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Abstract. Tangential limits have been discussed by several authors for harmonic functions
with finite Dirichlet integral. This paper deals mostly with tangential limits for monotone func-
tions in the half space of Rn , which are extensions of monotone functions on the one dimensional
space R1 . Harmonic functions together with solutions in a wider class of nonlinear elliptic equa-
tions are monotone in our sense; of course, the coordinate functions of quasiregular mappings are
monotone. We first give the fine limit result for Sobolev functions, and then apply the estimate of
the oscillations over balls by the p -th means of partial derivatives over balls.

1. Introduction

Our aim in this paper is to study tangential boundary limits of mono-
tone functions u with finite Dirichlet integral in the half space Rn

+ = {x =
(x1, . . . , xn−1, xn) : xn > 0} , n ≧ 2. We say that u has finite Dirichlet inte-
gral if

(1)

∫

Rn
+

|gradu(x)|n dx < ∞.

Further we say that a continuous function u on Rn
+ is monotone (in the sense of

Lebesgue) if
max

G
u = max

∂G
u and min

G
u = min

∂G
u

hold for any relatively compact open set G in Rn
+ , where G = G ∪ ∂G (see

Vuorinen [22], [23]). Harmonic functions, (weak) solutions in a wider class of
(non)linear elliptic partial differential equations and the coordinate functions of
quasiregular mappings are monotone (see e.g. Gilbarg–Trudinger [5], Heinonen–
Kilpeläinen–Martio [6], Reshetnyak [19], Serrin [20] and Vuorinen [23]). For γ ≧ 1,
ξ ∈ ∂Rn

+ and a > 0, consider the set

Tγ(ξ; a) = {x = (x1, . . . , xn) ∈ Rn
+ : |x − ξ|γ < axn}.
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If limx→ξ,x∈Tγ(ξ,a) u(x) = ℓ for every a > 0, then u is said to have a Tγ -limit ℓ
at ξ ; u is said to have a nontangential limit at ξ if it has a T1 -limit at ξ . We say
further that u has a T∞ -limit ℓ at ξ ∈ ∂Rn

+ if

lim
x→ξ,x∈Tγ (ξ,a)

u(x) = ℓ

for every γ > 1 and a > 0 (cf. [14]). To evaluate the size of exceptional sets, we
use the capacity

C1,p(E; G) = inf ‖f‖p
p
,

where G is an open set in Rn and the infimum is taken over all nonnegative
measurable functions f such that f = 0 outside G and

∫

|x − y|1−nf(y) dy ≧ 1 for every x ∈ E;

see [8] for the basic properties of capacity. Since C1,p(E; Rn) = 0 for any set E
when p ≧ n , we write C1,p(E) = 0 simply if

C1,p(E ∩ G; G) = 0 for every bounded open set G.

In case 1 < p < n , C1,p(E) = 0 if and only if C1,p(E; Rn) = 0.

Our main aim in this paper is to establish the following theorem.

Theorem 1. If u is a monotone function on Rn
+ satisfying (1) , then u has

a finite T∞ -limit at every boundary point except for a set E ⊂ ∂Rn
+ such that

C1,n(E) = 0 .

The nontangential case for harmonic functions has been dealt by many math-
ematicians (cf. Beurling [1], Carleson [2], Gavrilov [4], Wallin [24] and the author
[11]). Miklyukov [10] discussed the nontangential limits for quasiregular mappings
with finite Dirichlet integral. Recently, Manfredi and Villamor [7] have proved
the existence of nontangential limits for monotone functions on the unit ball. The
present tangential limit result for harmonic functions was obtained by Cruzeiro [3].

It is well-known (through an application of change of variables) that the coor-
dinate functions of bounded quasiconformal mappings defined on Rn

+ have finite
Dirichlet integral, so that Theorem 1 gives the following result (see Väisälä [21]
and Vuorinen [23] for the definition of quasiconformal mappings).

Corollary 1. Every coordinate function of bounded quasiconformal map-

pings on Rn
+ has a finite T∞ -limit at every boundary point except for a set

E ⊂ ∂Rn
+ such that C1,n(E) = 0 .
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This corollary gives an affirmative answer to the open problem given by Vuori-
nen [23, 15.16].

