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Abstract. In this paper the following phenomena of geodesics in an infinite-dimensional
Teichmüller space are founded: a geodesic (locally shortest arc) need not be a straight line (an
isometric embedding of a segment of R into the Teichmüller space), no sphere is convex with
respect to straight lines, and some geodesics can intersect themselves.

1. Introduction

We begin with some basic definitions and notations.
Let S be a Riemann surface which has a universal covering H , where H

denotes the upper half plane. Then the Riemann surface S can be expressed as
H/Γ, where Γ is a torsion free Fuchsian group acting on H . The Teichmüller
space of S is a space of the deformations of the complex structures of S with a
certain topological condition. It can be defined with the Beltrami differentials of Γ.
We denote by M(Γ) the set of the Beltrami differentials of Γ with L∞ -norms less
than one, that is,

M(Γ) =
{
µ(z) : µ(γ(z))γ′(z)/γ′(z) = µ(z), for all γ ∈ Γ, a.e. z ∈ H; ‖µ‖∞ < 1

}
.

Denote by fµ: H → H the quasiconformal mapping with the complex dilatation
µ keeping 0, 1 and ∞ fixed. We say that µ1 is equivalent to µ2 if and only if

fµ1
| R = fµ2

| R.

Then the Teichmüller space of S (or Γ), denoted by T (S) (or T (Γ)), is defined
as the set of the equivalence classes of the elements of M(Γ).

A Beltrami differential µ ∈M(Γ) is said to be extremal if

‖µ‖∞ ≤ ‖µ′‖∞, for all µ′ ∈ [µ].
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The Teichmüller metric for T (S) is defined in terms of the extremal Beltrami
differentials. For given two points [µ1] and [µ2] in T (S) , the Teichmüller distance
between them is

d([µ1], [µ2]) =
1

2
log

1 + ‖µ‖∞
1 − ‖µ‖∞

,

where µ is an extremal Beltrami differential in the equivalence class of the complex
dilatation of fµ1

◦ fµ2

−1 . It is a well known fact that the Teichmüller metric
coincides with the Kobayashi metric (see [R] or [G]).

It is known that there are some essential differences in the geometry be-
tween a finite-dimensional Teichmüller space and an infinite-dimensional Teich-
müller space. A finite-dimensional Teichmüller space is a straight geodesic space
in the sense of Buseman ([K]), but an infinite-dimensional Teichmüller space is
not ([L1], [L2], [T] and [EKK]).

The purpose of this paper is to investigate further the difference in the geom-
etry between the two cases.

Throughout this paper, by “geodesic” we mean an arc which is locally shortest
in the Teichmüller metric, and by “straight line” we mean an arc which is shortest
in the large, or equivalently, an isometric embedding of a segment of R into
a Teichmüller space with respect to the Euclidiean metric and the Teichmüller
metric respectively. In a finite-dimensional Teichmüller space, a geodesic arc is
always a straight line. However, in this note we will find that this is not true
for the infinite-dimensional case, namely the length of a geodesic in an infinite-
dimensional Teichmüller space need not be the distance between its endpoints.

An interesting problem on the Teichmüller metric is to determine whether
or not a sphere is convex with respect to straight lines. In a paper ([L3]) of the
author, it is shown that no sphere in an infinite-dimensional Teichmüller space is
strictly convex with respect to straight lines. In fact, in [L3] we constructed a
straight line such that the whole arc is on a given sphere.

In the present paper it will be shown that there is a straight line such that
its endpoints are on a given sphere but its interior is outside of the ball bounded
by the sphere. More precisely, we have

Theorem 1. Let T (S) be an infinite-dimensional Teichmüller space. For

any positive number r , there are two points [µ0] and [µ1] on the sphere

Sr ≡
{
[µ] ∈ T (S) | d([0], [µ]) = r

}
,

and a straight line α(t): [0, 1] → T (S) such that α(0) = [µ0], α(1) = [µ1] and

d([0], [α(t)]) > r, for all t ∈ (0, 1).

