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Abstract. Tangential limits have been discussed by several authors for harmonic functions
with finite Dirichlet integral. This paper deals mostly with tangential limits for monotone func-
tions in the half space of R™, which are extensions of monotone functions on the one dimensional
space R'. Harmonic functions together with solutions in a wider class of nonlinear elliptic equa-
tions are monotone in our sense; of course, the coordinate functions of quasiregular mappings are
monotone. We first give the fine limit result for Sobolev functions, and then apply the estimate of
the oscillations over balls by the p-th means of partial derivatives over balls.

1. Introduction

Our aim in this paper is to study tangential boundary limits of mono-
tone functions w with finite Dirichlet integral in the half space R} = {z =
(1, s Tp_1,2Tp) = n > 0}, n = 2. We say that u has finite Dirichlet inte-
gral if

(1) /R lgrad u(z)|" dz < oco.

n
+

Further we say that a continuous function v on R’ is monotone (in the sense of
Lebesgue) if
maxu = maxu and minu = minw
el G rel il

hold for any relatively compact open set G' in R?, where G = G U 9G (see
Vuorinen [22], [23]). Harmonic functions, (weak) solutions in a wider class of
(non)linear elliptic partial differential equations and the coordinate functions of
quasiregular mappings are monotone (see e.g. Gilbarg-Trudinger [5], Heinonen—
Kilpeldinen-Martio [6], Reshetnyak [19], Serrin [20] and Vuorinen [23]). For v =2 1,
§ € OR} and a > 0, consider the set

T,(&a)={r = (21,...,2,) € R}t |z = £|7 < az,}.
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If limy ¢ ver (¢,q) u(z) = £ for every a > 0, then u is said to have a T, -limit ¢
at &; u is said to have a nontangential limit at £ if it has a T3 -limit at &. We say
further that v has a Ti.-limit £ at £ € ORY} if

lim u(x) =4
r—&z€Ty(§,a)

for every v > 1 and a > 0 (cf. [14]). To evaluate the size of exceptional sets, we
use the capacity

C1p(E;G) = inf || f[|,",

where G is an open set in R™ and the infimum is taken over all nonnegative
measurable functions f such that f = 0 outside G and

/\x —y' " fly)dy = 1 for every x € E;

see [8] for the basic properties of capacity. Since Cy ,(E; R™) = 0 for any set E
when p 2 n, we write C; ,(E) = 0 simply if

Cip(ENG;G)=0 for every bounded open set G.

Incase 1 <p<n, C;,(FE)=0 if and only if C; ,(E; R") =0.
Our main aim in this paper is to establish the following theorem.

Theorem 1. If v is a monotone function on R’} satisfying (1), then u has
a finite T -limit at every boundary point except for a set £ C OR'} such that
Cin(E)=0.

The nontangential case for harmonic functions has been dealt by many math-
ematicians (cf. Beurling [1], Carleson [2], Gavrilov [4], Wallin [24] and the author
[11]). Miklyukov [10] discussed the nontangential limits for quasiregular mappings
with finite Dirichlet integral. Recently, Manfredi and Villamor [7] have proved
the existence of nontangential limits for monotone functions on the unit ball. The
present tangential limit result for harmonic functions was obtained by Cruzeiro [3].

It is well-known (through an application of change of variables) that the coor-
dinate functions of bounded quasiconformal mappings defined on R’ have finite
Dirichlet integral, so that Theorem 1 gives the following result (see Véiiséla [21]
and Vuorinen [23] for the definition of quasiconformal mappings).

Corollary 1. Every coordinate function of bounded quasiconformal map-

pings on R! has a finite T, -limit at every boundary point except for a set
E C ORY such that Cy,(E) =0.
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This corollary gives an affirmative answer to the open problem given by Vuori-
nen [23, 15.16].

The key of proving our theorem mentioned above is the fact that if u is
monotone on the ball B(x,r) centered at z with radius » and n — 1 < p < n,
then

uw) ~ )P M7 [ Jgradua)p s
B(a,r)
whenever y € B(z,7/2), with a positive constant M independent of r (see [7,
Remark, p. 9] and [23, Section 16]). In the author’s paper [12], we used this
inequality to study the existence of nontangential limits of weak solutions for
nonlinear Laplace equations.

We also give an improvement of the result by Manfredi and Villamor [7]

concerning the Lindel6f-type theorem.