The key of proving our theorem mentioned above is the fact that if u is
monotone on the ball B(x, r) centered at x with radius r and n − 1 < p ≦ n ,
then

|u(x) − u(y)|p ≦ Mrp−n

∫

B(x,r)

|gradu(z)|p dz

whenever y ∈ B(x, r/2), with a positive constant M independent of r (see [7,
Remark, p. 9] and [23, Section 16]). In the author’s paper [12], we used this
inequality to study the existence of nontangential limits of weak solutions for
nonlinear Laplace equations.

We also give an improvement of the result by Manfredi and Villamor [7]
concerning the Lindelöf-type theorem.

Theorem 2. Let u be a monotone function on Rn
+ satisfying

(2)

∫

Rn
+

|gradu(x)|p dx < ∞

for n − 1 < p ≦ n . Consider the set

Ep =

{

ξ ∈ ∂Rn
+ : lim sup

r→0
rp−n

∫

Rn
+
∩B(ξ,r)

|gradu(y)|p dy > 0

}

.

If ξ ∈ ∂Rn
+ − Ep and u has a finite limit along a rectifiable curve in Rn

+ ending

to ξ , then u has a nontangential limit at ξ .

It is easy to see that Ep has (n − p)-dimensional Hausdorff measure zero; in
case p = n , the exceptional set in this discussion is empty as was also pointed out
in [7, Theorem 2], because En = ∅ . Note further that C1,p(Ep) = 0.

The author wishes to express his deep gratitude to the referee for his kind
and valuable suggestions.

2. Preliminary lemmas

Throughout this paper, let M denote various constants independent of the
variables in question.

To represent Sobolev functions in the integral form, we use the kernel functions

kj(x, y) =

{

(xj − yj)|x − y|−n, y ∈ B(0, 1),
(xj − yj)|x − y|−n − (−yj)|y|

−n, y ∈ Rn − B(0, 1).

Lemma 1 (cf. [16, Lemma 3]). Let u be a continuous function on Rn
+

satisfying (2) . Then there exist functions uj ∈ Ln(Rn) and a constant C for

which

u(x) =

n
∑

j=1

∫

Rn

kj(x, y)uj(y) dy + C

for every x ∈ Rn
+ .
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In view of Lemma 1, we have for x ∈ B(0, N) ∩ Rn
+ , N > 0,

(3) u(x) =

n
∑

j=1

∫

B(0,2N)

(xj − yj)|x − y|−nuj(y) dy + vN (x)

with a continuous function vN on B(0, N) . For a function u satisfying (1), set

A1 =

{

ξ ∈ ∂Rn
+ :

∫

B(ξ,1)

|ξ − y|1−nf(y) dy = ∞

}

and

A2 =

{

ξ ∈ ∂Rn
+ : lim sup

r→0
[log(1/r)]n−1

∫

B(ξ,r)

f(y)n dy > 0

}

,

where f =
√

|u1|2 + · · ·+ |un|2 .

The following is easy.

Lemma 2. Let u be a continuous function on Rn
+ satisfying (1) . Then

C1,n(A1) = 0.

If h(r) = [log(2+1/r)]1−n , then A2 has zero Hausdorff measure with respect
to the measure function h , that is,

Hh(A2) = 0.

In view of [9], we find

Lemma 3. Let u be a continuous function on Rn
+ satisfying (1) . Then

C1,n(A2) = 0.

Lemma 4 (cf. [14, Theorem 2′ and Remark 1]). Let u be a continuous

function on Rn
+ satisfying (1) . If ξ ∈ ∂Rn

+ − (A1 ∪ A2) , then there exists a set E

⊂ Rn
+ such that

(i) limx→ξ,x∈Tγ(ξ,a)−E u(x) exists and is finite for any γ > 1 and any a > 0 ;

(ii) limj→∞ jn−1C1,n(Ej; Bj) = 0 ,

where Ej = {x ∈ E : 2−j ≦ |x| < 2−j+1} and Bj = {x ∈ Rn : 2−j−1 < |x| <
2−j+2} .
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Proof. Let ξ ∈ B(0, N) ∩ ∂Rn
+ . If we note (3), then we may assume that

u(x) =

n
∑

j=1

∫

B(0,2N)

(xj − yj)|x − y|−nuj(y) dy

for every x ∈ Rn
+ . The right-hand side is denoted by u(x) for x ∈ Rn , at which

the integrals are convergent in absolute value. For x ∈ Rn
+ , write

U1(x) =
n

∑

j=1

∫

B(0,2N)−B(ξ,2|x−ξ|)

(xj − yj)|x − y|−nuj(y) dy,

U2(x) =

n
∑

j=1

∫

B(ξ,2|x−ξ|)−B(x,xn/2)

(xj − yj)|x − y|−nuj(y) dy,

U3(x) =

n
∑

j=1

∫

B(x,xn/2)

(xj − yj)|x − y|−nuj(y) dy.

