Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 20, 1995, 315–326

TANGENTIAL LIMITS OF MONOTONE SOBOLEV FUNCTIONS

Yoshihiro Mizuta

Hiroshima University, Faculty of Integrated Arts and Sciences The Division of Mathematical and Information Sciences Higashi-Hiroshima 724, Japan; mizuta@mis.hiroshima-u.ac.jp

Abstract. Tangential limits have been discussed by several authors for harmonic functions with finite Dirichlet integral. This paper deals mostly with tangential limits for monotone functions in the half space of \mathbb{R}^n , which are extensions of monotone functions on the one dimensional space \mathbb{R}^1 . Harmonic functions together with solutions in a wider class of nonlinear elliptic equations are monotone in our sense; of course, the coordinate functions of quasiregular mappings are monotone. We first give the fine limit result for Sobolev functions, and then apply the estimate of the oscillations over balls by the *p*-th means of partial derivatives over balls.

1. Introduction

Our aim in this paper is to study tangential boundary limits of monotone functions u with finite Dirichlet integral in the half space $R_{+}^{n} = \{x = (x_1, \ldots, x_{n-1}, x_n) : x_n > 0\}, n \geq 2$. We say that u has finite Dirichlet integral if

(1)
$$\int_{R^n_+} |\operatorname{grad} u(x)|^n \, dx < \infty.$$

Further we say that a continuous function u on \mathbb{R}^n_+ is monotone (in the sense of Lebesgue) if

$$\max_{\overline{G}} u = \max_{\partial G} u \quad \text{and} \quad \min_{\overline{G}} u = \min_{\partial G} u$$

hold for any relatively compact open set G in \mathbb{R}^n_+ , where $\overline{G} = G \cup \partial G$ (see Vuorinen [22], [23]). Harmonic functions, (weak) solutions in a wider class of (non)linear elliptic partial differential equations and the coordinate functions of quasiregular mappings are monotone (see e.g. Gilbarg–Trudinger [5], Heinonen–Kilpeläinen–Martio [6], Reshetnyak [19], Serrin [20] and Vuorinen [23]). For $\gamma \geq 1$, $\xi \in \partial \mathbb{R}^n_+$ and a > 0, consider the set

$$T_{\gamma}(\xi; a) = \{ x = (x_1, \dots, x_n) \in R_+^n : |x - \xi|^{\gamma} < a x_n \}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 31B25.

If $\lim_{x\to\xi,x\in T_{\gamma}(\xi,a)} u(x) = \ell$ for every a > 0, then u is said to have a T_{γ} -limit ℓ at ξ ; u is said to have a nontangential limit at ξ if it has a T_1 -limit at ξ . We say further that u has a T_{∞} -limit ℓ at $\xi \in \partial R^n_+$ if

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} u(x) = \ell$$

for every $\gamma > 1$ and a > 0 (cf. [14]). To evaluate the size of exceptional sets, we use the capacity

$$C_{1,p}(E;G) = \inf \|f\|_p^p,$$

where G is an open set in \mathbb{R}^n and the infimum is taken over all nonnegative measurable functions f such that f = 0 outside G and

$$\int |x-y|^{1-n} f(y) \, dy \ge 1 \qquad \text{for every } x \in E;$$

see [8] for the basic properties of capacity. Since $C_{1,p}(E; \mathbb{R}^n) = 0$ for any set E when $p \geq n$, we write $C_{1,p}(E) = 0$ simply if

$$C_{1,p}(E \cap G; G) = 0$$
 for every bounded open set G.

In case $1 , <math>C_{1,p}(E) = 0$ if and only if $C_{1,p}(E; \mathbb{R}^n) = 0$.

Our main aim in this paper is to establish the following theorem.

Theorem 1. If u is a monotone function on \mathbb{R}^n_+ satisfying (1), then u has a finite T_{∞} -limit at every boundary point except for a set $E \subset \partial \mathbb{R}^n_+$ such that $C_{1,n}(E) = 0$.

The nontangential case for harmonic functions has been dealt by many mathematicians (cf. Beurling [1], Carleson [2], Gavrilov [4], Wallin [24] and the author [11]). Miklyukov [10] discussed the nontangential limits for quasiregular mappings with finite Dirichlet integral. Recently, Manfredi and Villamor [7] have proved the existence of nontangential limits for monotone functions on the unit ball. The present tangential limit result for harmonic functions was obtained by Cruzeiro [3].