Corollary. No sphere in an infinite-dimensional Teichmüller space is convex

with respect to straight lines.
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Remark. This Corollary is an improvement of the result of [L3], because
here we omit the word “strictly”.

The idea of the proof of Theorem 1 is similar to the one used in the paper [L3].
The straight line α will be constructed in terms of an extremal Teichmüller differ-
ential, the associated holomorphic quadratic differential of which has an infinite
norm.

From the proof of Theorem 1, we find an unexpected fact:

Theorem 2. In an infinite-dimensional Teichmüller space, there exists a

geodesic that intersects itself.

Corollary. In an infinite-dimensional Teichmüller space, there exists a geo-

desic that is not a straight line.

The proofs of Theorem 1 and Theorem 2 will be given in Section 3, and
Section 4 respectively. As mentioned above, an extremal Teichmüller differential
constructed in [L3] will play an important role in the proofs. For completeness,
we will include it in this paper (Section 2).

2. Construction of a special Teichmüller differential

We denote by Q(Γ) the set of holomorphic quadratic differentials of Γ with
finite L1 -normal, that is,

Q(Γ) =
{
φ | φ : holomorphic on H;φ(z) = φ(γ(z))γ′(z)2,

for all γ ∈ Γ and ‖φ‖ <∞
}
,

where

‖φ‖ =

∫

H/Γ

|φ|.

Now we suppose that the surface S = H/Γ is of conformally infinite type,
namely the Fuchsian group Γ is of the second kind or infinitely generated. In this
case the dimension of the Banach space Q(Γ), as well as that of the Teichmüller
T (S) , is infinite.

By a simple discussion about non-local-compactness of an infinite-dimensional
Banach space, we see that there is a sequence {φn} in Q(Γ) such that ‖φn‖ = 1
(n = 1, 2, . . .) but any subsequence of {φn} does not converge in norm.

On the other hand, it is easy to see, from the mean value theorem for analytic
functions, that we can choose a subsequence {φnk

} of {φn} such that {φnk
}

converges uniformly to an element φ ∈ Q(Γ) in every compact subset of H . Then
φnk

− φ tends locally to zero. Since φnk
does not converge to φ in norm, there is

a constant c > 0 such that ‖φnk
− φ‖ ≥ c for sufficiently large k .

Let ψk = (φnk
− φ)/‖φnk

− φ‖ . Noting the facts that φnk
− φ converges to

zero locally uniformly and ‖φnk
− φ‖ ≥ c for sufficiently large k , we see that ψk
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converges to zero uniformly in every compact subset of H . However, the norm of
ψk is 1.

Let ω be a fundamental polygon of Γ. By the assumption that Γ is of the
second kind or infinitely generated, ω is not a compact subset of H . To construct
the Teichmüller differential we need, we choose a compact subset E1 of ω such
that ∫

E1

|ψ1| > 1 − 1

2
.

Since ψk tends to zero uniformly in E1 , there is an element ψk2
such that

|ψk2
| < 1

22
, in E1(1)

and ∫

E1

|ψk2
| < 1

42
.(2)

Choose a compact subset E2 of ω sufficiently large such that E1 ⊂ E2 ,

∫

E2

|ψk2
| > 1 − 1

42
(3)

and ∫

ω\E2

|ψk1
| < 1

22
,(4)

where k1 = 1. It is follows from (2) and (3) that

(5)

∫

E2\E1

|ψk2
| > 1 − 1

22
.

Similarly, we can get a subsequence {ψkl
} of {ψk} and a sequence {El} of compact

subsets of ω such that

El−1 ⊂ El, ω =
∞⋃
l=1

El,(6)

|ψkl
| < 1

2l
, in El−1,(7)

∫

El\El−1

|ψkl
| > 1 − 1

2l
(8)

and ∫

ω\El

|ψkj
| < 1

2l
, j = 1, 2, . . . , l− 1,(9)

where l = 2, 3, . . . and k1 = 1.
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From the construction of El , we may require that El contains the set ω∩{z ∈
H : Im z > 1/2l} for all l .