Since ξ 6∈ A1 , u(ξ) is finite, so that we apply Lebesgue’s dominated convergence
theorem to see that

lim
x→ξ

U1(x) = u(ξ).

As before, set
f =

√

|u1|2 + · · ·+ |un|2.

By Hölder’s inequality we have for x ∈ B(ξ, 1/2)∩ Rn
+

|U2(x)| ≦ M

(

[

log(4|x − ξ|/xn)
]n−1

∫

B(ξ,2|x−ξ|)

f(y)n dy

)1/n

,

so that, since ξ 6∈ A2 ,
lim

x→ξ,x∈Tγ(ξ,a)
U2(x) = 0.

For a sequence {bj} of positive numbers, we consider the sets

Ej =
{

x : 2−j ≦ |x| < 2−j+1, |U3(x)| ≧ b−1
j

}

, j = 1, 2, . . . ,

and

E =
∞
⋃

j=1

Ej .

Note that for x ∈ Ej ,

|U3(x)| ≦

∫

B(x,xn/2)

|x − y|1−nf(y) dy ≦

∫

Bj

|x − y|1−nf(y) dy.
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Consequently we have by the definition of capacity

C1,n(Ej ; Bj) ≦ bj
n

∫

Bj

f(y)n dy.

Since ξ 6∈ A2 , we can find a sequence {bj} of positive numbers such that
limj→∞ bj = ∞ but

lim
j→∞

bj
njn−1

∫

Bj

f(y)n dy = 0.

Now it follows that
lim

j→∞
jn−1C1,n(Ej ; Bj) = 0.

On the other hand, we see that

lim sup
x→0,x∈Rn

+
−E

|U3(x)| ≦ lim sup
j→∞

b−1
j = 0.

Thus Lemma 4 is established.

Lemma 5 (cf. [18, Lemma 7.3]. If x ∈ Tγ(ξ, a) and xn < 1/2 , then

C1,n

(

B(x, xn/2); B(ξ, 2|x− ξ|)
)

∼ [log(4|x − ξ|/xn)]1−n.

Proof. For our later use, we shall show only that

C1,n

(

B(x, xn/2); B(ξ, 2|x− ξ|)
)

≧ M [log(4|x − ξ|/xn)]1−n.

For this purpose, take a nonnegative function f such that f = 0 outside B(ξ, 2|x−
ξ|) and

∫

|z − y|1−nf(y) dy ≧ 1 for every z ∈ B(x, xn/2).

Then we have by Fubini’s theorem and Hölder’s inequality

∫

B(x,xn/2)

dz ≦

∫

B(x,xn/2)

(
∫

|z − y|1−nf(y) dy

)

dz

=

∫
(

∫

B(x,xn/2)

|z − y|1−n dz

)

f(y) dy

≦ Mxn
n

∫

B(x,3|x−ξ|)

(xn + |x − y|)1−nf(y) dy

≦ Mxn
n[log(3|x − ξ|/xn)](n−1)/n‖f‖n,

which yields the required inequality.
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3. Proof of Theorem 1

For ξ ∈ ∂Rn
+ − (A1 ∪A2) , take a set E as in Lemma 4. Since u is monotone

on Rn
+ ,

(4) |u(x) − u(y)|n ≦ M

∫

B(x,xn)

|gradu(z)|n dz

whenever y ∈ B(x, xn/2), where x = (x1, . . . , xn) ∈ Rn
+ (see [7] and [23]). If

x ∈ Tγ(ξ, a) , then Lemma 5 implies that B(x, xn/2) − E is not empty, so that
there exists y(x) ∈ B(x, xn/2)−E (when xn is small enough). Then we see from
(4) that

lim
x→ξ,x∈Tγ (ξ,a)

∣

∣u(x) − u
(

y(x)
)
∣

∣ = 0.

Hence it follows that

lim
x→ξ,x∈Tγ (ξ,a)

u(x) = lim
x→ξ,x∈Tγ (ξ,a)

u
(

y(x)
)

,

so that the limit on the left exists and is finite. Thus E = A1 ∪ A2 has all the
required properties, with the aid of Lemmas 2 and 3.