Theorem 2. Let u be a monotone function on R} satisfying

(2) / lgrad u(z)|P dx < oo
RY
for n — 1 < p < n. Consider the set

E, = {§ € OR : limsup rp_”/ lgrad u(y)|? dy > O}.
R"NB(E,r)

r—0

If £ € OR} — E, and u has a finite limit along a rectifiable curve in R'} ending
to &, then u has a nontangential limit at &.

It is easy to see that E, has (n — p)-dimensional Hausdorff measure zero; in
case p = n, the exceptional set in this discussion is empty as was also pointed out
in [7, Theorem 2|, because E,, = (). Note further that C; ,(E,) = 0.

The author wishes to express his deep gratitude to the referee for his kind
and valuable suggestions.

2. Preliminary lemmas

Throughout this paper, let M denote various constants independent of the
variables in question.
To represent Sobolev functions in the integral form, we use the kernel functions
ki (x y):{(wj—ymw—y\:”, ~ yEBO,
e (zj —yi)le —yl™" = (=yy)ly[™",  y e R"=B(0,1).
Lemma 1 (cf. [16, Lemma 3]). Let w be a continuous function on R

satisfying (2). Then there exist functions u; € L™(R"™) and a constant C for
which

u@) =Y [ beyus)dy+C

for every x € R} .
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In view of Lemma 1, we have for z € B(0O,N)N R}, N >0,

n

3) u(x) /B o (E WY ) dy o)

j=1

with a continuous function vy on B(0, N). For a function wu satisfying (1), set

A= {ecom; /B(£ ey ) iy = o)

and
Ay = {5 € ORY : limsup[log(l/r)]”_lf
r—0 B

where f = /|[u1|2+ -+ |un[?.
The following is easy.

)" dy > o},
&)

Lemma 2. Let u be a continuous function on R satisfying (1). Then
Cin(A1) =0.

If h(r) = [log(2+1/r)]'™™, then A, has zero Hausdorff measure with respect
to the measure function h, that is,

Hp(As) =0.
In view of [9], we find

Lemma 3. Let u be a continuous function on R’} satisfying (1). Then
Cin(A2) =0.

Lemma 4 (cf. [14, Theorem 2’ and Remark 1]). Let u be a continuous

function on R satisfying (1). If £ € OR!} — (A1 U Ay), then there exists a set E
C R such that

(1) limg ¢ zer (¢,0)—p () exists and is finite for any v > 1 and any a > 0;
(11) hm]_wo jn—lCLn(Ej; BJ) - 0,

where E; = {z € E: 277 < |z| <279t} and B = {z € R" : 27971 < |z| <
27712},
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Proof. Let £ € B(0, N)NOR}, . If we note (3), then we may assume that

w@ =3 [ ==l () dy

(0,2N)

for every x € R} . The right-hand side is denoted by u(x) for x € R", at which
the integrals are convergent in absolute value. For x € Rl , write

Vi) =Y / (25— y)lz — y| ™ (y) dy,
= JB02N)-B(e 2a—¢))

(€,2|z—¢|)—B(z,xn /2)

AEE (25 = e =yl "y (y) dy,

Usw) =3 [ =l =yl ) dy,
j=1+B(@:xn/2)

Since £ & Ay, w(§) is finite, so that we apply Lebesgue’s dominated convergence

theorem to see that

lim Uy (z) = a(€).

r—&

As before, set

F=VIwP+ 4 Juaf?
By Holder’s inequality we have for « € B(£,1/2) N RY

Ua(2)] = M([log(4lx —&l/za)]" /B fy)" dy)l/n,

(&.2]z—¢l)
so that, since £ & As,

r—€.ET (§,0)

For a sequence {b;} of positive numbers, we consider the sets
Ej={z:277 < |z| <279%, |[Us(x)| 2 b; '}, i=1,2,...,

and -
E= E;.
i=1

J
Note that for x € F;,

Us(a)| < / o~y f () dy < / 2~y f(y) dy.
B(z,xn/2) B;
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Consequently we have by the definition of capacity
Cin(Ej; Bj) = bjn/ fy)" dy.
B;

Since § ¢ Ay, we can find a sequence {b;} of positive numbers such that
lim;_., b; = oo but

tim ;"5 [ f)" dy = .
j—00 B,
Now it follows that
hm jn_lcl’n(Ej; B]> =0.
j—o0

On the other hand, we see that

limsup |Us(x)| < limsup bj_1 =0.
xHO,xERi—E j—o0

Thus Lemma 4 is established.
Lemma 5 (cf. [18, Lemma 7.3]. If z € T,(§,a) and x, < 1/2, then

Cin(B(w,n/2); B(€, 2|z — €])) ~ [log(4]z — &|/z,)]' "
Proof. For our later use, we shall show only that
Cin(B(@,20/2); B(E, 2|z — €])) 2 M{log(4]x — &|/zn)]' .