It is well-known (through an application of change of variables) that the coordinate functions of bounded quasiconformal mappings defined on R^n_+ have finite Dirichlet integral, so that Theorem 1 gives the following result (see Väisälä [21] and Vuorinen [23] for the definition of quasiconformal mappings).

Corollary 1. Every coordinate function of bounded quasiconformal mappings on \mathbb{R}^n_+ has a finite T_{∞} -limit at every boundary point except for a set $E \subset \partial \mathbb{R}^n_+$ such that $C_{1,n}(E) = 0$. This corollary gives an affirmative answer to the open problem given by Vuorinen [23, 15.16].

The key of proving our theorem mentioned above is the fact that if u is monotone on the ball B(x,r) centered at x with radius r and n-1 , then

$$|u(x) - u(y)|^p \leq Mr^{p-n} \int_{B(x,r)} |\operatorname{grad} u(z)|^p \, dz$$

whenever $y \in B(x, r/2)$, with a positive constant M independent of r (see [7, Remark, p. 9] and [23, Section 16]). In the author's paper [12], we used this inequality to study the existence of nontangential limits of weak solutions for nonlinear Laplace equations.

We also give an improvement of the result by Manfredi and Villamor [7] concerning the Lindelöf-type theorem.

Theorem 2. Let u be a monotone function on \mathbb{R}^n_+ satisfying

(2)
$$\int_{R_+^n} |\operatorname{grad} u(x)|^p \, dx < \infty$$

for n-1 . Consider the set

$$E_p = \bigg\{ \xi \in \partial R_+^n : \limsup_{r \to 0} r^{p-n} \int_{R_+^n \cap B(\xi, r)} |\operatorname{grad} u(y)|^p \, dy > 0 \bigg\}.$$

If $\xi \in \partial R^n_+ - E_p$ and u has a finite limit along a rectifiable curve in R^n_+ ending to ξ , then u has a nontangential limit at ξ .

It is easy to see that E_p has (n-p)-dimensional Hausdorff measure zero; in case p = n, the exceptional set in this discussion is empty as was also pointed out in [7, Theorem 2], because $E_n = \emptyset$. Note further that $C_{1,p}(E_p) = 0$.

The author wishes to express his deep gratitude to the referee for his kind and valuable suggestions.

2. Preliminary lemmas

Throughout this paper, let M denote various constants independent of the variables in question.

To represent Sobolev functions in the integral form, we use the kernel functions

$$k_j(x,y) = \begin{cases} (x_j - y_j)|x - y|^{-n}, & y \in B(0,1), \\ (x_j - y_j)|x - y|^{-n} - (-y_j)|y|^{-n}, & y \in R^n - B(0,1). \end{cases}$$

Lemma 1 (cf. [16, Lemma 3]). Let u be a continuous function on \mathbb{R}^n_+ satisfying (2). Then there exist functions $u_j \in L^n(\mathbb{R}^n)$ and a constant C for which

$$u(x) = \sum_{j=1}^{n} \int_{R^{n}} k_{j}(x, y) u_{j}(y) \, dy + C$$

for every $x \in \mathbb{R}^n_+$.

In view of Lemma 1, we have for $x \in B(0, N) \cap \mathbb{R}^n_+$, N > 0,

(3)
$$u(x) = \sum_{j=1}^{n} \int_{B(0,2N)} (x_j - y_j) |x - y|^{-n} u_j(y) \, dy + v_N(x)$$

with a continuous function v_N on B(0, N). For a function u satisfying (1), set

$$A_{1} = \left\{ \xi \in \partial R_{+}^{n} : \int_{B(\xi,1)} |\xi - y|^{1-n} f(y) \, dy = \infty \right\}$$

and

$$A_{2} = \left\{ \xi \in \partial R_{+}^{n} : \limsup_{r \to 0} [\log(1/r)]^{n-1} \int_{B(\xi,r)} f(y)^{n} \, dy > 0 \right\},\$$

where $f = \sqrt{|u_1|^2 + \dots + |u_n|^2}$.