Without any loss of generality, one may assume kl = l for all l . So from now
on we write ψl instead of ψkl

.
Let

ψ =
∞∑

l=1

ψl.

It is easy to see from (7) that the series is uniformly convergent in every compact
subset of ω . Noting the fact that El contains the set ω ∩ {z ∈ H : Im z > 1/2l} ,
the series ψ defines a holomorphic quadratic differential of Γ.

The following properties of ψ , {ψl} and {El} will be useful in later discus-
sions:

∫

El\El−1

|ψl| = 1 +O
( 1

2l

)
, as l → ∞,(10)

∫

El\El−1

|ψ − ψl| = O
( l

2l

)
, as l → ∞.(11)

These properties are easy to prove. In fact, noting that ‖ψl‖ = 1, we see from
(8) that

∫

ω\El

|ψl| ≤
1

2l
,(12)

∫

El−1

|ψl| ≤
1

2l
,(13)

and hence (10). Moreover, it follows from (9)–(10) and (12)–(13) that

∫

El\El−1

|ψ − ψl| = O

( l−2∑

j=1

∫

El\El−1

|ψj |
)

+O

(∫

El\El−1

|ψl−1|
)

+O

( ∞∑

j=l+1

∫

El\El−1

|ψj |
)

= O

( l−2∑

j=1

∫

ω\El−1

|ψj|
)

+O

(∫

El

|ψl−1|
)

+O

( ∞∑

j=l+1

∫

El

|ψj|
)

= O

( l−2∑

j=1

1

2l

)
+O

(
1

2l

)
+O

( ∞∑

j=l+2

1

2j

)
= O

(
l

2l

)
.

Then we get (11).
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From (10) and (11) one can easily see that

(14)

∫

El\El−1

|ψ| = 1 +O
( l

2l

)
, as l → ∞.

This implies that the norm of ψ is infinite. Moreover, we will see that the Teich-
müller differential

k
ψ

|ψ| , k ∈ (0, 1)

is an extremal Beltrami differential. This is a special case of the following lemma,
which will be important in Section 3.

Lemma 1. Let κ be a complex function on H with the following properties:

|κ| ≤ k < 1, (k = const) for all z ∈ H,(15)

κ(z) = κ
(
γ(z)

)
, for all γ ∈ Γ(16)

and

lim sup
l→∞

Re

∫

ω

κ|ψl| = ‖κ‖∞.(17)

Then the Beltrami differential κψ/|ψ| is extremal.

Proof. From (11)–(14), we have

∫

ω

κ
ψ

|ψ|ψl =

∫

El\El−1

κ
ψ

|ψ|ψl +O
( l

2l

)

=

∫

El\El−1

κ
ψ

|ψ|(ψl − ψ) +

∫

El\El−1

κ|ψ| +O
( l

2l

)

=

∫

El\El−1

κ|ψ| +O
( l

2l

)

=

∫

El\El−1

κ|ψl| +O
( l

2l

)

=

∫

ω

κ|ψl| +O
( l

2l

)
.

By condition (17) we see that κψ/|ψ| is an extremal Beltrami differential asso-
ciated with a degenerating Hamilton sequence {ψl} (see [RS], [S] and [H]). The
lemma is proved.
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3. The proof of Theorem 1

In this section, we will still use the same notations as before and assume that
Γ is a torsion free Fuchsian group of the second kind or infinitely generated so
that T (Γ) is infinite-dimensional.

First of all, we construct two Beltrami differentials µ0 = κ0ψ/|ψ| and µ1 =
κ1ψ/|ψ| , where ψ is the quadratic differential of Γ constructed in the previous
section, κ0 = k and

κ1(z) =

{
k, for El2n+1

\ El2n
, n = 0, 1, . . .

