds S1 and S2 , with punctures P1

and P2 respectively, one can construct a new orbifold as follows. Remove neigh-
borhoods Vj of Pj , j = 1, 2, and identify the boundaries of the resulting orbifolds
Sj−Vj . If such identification is given by an expression of the form z1z2 = t , where
zj is a horocyclic coordinate around Pj , then we say that the resulting orbifold
has been constructed by plumbing techniques with parameter t . One can as well
do plumbing contructions in one single orbifold.

To compute the plumbing parameter in the above construction of groups of
type (0, 4), for the group Γ1 we take the coordinate z(ξ) = eπiξ , with ξ in the
upper half plane. Similarly, for the orbifold S2 we take w(ξ) = eπi(α−ξ) , with
Im(ξ) < Im(α) . Then we get zw = t = eπiα . We have proven the following
results, up to the (easy) computation on the bounds for plumbing parameters.

Theorem 6. The orbifold corresponding to the point α in T (0, 4; ν1, ν2, ν3, ν4)
is conformally equivalent to the orbifold constructed by plumbing with parameter

t = eπiα . We have that 0 < |t| < e−πy2 , with y2 as in Theorem 5 .

3.4. The case of one of the orbifolds, say S2 , having signature (0, 3;∞, 2, 2)
is treated in a similar way. We will leave the computations to the reader, writing
only the final results. The group Γ1 is given by Γ(∞, ν1, ν2;∞, 0, 1), while Γ2 =
Γ(∞, 2, 2;∞, α, α − 1). The generators for Γ1 are given in Theorem 3; those of
Γ2 are

A−1 =

[
−1 2

0,−1

]
, Bα = B−1

α =

[
−i 2iα
0 i

]
.

Theorem 7. α is a global coordinate for T (0, 4; ν1, ν2, 2, 2) , and the following

inclusions are satisfied:

{α; Im(α) > 0} ⊂ T
(
Γ(0, 4; ν1ν2, 2, 2)

)
⊂ {α; Im(α) > y1},

where y1 = 1/(q1 + q2) .

We also have a result about plumbing parameters similar to the one in The-
orem 6.

3.5. The other deformation spaces of dimension one correspond to orbifolds
of signature (1, 1; ν) . Let S be an orbifold with this signature, and let a be a max-
imal partition on S . If we cut S along a and glue punctured discs to the bound-
ary curves, what we get is a single orbifold S1 with signature (0, 3;∞,∞, ν) . Let
Γ1 = Γ(∞,∞, ν;∞, 0, 2) be a triangle group uniformizing S1 . To obtain S , what
we have to do is to identify the elements A and B corresponding to the two punc-
tures on S1 . Due to the orientation of the curves around punctures, the correct
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identification is carried by a Möbius transformation C such that CB−1C−1 = A .
The expressions of A and B are again given in Theorem 1. An easy computation
shows that C has the form

C =

[
iτ i

√
2/(1 + q)

i
√

(1 + q)/2 0

]
.

Applying the second Klein–Maskit combination theorem we get that the group
Γτ = Γ1∗C := 〈Γ1, C〉 is a terminal regular b -group of the desired signature.

Theorem 8. τ is a global coordinate for T (1, 1; ν) , and we have the following

inclusions:
{τ ; Im(τ) > 2} ⊂ T

(
Γ(1, 1; ν)

)
⊂ {τ ; Im(τ) > 0}.

Proof. Observe that C maps horocircles at 0 (that is, circles passing through
zero) to straight lines (horocircles at ∞). In particular we have

C
(
{z; |z − ri| = r}

)
=

{
z; Im(z) =

√
2

1 + q
Im(τ) − 1

r(1 + q)

}
.

If these two circles are disjoint, the second combination theorem can be applied.
Therefore we want

√
2

1 + q
Im(τ) − 1

r(1 + q)
> 2r, or Im(τ) >

√
1 + q

2

( 1

r(1 + q)
+ 2r

)
.

The minimum value of the last expression is 2. This gives the first inclusion of
the theorem. For the other inclusion we just need to use the fact that the lower
half plane is precisely invariant under Γ1 in Γτ . So for any point z with negative
imaginary part we should have

Im
(
C(z)

)
=

√
2

1 + q
Im(τ) − 2

1 + q

Im(z)

|z| > 0,

which gives the desired result.

3.6. As in the (0, 4) case, we have a plumbing construction for these orbifolds.
Take the coordinates on S1 given by z = eπiζ and w = − exp

(
(−2πi)/((1 + q)ζ)

)
,

near the punctures determined by A and B , respectively. The identification we
have to make in this case is given by

z
(
C(ζ)

)
w(ζ) = z

(√
2

1 + q
+

2

1 + q

1

ζ

)
w(ζ) = exp

( 2πi

1 + q

)
exp

(√
2

1 + q
πiτ

)
= t.