The following is easy.

Lemma 2. Let u be a continuous function on \mathbb{R}^n_+ satisfying (1). Then

$$C_{1,n}(A_1) = 0.$$

If $h(r) = [\log(2+1/r)]^{1-n}$, then A_2 has zero Hausdorff measure with respect to the measure function h, that is,

$$H_h(A_2) = 0.$$

In view of [9], we find

Lemma 3. Let u be a continuous function on \mathbb{R}^n_+ satisfying (1). Then

$$C_{1,n}(A_2) = 0.$$

Lemma 4 (cf. [14, Theorem 2' and Remark 1]). Let u be a continuous function on \mathbb{R}^n_+ satisfying (1). If $\xi \in \partial \mathbb{R}^n_+ - (A_1 \cup A_2)$, then there exists a set $E \subset \mathbb{R}^n_+$ such that

(i) $\lim_{x\to\xi,x\in T_{\gamma}(\xi,a)-E} u(x)$ exists and is finite for any $\gamma > 1$ and any a > 0; (ii) $\lim_{j\to\infty} j^{n-1}C_{1,n}(E_j;B_j) = 0$,

where $E_j = \{x \in E : 2^{-j} \leq |x| < 2^{-j+1}\}$ and $B_j = \{x \in R^n : 2^{-j-1} < |x| < 2^{-j+2}\}.$

Proof. Let $\xi \in B(0, N) \cap \partial \mathbb{R}^n_+$. If we note (3), then we may assume that

$$u(x) = \sum_{j=1}^{n} \int_{B(0,2N)} (x_j - y_j) |x - y|^{-n} u_j(y) \, dy$$

for every $x \in \mathbb{R}^n_+$. The right-hand side is denoted by $\overline{u}(x)$ for $x \in \mathbb{R}^n$, at which the integrals are convergent in absolute value. For $x \in \mathbb{R}^n_+$, write

$$U_{1}(x) = \sum_{j=1}^{n} \int_{B(0,2N) - B(\xi,2|x-\xi|)} (x_{j} - y_{j})|x - y|^{-n}u_{j}(y) \, dy,$$

$$U_{2}(x) = \sum_{j=1}^{n} \int_{B(\xi,2|x-\xi|) - B(x,x_{n}/2)} (x_{j} - y_{j})|x - y|^{-n}u_{j}(y) \, dy,$$

$$U_{3}(x) = \sum_{j=1}^{n} \int_{B(x,x_{n}/2)} (x_{j} - y_{j})|x - y|^{-n}u_{j}(y) \, dy.$$

Since $\xi \notin A_1$, $\overline{u}(\xi)$ is finite, so that we apply Lebesgue's dominated convergence theorem to see that

$$\lim_{x \to \xi} U_1(x) = \overline{u}(\xi).$$

As before, set

$$f = \sqrt{|u_1|^2 + \dots + |u_n|^2}.$$

By Hölder's inequality we have for $x \in B(\xi, 1/2) \cap \mathbb{R}^n_+$

$$|U_2(x)| \le M \left(\left[\log(4|x-\xi|/x_n) \right]^{n-1} \int_{B(\xi,2|x-\xi|)} f(y)^n \, dy \right)^{1/n},$$

so that, since $\xi \notin A_2$,

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} U_2(x) = 0$$

For a sequence $\{b_j\}$ of positive numbers, we consider the sets

$$E_j = \{x : 2^{-j} \le |x| < 2^{-j+1}, |U_3(x)| \ge b_j^{-1}\}, \qquad j = 1, 2, \dots,$$

and

$$E = \bigcup_{j=1}^{\infty} E_j.$$

Note that for $x \in E_j$,

$$|U_3(x)| \leq \int_{B(x,x_n/2)} |x-y|^{1-n} f(y) \, dy \leq \int_{B_j} |x-y|^{1-n} f(y) \, dy.$$

Consequently we have by the definition of capacity

$$C_{1,n}(E_j; B_j) \leq b_j^n \int_{B_j} f(y)^n \, dy.$$

Since $\xi \notin A_2$, we can find a sequence $\{b_j\}$ of positive numbers such that $\lim_{j\to\infty} b_j = \infty$ but

$$\lim_{j \to \infty} b_j^n j^{n-1} \int_{B_j} f(y)^n \, dy = 0.$$

Now it follows that

$$\lim_{j \to \infty} j^{n-1} C_{1,n}(E_j; B_j) = 0.$$

On the other hand, we see that

$$\lim_{x \to 0, x \in \mathbb{R}^n_+ - E} |U_3(x)| \leq \limsup_{j \to \infty} b_j^{-1} = 0.$$

Thus Lemma 4 is established.