For this purpose, take a nonnegative function f such that f = 0 outside B(¢, 2|z —
¢[) and

lz—y|* " f(y)dy = 1 for every z € B(x,x,/2).

Then we have by Fubini’s theorem and Holder’s inequality

/ g < / ( / 2=y ) dy) az
B(z,xy,/2) B(z,xn/2)
-/ ( / IR dz)f(y) dy
B(z,xy,/2)

< Mxn”/ (zn + |z —y))' " f(y) dy
B(xz,3|z—¢&|)
< Ma,,"[log(3|z — &|/2,)] /™| £]|.n,

which yields the required inequality.
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3. Proof of Theorem 1

For £ € OR — (A1 U A;), take a set E as in Lemma 4. Since u is monotone
on RY,

(4) u(z) —u(y)[" = M ) lgrad u(2)|" dz

whenever y € B(x,x,/2), where © = (21,...,2,) € R} (see [7] and [23]). If
xz € Ty(&,a), then Lemma 5 implies that B(z,z,/2) — E is not empty, so that

there exists y(z) € B(z,x,/2) — E (when z,, is small enough). Then we see from
(4) that
lim u(z) —ul(y(z))| = 0.
w—>€,w€Tw(€,a)‘ (@) (v(@)]

Hence it follows that

lim u(r) = lim u(y(x)),
z—&,x€T, (¢ a) (=) r—§,2€T5(§,a) (y( >)

so that the limit on the left exists and is finite. Thus F = A; U Ay has all the
required properties, with the aid of Lemmas 2 and 3.
4. Proof of Theorem 2

Manfredi and Villamor [7] proved the following result concerning the existence
of nontangential limits.

Theorem 3 ([7]). Let u be a monotone function on R satisfying (2) for
n—1<p<mn. Then u has a nontangential limit at every £ € OR! — E, where

As will be shown soon, we may take the above E as
E=A1UAy,,

where A; is defined as after Lemma 1, that is,

a={econ: /B(£ el ) dy = o)

and

As p = {f € ORY : limsuprp_”/ fly)Pdy > O},
B(gr)

r—0

where f(y) = |grad u(y)].

Now we give a proof of Theorem 2. Our end in this direction is to show that
the condition that £ € A; may be replaced by the existence of asymptotic values.
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Proof of Theorem 2. Without loss of generality we may assume that £ = 0.
Let C be a rectifiable curve in R} tending to £ = 0, and assume that u has a
finite limit along C'. For 277 < r < 277971 take a point C(r) on C NdB(0,7).
Letting e(r) = (0,...,0,7), we see that

(5) u(en) — )" < ;e | RPR(ORE

whenever y € B(e(r),r/2), where f(z) = |grad u(z)|. Moreover, letting 6 denote
the angle between the z,,-axis and the vector 0z, we find

u(y) — u(C(r))| < /07r F(rO)rdo

along the circular arc {r©} through y and C(r), for y € B(e(r),r/2) NOB(0,r).
By Holder’s inequality we have

1/p’

lu(y) —u(C(r))| < (/ [rl—(n—n/p(sin 0)_(n_2)/p]p/ d@)
0
" 1/p
0

" 1/p
< MriTt O (/ f(rO)Pr"sin™? 9d0) ,

0

where 1/p+1/p’ = 1. Hence it follows that

inf uw(y) —u(Cr)|P < Mpp—ntt / r@)Pr™~1sin™ =26 de,
yGB(e(r),r/Q)‘ (y) —u(C(r)|" = ; f(ro)
so that, by considering polar coordinates with the north pole C(r)/|C(r)|, we have

u(y) ~ u(CO)) " <207 [ pprasa).

inf
yEB(e(r),r/2) dB(0,r)

By integrating both sides with respect to r, we obtain

9—Jj+1

/2_]- LGB@{;&’W)M(?J) — u(C(T))}P] =1y < M/Bj F(2)P dz.