4. Proof of Theorem 2

Manfredi and Villamor [7] proved the following result concerning the existence
of nontangential limits.

Theorem 3 ([7]). Let u be a monotone function on Rn
+ satisfying (2) for

n − 1 < p < n . Then u has a nontangential limit at every ξ ∈ ∂Rn
+ − E , where

C1,p(E) = 0 .

As will be shown soon, we may take the above E as

E = A1 ∪ A2,p,

where A1 is defined as after Lemma 1, that is,

A1 =

{

ξ ∈ ∂Rn
+ :

∫

B(ξ,1)

|ξ − y|1−nf(y) dy = ∞

}

and

A2,p =

{

ξ ∈ ∂Rn
+ : lim sup

r→0
rp−n

∫

B(ξ,r)

f(y)p dy > 0

}

,

where f(y) = |gradu(y)| .

Now we give a proof of Theorem 2. Our end in this direction is to show that
the condition that ξ 6∈ A1 may be replaced by the existence of asymptotic values.
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Proof of Theorem 2. Without loss of generality we may assume that ξ = 0.
Let C be a rectifiable curve in Rn

+ tending to ξ = 0, and assume that u has a
finite limit along C . For 2−j ≦ r < 2−j+1 , take a point C(r) on C ∩ ∂B(0, r) .
Letting e(r) = (0, . . . , 0, r) , we see that

(5)
∣

∣u
(

e(r)
)

− u(y)
∣

∣

p
≦ Mrp−n

∫

B(e(r),r/2)

f(z)p dz

whenever y ∈ B
(

e(r), r/2
)

, where f(z) = |gradu(z)| . Moreover, letting θ denote

the angle between the xn -axis and the vector ~0x , we find

∣

∣u(y) − u
(

C(r)
)
∣

∣ ≦

∫ π

0

f(rΘ)r dθ

along the circular arc {rΘ} through y and C(r) , for y ∈ B
(

e(r), r/2
)

∩ ∂B(0, r) .
By Hölder’s inequality we have

∣

∣u(y) − u
(

C(r)
)
∣

∣ ≦

(
∫ π

0

[

r1−(n−1)/p(sin θ)−(n−2)/p
]p′

dθ

)1/p′

×

(
∫ π

0

f(rΘ)prn−1 sinn−2 θ dθ

)1/p

≦ Mr1−(n−1)/p

(
∫ π

0

f(rΘ)prn−1 sinn−2 θ dθ

)1/p

,

where 1/p + 1/p′ = 1. Hence it follows that

inf
y∈B(e(r),r/2)

∣

∣u(y) − u
(

C(r)
)
∣

∣

p
≦ Mrp−n+1

∫ π

0

f(rΘ)prn−1 sinn−2 θ dθ,

so that, by considering polar coordinates with the north pole C(r)/|C(r)| , we have

inf
y∈B(e(r),r/2)

∣

∣u(y) − u
(

C(r)
)
∣

∣

p
≦ Mrp−n+1

∫

∂B(0,r)

f(z)p dS(z).

By integrating both sides with respect to r , we obtain

∫ 2−j+1

2−j

[

inf
y∈B(e(r)),r/2)

∣

∣u(y) − u
(

C(r)
)
∣

∣

p
]

rn−p−1dr ≦ M

∫

Bj

f(z)p dz.

Now we can find rj such that 2−j ≦ rj < 2−j+1 and

inf
y∈B(e(rj),rj/2)

∣

∣u(y) − u
(

C(rj)
)
∣

∣

p
≦ M2j(n−p)

∫

Bj

f(z)p dz.
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In view of (5),

∣

∣u
(

e(rj)
)

− u
(

C(rj)
)
∣

∣

p
≦ M2j(n−p)

∫

Bj

f(z)p dz.

If the origin does not belong to A2,p , then this implies that
{

u
(

e(rj)
)}

has a finite
limit as j → ∞ . Applying (5) again, we see that

∣

∣u(x) − u
(

e(rj)
)
∣

∣

p
≦ M2j(n−p)

∫

Bj∩T1(0,2a)

|gradu(z)|p dz

for all x ∈ T1(0, a) with 2−j ≦ |x| < 2−j+1 . Therefore u has a nontangential
limit at the origin. Thus we have proved that u has a nontangential limit at every
ξ ∈ ∂Rn

+ − A2,p , and the proof of Theorem 2 is completed.