Lemma 5 (cf. [18, Lemma 7.3]. If $x \in T_{\gamma}(\xi, a)$ and $x_n < 1/2$, then

$$C_{1,n}(B(x,x_n/2);B(\xi,2|x-\xi|)) \sim [\log(4|x-\xi|/x_n)]^{1-n}.$$

Proof. For our later use, we shall show only that

$$C_{1,n}(B(x,x_n/2);B(\xi,2|x-\xi|)) \ge M[\log(4|x-\xi|/x_n)]^{1-n}$$

For this purpose, take a nonnegative function f such that f=0 outside $B(\xi,2|x-\xi|)$ and

$$\int |z-y|^{1-n} f(y) \, dy \ge 1 \qquad \text{for every } z \in B(x, x_n/2).$$

Then we have by Fubini's theorem and Hölder's inequality

$$\int_{B(x,x_n/2)} dz \leq \int_{B(x,x_n/2)} \left(\int |z-y|^{1-n} f(y) \, dy \right) dz$$

= $\int \left(\int_{B(x,x_n/2)} |z-y|^{1-n} \, dz \right) f(y) \, dy$
 $\leq M x_n^n \int_{B(x,3|x-\xi|)} (x_n + |x-y|)^{1-n} f(y) \, dy$
 $\leq M x_n^n [\log(3|x-\xi|/x_n)]^{(n-1)/n} ||f||_n,$

which yields the required inequality.

320

3. Proof of Theorem 1

For $\xi \in \partial R^n_+ - (A_1 \cup A_2)$, take a set *E* as in Lemma 4. Since *u* is monotone on R^n_+ ,

(4)
$$|u(x) - u(y)|^n \leq M \int_{B(x,x_n)} |\operatorname{grad} u(z)|^n \, dz$$

whenever $y \in B(x, x_n/2)$, where $x = (x_1, \ldots, x_n) \in R_+^n$ (see [7] and [23]). If $x \in T_{\gamma}(\xi, a)$, then Lemma 5 implies that $B(x, x_n/2) - E$ is not empty, so that there exists $y(x) \in B(x, x_n/2) - E$ (when x_n is small enough). Then we see from (4) that

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} \left| u(x) - u(y(x)) \right| = 0.$$

Hence it follows that

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} u(x) = \lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} u(y(x)),$$

so that the limit on the left exists and is finite. Thus $E = A_1 \cup A_2$ has all the required properties, with the aid of Lemmas 2 and 3.

4. Proof of Theorem 2

Manfredi and Villamor [7] proved the following result concerning the existence of nontangential limits.

Theorem 3 ([7]). Let u be a monotone function on \mathbb{R}^n_+ satisfying (2) for $n-1 . Then u has a nontangential limit at every <math>\xi \in \partial \mathbb{R}^n_+ - E$, where $C_{1,p}(E) = 0$.

As will be shown soon, we may take the above E as

$$E = A_1 \cup A_{2,p},$$

where A_1 is defined as after Lemma 1, that is,

$$A_{1} = \left\{ \xi \in \partial R_{+}^{n} : \int_{B(\xi,1)} |\xi - y|^{1-n} f(y) \, dy = \infty \right\}$$

and

$$A_{2,p} = \bigg\{ \xi \in \partial R^n_+ : \limsup_{r \to 0} r^{p-n} \int_{B(\xi,r)} f(y)^p \, dy > 0 \bigg\},\$$

where $f(y) = |\operatorname{grad} u(y)|$.

Now we give a proof of Theorem 2. Our end in this direction is to show that the condition that $\xi \notin A_1$ may be replaced by the existence of asymptotic values.