Now we can find r; such that 277 < Ty < 2-3+1 and

inf lu(y) — u(C(r))) ‘p < M2Inp) /B f(z)Pdz.

yEB(e(r;),m;/2)
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In view of (5),
[u(e(r))) = u(Clrp) < M2 [ pap e
B

If the origin does not belong to A, ,,, then this implies that {u(e(rj))} has a finite
limit as j — oo. Applying (5) again, we see that

}u(m) — u(e(r))) }p < M2j(”_p)/ lgrad u(2)|? dz

BjﬂTl(O,Qa)

for all z € T1(0,a) with 277 < |z] < 27771, Therefore v has a nontangential
limit at the origin. Thus we have proved that u has a nontangential limit at every
§ € OR} — Az, and the proof of Theorem 2 is completed.

Theorem 4. Let u be a monotone function on R} satisfying (2) for n—1 <
p <n,and let v > 1. Then there exists £, C OR! such that H.,,_p)(E,) =0
and u has a finite T, -limit at every £ € OR!} — E..

In fact we may take F, = Ay U Ay ), where

Az pry = {{ € ORY : limsupﬂ(p_”) /B(.g ) lerad u(y)|? dy > 0}.

r—0

In the harmonic case, we refer the reader to [15].

Theorem 5. Let u be a harmonic function on R} satisfying (1) and § €
ORY — Ay. If u has a finite limit along a rectifiable curve in R} ending to &,
then u has a T, -limit at £.

To prove this theorem, let £ = 0. It suffices to note that

lu(z) — u(e(|x\))}n < M[log(2\x|/xn)]n_1 /Ban lgrad u(z)|" dz

for all z € T,(0,a) with 277 < |z| < 27771 (see [17, Theorem 1 and its proof]),
because Theorem 2 implies that u(e(|z])) has a limit at the origin.

5. Remarks
Remark 1. According to [15, Remark 5], for given v > 1 and 1 < p < n,
we can find a harmonic function u on R satisfying (2) such that
(i) w has a nontangential limit at the origin.
(ii) lim SUD; 0,2€T,,(0,a') T, (0,a) u(z) = oo for every v >~ and o’ > a.

This shows that the assumption { € R} — Ay is needed in Theorem 5.
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Remark 2. We do not know whether Theorem 5 remains valid for general
monotone functions or not.

Remark 3. For z9) = (277,0,...,0) € OR? and 0 < r; < 27971 consider
the sets

Bj = [B(x(J),2_.7_28]) - B(x(]),TJS]ﬂ — R?—’ Whe]j‘e Sj = (10g—
r
Suppose {r;} is chosen so small that
1 1-n
Z<log 27 ) <09
j

if this is the case, B =J,; R} N B(zY9),r;) is called Cy,-thin at the origin in the
sense of [13]. Taking a sequence {a;} of positive numbers such that

lim a; = oo

Jj—o0

and
(6) Za] (log %)1—71 < 0,

we now define
a-(logi)_l\x(j) —y|™' when y € B,
flyy=4" 27r; 7
0 elsewhere,

and

U(x)I/R I p )y dy, @ = (21, T)y Y= (Y1 Yn)-

n o —yl"
Then, as in [13, Proposition], we can prove:

(i) w is a harmonic function on R’ with finite Dirichlet integral.
(ii) w has a nontangential limit at the origin.
(iil) lim;_ e u(z9) 4+ (0,...,0,7;)) = 0o.
To show (i) and (ii), we note by (6) that

/f dy<MZCL] (logﬁ) n+1<OO
J
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and

u(0) = [ oyl 7o) dy
< MZ% (1ogi)_12j”/3 (—yn) |z =yt dy

QjTj y
1 —n+1
§MZaj(logW) < 00
- j
j

Finally we see that for € R? N B(z),r;),

1 -1 [277%; ‘
u(z) 2 Ma; (log —) / (Jz — 2| + )=t dr > May,
2r; TjS;
which implies that
lim wu(z) = oo.
z—0,x€B

Remark 4. The examples in Remarks 1 and 3 show that the existence of

nontangential limits may not always imply that of tangential limits.
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