Theorem 4. Let u be a monotone function on Rn
+ satisfying (2) for n−1 <

p < n , and let γ > 1 . Then there exists Eγ ⊂ ∂Rn
+ such that Hγ(n−p)(Eγ) = 0

and u has a finite Tγ -limit at every ξ ∈ ∂Rn
+ − Eγ .

In fact we may take Eγ = A1 ∪ A2,p,γ , where

A2,p,γ =

{

ξ ∈ ∂Rn
+ : lim sup

r→0
rγ(p−n)

∫

B(ξ,r)

|gradu(y)|p dy > 0

}

.

In the harmonic case, we refer the reader to [15].

Theorem 5. Let u be a harmonic function on Rn
+ satisfying (1) and ξ ∈

∂Rn
+ − A2 . If u has a finite limit along a rectifiable curve in Rn

+ ending to ξ ,

then u has a T∞ -limit at ξ .

To prove this theorem, let ξ = 0. It suffices to note that

∣

∣u(x) − u
(

e(|x|)
)
∣

∣

n
≦ M

[

log(2|x|/xn)
]n−1

∫

Bj∩Rn
+

|gradu(z)|n dz

for all x ∈ Tγ(0, a) with 2−j ≦ |x| < 2−j+1 (see [17, Theorem 1 and its proof]),
because Theorem 2 implies that u

(

e(|x|)
)

has a limit at the origin.

5. Remarks

Remark 1. According to [15, Remark 5], for given γ > 1 and 1 < p ≦ n ,
we can find a harmonic function u on Rn

+ satisfying (2) such that

(i) u has a nontangential limit at the origin.
(ii) lim supx→0,x∈Tγ′ (0,a′)−Tγ′ (0,a) u(x) = ∞ for every γ′ > γ and a′ > a .

This shows that the assumption ξ ∈ ∂Rn
+ − A2 is needed in Theorem 5.
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Remark 2. We do not know whether Theorem 5 remains valid for general
monotone functions or not.

Remark 3. For x(j) = (2−j, 0, . . . , 0) ∈ ∂Rn
+ and 0 < rj < 2−j−1 , consider

the sets

Bj =
[

B(x(j), 2−j−2sj) − B(x(j), rjsj)
]

− Rn
+, where sj =

(

log
1

2jrj

)(2−n)/n

.

Suppose {rj} is chosen so small that

∑

j

(

log
1

2jrj

)1−n

< ∞;

if this is the case, B =
⋃

j Rn
+ ∩B(x(j), rj) is called C1,n -thin at the origin in the

sense of [13]. Taking a sequence {aj} of positive numbers such that

lim
j→∞

aj = ∞

and

(6)
∑

j

aj
n
(

log
1

2jrj

)1−n

< ∞,

we now define

f(y) =

{

aj

(

log
1

2jrj

)−1

|x(j) − y|−1 when y ∈ Bj ,

0 elsewhere,

and

u(x) =

∫

Rn

xn − yn

|x − y|n
f(y) dy, x = (x1, . . . , xn), y = (y1, . . . , yn).

Then, as in [13, Proposition], we can prove:

(i) u is a harmonic function on Rn
+ with finite Dirichlet integral.

(ii) u has a nontangential limit at the origin.
(iii) limj→∞ u(x(j) + (0, . . . , 0, rj)) = ∞ .

To show (i) and (ii), we note by (6) that

∫

f(y)n dy ≦ M
∑

j

aj
n
(

log
1

2jrj

)−n+1

< ∞
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and

u(0) =

∫

(−yn)|y|−nf(y) dy

≦ M
∑

j

aj

(

log
1

2jrj

)−1

2jn

∫

Bj

(−yn)|x(j) − y|−1 dy

≦ M
∑

j

aj

(

log
1

2jrj

)−n+1

< ∞.

Finally we see that for x ∈ Rn
+ ∩ B(x(j), rj) ,

u(x) ≧ Maj

(

log
1

2jrj

)−1
∫ 2−j−2sj

rjsj

(|x − x(j)| + r)1−nr−1rn−1 dr ≧ Maj ,

which implies that
lim

x→0,x∈B
u(x) = ∞.

Remark 4. The examples in Remarks 1 and 3 show that the existence of
nontangential limits may not always imply that of tangential limits.
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