0, for El2n
\ El2n−1

, n = 1, 2, . . . ,

where k ∈ (0, 1) is a constant and the subseqence {Eln} of {El} will be determined
later.

Let µ∗
0 be the complex dilatation of the mapping f−1

0 , i.e.,

µ∗
0 = −k ψ|ψ|

∂zf0

∂zf0
◦ f−1

0 .

Since the inverse mapping of a Teichmüller mapping is also a Teichmüller map-
ping, µ∗

0 is a Teichmüller differential, namely, there is a holomorphic quadratic
differential ψ∗ of Γ∗ = f0 ◦ Γ ◦ f−1

0 such that

µ∗
0 = k

ψ∗

|ψ∗| .

Because µ0 = kψ/|ψ| is extremal, µ∗
0 is extremal. Since the norm of ψ is infinite,

the norm of ψ∗ is infinite, i.e.,
∫

ω∗

|ψ∗| = ∞,

where ω∗ = f0(ω) is a fundamental domain of Γ∗ . Therefore there is a degenerat-
ing Hamilton sequence {ψ∗

l } such that ψ∗
l ∈ Q(Γ∗) with ‖ψ∗

l ‖ = 1 ( l = 1, 2, . . .),
ψ∗

l converges to zero uniformly in every compact subset of ω∗ and

(18) lim
l→∞

Re

∫

ω∗

ψ∗

|ψ∗|ψ
∗
l = 1.

Let E∗
l = f0(El) for all l . Then {E∗

l } is a sequence of compact subsets of
ω∗ and {E∗

l } is an exhaustion of ω∗ . By a similar argument as before, one can
choose a subsequence {E∗

ln
} of {E∗

l } such that

(19)

∫

E∗

ln
\E∗

ln−1

|ψ∗
ln
| = 1 + o(1), as n→ ∞.
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It is easy to verify that the conditions of Lemma 1 will be satisfied if κ = κ0

or κ1 . Using Lemma 1 we see that µ0 and µ1 are extremal and hence both of
[µ0] and [µ1] are on the sphere Sr , where

r = 1

2
log (1 + k)/(1 − k).

Secondly, we want to construct a straight line joining [µ0] and [µ1] . Let

µt(z) = κt(z)
ψ(z)

|ψ(z)| , t ∈ (0, 1)

where

κt(z) =

{
σ(t)k, for z ∈ El2n+1

\ El2n
, n = 0, 1, . . .

(1 − t)k, for z ∈ El2n
\ El2n−1

, n = 1, 2, . . . .

Here σ(t) is a real continuous function of t satisfying the conditions

σ(0) = σ(1) = 1,

(20) 1 < σ(t) ≤ 1 − k2 + t(k2 + 1)

1 − k2 + 2tk2
, for all t ∈ (0, 1),

and

(21) 1 < σ(t) ≤ 2 − t

1 + k2(1 − t)
for all t ∈ (0, 1).

It is easy to see that such a function σ(t) exists and

k < σ(t)k < 1, t ∈ (0, 1).

One can easily check that the conditions of Lemma 1 will be satisfied if κ = κt

for all t ∈ (0, 1). Making use of Lemma 1 again, we see that µt is extremal for every
t ∈ (0, 1). Noting the facts that σ(t) > 1 and ‖κt‖∞ = σ(t)k , the Teichmüller
distance between [µt] and [0] is

d([0], [µt]) =
1

2
log

1 + σ(t)k

1 − σ(t)k
,

which is larger than r . This means that the arc

α(t): (0, 1) → T (Γ), t 7→ [µt]

is outside of Br , the ball bounded by Sr .
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Now we are going to prove that α(t) is a straight line.
Let ft: H → H be a quasiconformal mapping with the complex dilatation µ

which keeps 0, 1 and ∞ fixed. Then the complex dilatation of ft ◦ f−1
0 is

µ̃t =

(
µt − µ0

1 − µtµ0

∂zf0

∂zf0

)
◦ f−1

0 .