This proves the following result:
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Theorem 9. The orbifold corresponding to the point τ in T (1, 1; ν) is con-

formally equivalent to the orbifold constructed by plumbing with parameter t ,
with 0 < |t| < 1 .

3.7. Let S now be a hyperbolic orbifold with a maximal partition S , uni-
formized by the terminal regular b -group Γ. As we noted in Section 3.1, we can
decompose the group into subgroups with one dimensional deformation spaces. We
have explained in detail how to parametrize these simpler Teichmüller spaces. To-
gether with the Maskit embedding, we obtain the following results for the general
situation.

Theorem 10. Let S be an orbifold of hyperbolic type with signature

σ = (p, n; ν1, . . . , νn) and let C be a maximal partition on S , uniformized

by the terminal regular b -group Γ . Then there exists a set of (global) coor-

dinates, (α1, . . . , αd) , called horocyclic coordinates, for the Teichmüller space

T (Γ) ∼= T (p, n; ν1, . . . , νn) , where d = 3p − 3 + n , and a set of complex num-

bers, (y1
1 , . . . , y

d
1 , y1

2, . . . , y
d
2) , which depends on the signature σ and the partition

C , such that

{(α1, . . . , αd) ∈ Cd; Im(αi) > yi
1, ∀ 1 ≤ i ≤ d} ⊂ T (p, n; ν1, . . . , νn)

and

T (p, n; ν1, . . . , νn) ⊂ {(α1, . . . , αd) ∈ Cd; Im(αi) > yi
2, ∀ 1 ≤ i ≤ d}.

Moreover, the surface corresponding to the point (α1, . . . , αd) is conformally equiv-

alent to a surface constructed by plumbing techniques with parameters (t1, . . . , td) ,
obtained as in Theorems 5 and 8 .

It is clear that given a point α in T (p, n; ν1, . . . , νn) , one can construct a set
of Möbius transformations that generate a group Γ, which corresponds to α . The
one dimensional case has been done explicitly. In the general case, one has simply
to iterate the constructions explained above. For a more detailed description of
this process, see [7, § 7.5], with the necessary modifications to include finite order
transformations. The above techniques can be generalized to constructions of
Kleinian groups without parabolic elements as well; see [1].

4. The Patterson isomorphisms in the horocyclic coordinates

4.1. One of the most natural questions one may ask about Teichmüller spaces
is that under what circumstances two such spaces are biholomorphic. A result of
Patterson ([19], [3]) states that all possible isomorphisms between Teichmüller
space of hyperbolic orbifolds of different type (with 2p− 2 + n > 0) are T (2, 0) ∼=
T (0, 6; 2, 2, 2, 2, 2, 2), T (1, 2;∞,∞) ∼= T (0, 5;∞, 2, 2, 2, 2) and T (1, 1;∞) ∼=
T (0, 4;∞, 2, 2, 2). The existence of these isomorphisms is based on the fact that
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Figure 3. A surface of genus 3 .

all surfaces of genus 2, or of genus 1 with either two or one punctures, have a
conformal involution (hyperelliptic involution); the quotient of the surface by that
involution is a sphere with six, five or four points, with ramification values as
above. Our main result is as follows.

Theorem 11. The mapping

(τ1, τ2, τ3) 7→ ( 1
2τ1, 1 + τ2, 1 + 1

2τ3)

gives an isomorphism between T (0, 2) and T (0, 6; 2, . . . , 2) in the horocyclic coor-

dinates τj , j = 1, 2, 3 , corresponding to the partition given in Figure 3 .

4.2. We start with a surface of genus 2 with a maximal partition as shown
in Figure 3.

Let Γ denote a terminal regular b -group uniformizing the surface and the
partition in the simply connected invariant component ∆. A presentation for
Γ can be found in [7]; we copy it here for the convenience of the reader. Γ =
{A1, C1, A3, C3; A1, A2 = [C−1

1 , A1], A3 are accidental parabolic, [A1, C
−1
1 ] ◦

[A−1
3 , C−1

3 ] = I} , where [A, B] = ABA−1B−1 . The elements Ai correspond to the
curves ai , while Ci correspond to ci . These transformations have the following
expressions:

A1 =

[
−1 −2
0 −1

]
, A2 =

[
1 −2
2 −3

]
,

A3 =

[
−1 − 2τ2(1 − τ2) −2(1 − τ2)

2

2τ2
2 −1 + 2τ2(1 − τ2)

]
,

C1 = i

[
τ1 1
1 0

]
,

C3 = i

[
τ3τ

2
2 + 2(1 − τ3)τ2 + τ3 − 2 −τ3τ

2
2 + (3τ3 − 2)τ2 − 2τ3 + 3

τ3τ
2
2 + (2 − τ3)τ2 − 1 −τ3τ

2
2 − 2(1 − τ3)τ2 + 2

]
.