By the definition of µt we have

µt − µ0

1 − µtµ0

=

(
σ(t) − 1

)
k

1 − σ(t)k2

ψ

|ψ| , for z ∈ El2n+1
\ El2n

and

µt − µ0

1 − µtµ0

=
−tk

1 − k2(t− 1)

ψ

|ψ| , for z ∈ El2n
\ El2n−1

.

It follows from condition (20) that

(22)
(σ(t) − 1)k

1 − σ(t)k2
≤ tk

1 − k2(t− 1)
.

Then we have

(23) ‖µ̃t‖∞ =
tk

1 − k2(t− 1)
, for all t ∈ (0, 1).

Let

̺t(ζ) =

{
(1 − σ(t))/(1− σ(t)k2), for ζ ∈ E∗

l2n+1
\ E∗

l2n
, n = 0, 1, . . .

t/(1 − k2(t− 1)), for ζ ∈ E∗
l2n

\ E∗
l2n−1

, n = 1, 2, . . ..

Then by the definition of µ̃t we have

µ̃t = ̺tµ
∗
0.

We want to show that µ̃t is an extremal Beltrami differential of Γ∗ . It is sufficient
to show

(24) lim
n→∞

Re

∫

ω∗

µ̃tψ
∗
ln

= ‖µ̃t‖∞.

It follows from (19) and the fact that ‖ψ∗
l ‖ = 1 that

∫

ω∗\E∗

ln

|ψ∗
ln
| = o(1), as n→ ∞;(25)

and
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∫

E∗

ln−1

|ψ∗
ln | = o(1), as n→ ∞.(26)

Then we have
∫

ω∗

µ̃tψ
∗
ln

=

∫

E∗

ln
\E∗

ln−1

µ̃tψ
∗
ln

+ o(1) =

∫

E∗

ln
\E∗

ln−1

̺t
ψ∗

|ψ∗|ψ
∗
ln

+ o(1) as n→ ∞.

Noting the fact that ̺t | (E∗
ln

\ E∗
ln−1

) is a real constant, we get

Re

∫

ω∗

µ̃tψ
∗
ln

= mn Re

∫

E∗

ln
\E∗

ln−1

ψ∗

|ψ∗|ψ
∗
ln

+ ◦(1), as n→ ∞,

where mn = ̺t | (E∗
ln

\ E∗
ln−1

) . Making use of (25) and (26) again, we see

Re

∫

ω∗

µ̃tψ
∗
ln = mn Re

∫

ω∗

ψ∗

|ψ∗|ψ
∗
ln + o(1), as n→ ∞.

Then (24) follows from (18) and (23). We have proved that µ̃t is extremal. Hence
d([µ0], [µt]) = ‖µ̃t‖∞ . It follows from (23) that

(27) d([µ0], [µt]) =
1

2
log

1 + η(t)

1 − η(t)

where

η(t) =
tk

1 − k2(1 − t)
.

To prove that α(t) is a straight line, we compute the distance from [µ1] to
[µt] . Obviously, for every t ∈ (0, 1), we have

d([µ1], [µt]) ≥ d([µ0], [µ1]) − d([µ0], [µt]) =
1

2
log

1 + k

1 − k
− 1

2
log

1 + η(t)

1 − η(t)
.

A simple computation shows that

(28) d([µ1], [µt]) ≥
1

2
log

1 + k(1 − t)

1 − k(1 − t)
.

On the other hand, the complex dilatation of ft ◦ f−1
1 is

(29)

νt ≡ µft◦f−1

1

=

(
µt − µ1

1 − µtµ1

∂zf1

∂zf1

)
◦ f−1

1

=

(
σ(t) − 1

)
k

1 − σ(t)k2

ψ

|ψ|
∂zf1

∂zf1
◦ f−1

1 for ζ ∈ El2n+1
\ El2n

,
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while

(30) νt = k(1 − t)
ψ

|ψ|
∂zf

−1
1

∂zf1
◦ f−1

1 , for ζ ∈ El2n
\ El2n−1

.