τ1 , τ2 and τ3 are complex numbers.
The key ingredients in the proof of our theorem is the fact that the hyperel-

liptic involution lifts to a Möbius transformation in the covering determined by Γ
and ∆. More precisely, we have that such lifting is given by the transformation

A
1/2
2 = 1/(−z + 2) (see [7]).
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Proposition 7. The subgroup Γ̃ of PSL(2,C) generated by Γ and A
1/2
2 is

a terminal regular b -group of signature (0, 6; 2, 2, 2, 2, 2, 2) .

Proof. The facts that Γ̃ is Kleinian and geometrically finite follow from [14,

V.E.10, p. 98, and VI.E.6, p. 132, respectively]. We also get that Ω(Γ̃) = Ω(Γ) =

Ω. Recall that ∆ is the invariant component of Γ. If A
1/2
2 (∆) = U , where U

is some component of Γ̃ , then for all γ ∈ Γ we have A
1/2
2 γA

−1/2
2 (U) = U . This

implies that A
1/2
2 (∆) = ∆, since A

1/2
2 γA

−1/2
2 ∈ Γ and ∆ is the unique invariant

component of this group. The signature of ∆/Γ̃ is a consequence of the fact that
the hyperelliptic involution fixes six points on the surface ∆/Γ. The statement

about the accidental parabolic elements of Γ̃ is trivial.
To finish the proof we need to show that (Ω − ∆)/Γ̃ is a union of orbifolds

of type (0, 3) (of certain signatures). Let Ω0 be a component of Ω − ∆, and let
Γ0 = stab (Ω0, Γ) = {γ ∈ Γ; γ(Ω0) = Ω0} be the stabilizer of Ω0 in Γ. Since Γ
is a terminal regular torsion b -group of signature (2, 0), we have that Ω0/Γ0 is

an orbifold of signature (0, 3;∞,∞,∞) . If A
1/2
2 (Ω0) 6= Ω0 , then Γ0 = Γ̃0 , where

Γ̃0 = stab(Ω0, Γ̃) , and therefore the quotient orbifolds S0 = Ω0/Γ0 and Ω0/Γ̃0

are equal. If, to the contrary, A
1/2
2 fixes Ω0 , then it will induce a biholomorphic

mapping in S0 , say f . Since A
1/2
2 6∈ Γ but A2 ∈ Γ, we have that f is not

trivial and has order 2. We also have that f fixes the puncture determined by

A2 , since A
1/2
2 commutes with that element. Therefore, f has to interchange the

other two punctures and this implies that Ω0/〈Γ0, A
1/2
2 〉 = S0/〈f〉 has signature

(0, 3;∞,∞, 2). Observe that we have used the fact that Γ̃0 is generated by Γ0

and A
1/2
2 .

The group Γ̃ has the following presentation Γ̃ = {A1, A3, C1, C3, A
1/2
2 ; A1,

A
1/2
2 , A3 are accidental parabolics, A

−1/2
2 C−1

1 , C1A
1/2
2 A1, A

−1
1 A

−1/2
2 , A

1/2
2 A3,

C3A
−1/2
2 , A

−1/2
2 C−1

3 A−1
3 are elliptic elements of order 2} . We will write only

the expressions of the generators of Γ̃ that we will use in this proof:

(C1A
1/2
2 ) = i

[
−1 2 + τ1

0 1

]
, A−1

1 =

[
−1 2
0 −1

]
, A

1/2
2 =

[
0 1
−1 2

]
,

A−1
3 =

[
−1 + 2τ2(1 − τ2) 2(1 − τ2)

2

−2τ2
2 −1 − 2τ2(1 − τ2)

]
,

C3A
−1/2
2 = i

[
−1 + 2τ2 − τ2τ3 + τ2

2 τ3 2 − τ3 − 2τ2 − τ2
2 τ3 + 2τ2τ3

2τ2 + τ2
2 τ3 1 − 2τ2 + τ2τ3 − τ2

2 τ3

]
.