From condition (21) we find

(
σ(t) − 1

)
k

1 − σ(t)k2
≤ k(1 − t), for all t ∈ (0, 1).

Then it follows from (29) and (30) that

‖νt‖∞ = k(1 − t).

Comparing this with (28), we get immediately that νt = µft◦f−1

1

is extremal and

hence

d([µ1], [µt]) = d([µ0], [µ1]) − d([µ0], [µt]), for all t ∈ (0, 1).

This implies that the arc α(t) is a straight line. The proof of Theorem 1 is
completed.

Remark. In the above proof, the straight line α is uniquely determined by
the function σ . Noting the facts that the parameter t determines the distance
between the point [µ0] and [µt] and the value of σ(t) determines the distance
between the point [µt] and [0] , it is not difficult to show that if the choice of the
function σ is different, the resulting straight line is different. So there are infinitely
many straight lines α satisfying the conditions of Theorem 1.

4. Geodesics in infinite-dimensional Teichmüller space

We are now going to prove Theorem 2. Let k ∈ (0, 1) be a given constant
and [µ0] and [µ1] be two points constructed in Section 3. Suppose t0 ∈ (0, 1) is
a value of t determined by k :

(31) t0 =

√
1 − k2

1 +
√

1 − k2
.

Let

σ1(t) =
1 − k2 + t(1 + k2)

1 − k2 + 2tk2

and

σ2(t) =
2 − t

1 + k2(1 − t)
.
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It follows from (31) that

(32) σ1(t0) = σ2(t0) =
2 +

√
1 − k2

1 + k2 +
√

1 − k2
.

Suppose that the function σ(t) is defined as follows:

σ(t) =

{
σ1(t), for 0 ≤ t ≤ t0
σ2(t), for t0 ≤ t ≤ 1.

Noting that σ1 and σ2 are both monotonic and have the same value at t0 , one can
easily see that the function σ(t) satisfies the conditions in Section 3. We denote
by α(t) the straight line constructed corresponding to this σ(t) . By a simple
computation, we see that the point α(t0) is the mid-point, namely d

(
α(0), α(t0)

)
=

d
(
α(t0), α(1)

)
. From (32) one can compute the distance from α(t0) to [0] and get

d
(
[0], α(t0)

)
=

1

2
log

1 + σ(t0)k

1 − σ(t0)k
=

1

2
log

(1 + k)

(1 − k)

(1 + k +
√

1 − k2 )

(1 − k +
√

1 − k2 )

=
1

2
log

1 + k

1 − k
+

1

2
log

√
1 + k

1 − k
=

3

2
log

1 + k

1 − k
=

3

2
r,

where r is the radius of the given sphere.
Let βj be the radial slit determined by the point [µj−1] and γj be the subarc

of α from the point [µj−1] to α(t0) where j = 1, 2. We are going to show that
the arc

τ = β1 ∪ γ1 ∪ γ2 ∪ β2

is a geodesic intersecting itself at the point [0] . It is sufficient to show that τ is
locally shortest at the points [µ0] and [µ1] . Since the length of α is r , the length
of βj ∪γj is 3r/2 for j = 1, 2. On the other hand, the distance from the center to
α(t0) is 3r/2. Therefore the curve β1 ∪ γ1 , as well as β2 ∪ γ2 , is a straight line.
Thus τ is locally shortest at the points [µ0] and [µ1] and hence τ is a geodesic.

The proof of Theorem 2 is completed.

Remarks. The curve constructed in the proof of Theorem 2 is not a closed
geodesic, because it is not locally shortest around the point [0] . It seems quite
natural to ask the following question: Is there a closed geodesic in an infinite-
dimensional Teichmüller space?
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