4.3. Let F be a terminal regular b -group with signature (0, 6; 2, 2, 2, 2, 2, 2)
constructed by the techniques of Section 3, and corresponding to the orbifold
shown in Figure 4.
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Figure 4. A surface with signature (0, 6; 2, 2, 2, 2, 2, 2) .

Remark. It is easy to see that if we apply the hyperelliptic involution to
the surface of Figure 3 we obtain a partition in the quotient surface as given in
Figure 4. That is why we have chosen this partition among all the possible ones
on an orbifold with signature (0, 6; 2, . . . , 2).

A set of generators for F (equivalent to the generators of Γ̃ computed above)
consists of the following transformations:

D1 = i

[
−1 0
0 1

]
, B1 =

[
−1 −2
0 −1

]
, B2 =

[
−1 − α α2

−1 −1 + α

]
,

B3 =

[
−1 + 2β + 2αβ2 −2(1 + αβ)2

2β2 −1 − 2β − 2αβ2

]
,

D4 = i

[
−1 − 2αβ + 2αγ + 2γβ−1 −2(1 + αβ)(−αβ2 + γ + αβγ)β−2

2γ − 2β 1 + 2αβ − 2αγ − 2γβ−1

]
.

α , β and γ are three complex numbers, chosen so that the above matrices have
nice expressions.

To complete the proof of the theorem, we have to find a Möbius transforma-
tion E such that EFE−1 = Γ̃, and then we have to express the coordinates of
F in terms of the numbers α , β and γ . Topological considerations give that

EB1E
−1 = A1 and EB2E

−1 = A
−1/2
2 . This implies that E(z) = −z + 1 + α .

We also have ED1E
−1 = A

−1/2
2 C−1

1 which gives α = 1
2
τ1 . It is a matter of

computation to see that the conjugation EB3E
−1 = A−1

3 gives the following four
equations, whose unique answer is β = τ2 :






−1 + 2β + 2αβ2 + 2β2b = 1 + 2τ2(1 − τ2),
−2(1 + αβ)2 + b(−1 − 2β − 2αβ2) = −b(−1 − 2τ2 + 2τ2

2 ) − 2(1 − τ2)
2,

−2β2 = −2τ2
2 ,

1 + 2β + 2αβ2 = −2τ2
2 b − 1 + 2τ2(1 − τ2).

The relation ED4E
−1 = C3A

−1/2
2 gives the set of equations

{
−1 − 2αβ + 2αγ + 2γβ−1 + b(2γ − 2β) = −1 + 2τ2 − τ2τ3 + τ2

2 τ3,
2β − 2γ = 2τ2 + τ2

2 τ3,
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whose answer is γ = −1
2τ2

2 τ3 .
In [7] is proven that (τ1, τ2, τ3) is a set of coordinates for T (2, 0). The coordi-

nates for T (0, 6; 2, 2, 2, 2, 2, 2) are given by z1 = α , z2 = 1+β and z3 = 1−(γ/β2) .
Substituting the values of α , β and γ obtained above we get that the expression
of the isomorphism is the one given in the statement of Theorem 11.

4.4. As a corollary of the proof of Theorem 11 we obtain the other isomor-
phisms of Section 4.1.

Corollary 1. The mappings

τ1 7→ 1
2τ1 and (τ1, τ2) 7→ ( 1

2τ1, 1 + τ2),

give the isomorphisms T (1, 1;∞) ∼= T (0, 4;∞, 2, 2, 2) and T (1, 2;∞,∞) ∼=
T (0, 5;∞, 2, . . . , 2) , respectively, for some choice of horocyclic coordinates.

Proof. The argument goes as follows: to construct the surface of genus 2
with the partition given in the Figure 3, we start with a thrice punctured sphere,
S1 ; then we glue two of the punctures, obtaining a surface S2 with signature
(1, 1;∞) . This construction uses only the coordinate τ1 , and therefore it gives the
first isomorphism of the theorem. The next step is to glue to the puncture of S2

a three times punctured sphere to get a surface S3 , with signature (1, 2;∞,∞) .
For this construction we need the coordinates (τ1, τ2) . Thus we obtain the second
isomorphism, completing the proof of the theorem.

This technique can be used to compute different isomorphisms between Teich-
müller spaces. For example, there is another partition of a surface of genus 2; the
hyperelliptic involution can be found in [7]. With computations similar to the ones
described in this section, one can find the Patterson isomorphisms in that case.
By a result of Kravetz, the set of fixed points of a biholomorphic map of finite
order on a Teichmüller space is isomorphic to another Teichmüller space of lower
dimension (see [8] or [18, pp. 259–260]). Some of those isomorphisms can also be
studied with our techniques.
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