Proof of Theorem 2. Without loss of generality we may assume that $\xi = 0$. Let C be a rectifiable curve in \mathbb{R}^n_+ tending to $\xi = 0$, and assume that u has a finite limit along C. For $2^{-j} \leq r < 2^{-j+1}$, take a point C(r) on $C \cap \partial B(0,r)$. Letting $e(r) = (0, \ldots, 0, r)$, we see that

(5)
$$\left|u(e(r)) - u(y)\right|^p \leq Mr^{p-n} \int_{B(e(r), r/2)} f(z)^p dz$$

whenever $y \in B(e(r), r/2)$, where f(z) = |grad u(z)|. Moreover, letting θ denote the angle between the x_n -axis and the vector $\vec{0x}$, we find

$$|u(y) - u(C(r))| \leq \int_0^{\pi} f(r\Theta) r \, d\theta$$

along the circular arc $\{r\Theta\}$ through y and C(r), for $y \in B(e(r), r/2) \cap \partial B(0, r)$. By Hölder's inequality we have

$$|u(y) - u(C(r))| \leq \left(\int_0^{\pi} \left[r^{1 - (n-1)/p} (\sin \theta)^{-(n-2)/p} \right]^{p'} d\theta \right)^{1/p'} \\ \times \left(\int_0^{\pi} f(r\Theta)^p r^{n-1} \sin^{n-2} \theta \, d\theta \right)^{1/p} \\ \leq M r^{1 - (n-1)/p} \left(\int_0^{\pi} f(r\Theta)^p r^{n-1} \sin^{n-2} \theta \, d\theta \right)^{1/p},$$

where 1/p + 1/p' = 1. Hence it follows that

$$\inf_{y \in B(e(r), r/2)} \left| u(y) - u(C(r)) \right|^p \leq M r^{p-n+1} \int_0^\pi f(r\Theta)^p r^{n-1} \sin^{n-2}\theta \, d\theta,$$

so that, by considering polar coordinates with the north pole C(r)/|C(r)|, we have

$$\inf_{y \in B(e(r), r/2)} |u(y) - u(C(r))|^p \leq Mr^{p-n+1} \int_{\partial B(0, r)} f(z)^p \, dS(z).$$

By integrating both sides with respect to r, we obtain

$$\int_{2^{-j}}^{2^{-j+1}} \left[\inf_{y \in B(e(r)), r/2} \left| u(y) - u(C(r)) \right|^p \right] r^{n-p-1} dr \leq M \int_{B_j} f(z)^p \, dz.$$

Now we can find r_j such that $2^{-j} \leq r_j < 2^{-j+1}$ and

$$\inf_{y \in B(e(r_j), r_j/2)} |u(y) - u(C(r_j))|^p \leq M 2^{j(n-p)} \int_{B_j} f(z)^p \, dz.$$

In view of (5),

$$\left|u(e(r_j)) - u(C(r_j))\right|^p \leq M 2^{j(n-p)} \int_{B_j} f(z)^p \, dz.$$

If the origin does not belong to $A_{2,p}$, then this implies that $\{u(e(r_j))\}$ has a finite limit as $j \to \infty$. Applying (5) again, we see that

$$|u(x) - u(e(r_j))|^p \leq M 2^{j(n-p)} \int_{B_j \cap T_1(0,2a)} |\operatorname{grad} u(z)|^p dz$$

for all $x \in T_1(0, a)$ with $2^{-j} \leq |x| < 2^{-j+1}$. Therefore u has a nontangential limit at the origin. Thus we have proved that u has a nontangential limit at every $\xi \in \partial R^n_+ - A_{2,p}$, and the proof of Theorem 2 is completed.

Theorem 4. Let u be a monotone function on R^n_+ satisfying (2) for $n-1 , and let <math>\gamma > 1$. Then there exists $E_{\gamma} \subset \partial R^n_+$ such that $H_{\gamma(n-p)}(E_{\gamma}) = 0$ and u has a finite T_{γ} -limit at every $\xi \in \partial R^n_+ - E_{\gamma}$.

In fact we may take $E_{\gamma} = A_1 \cup A_{2,p,\gamma}$, where

$$A_{2,p,\gamma} = \left\{ \xi \in \partial R^n_+ : \limsup_{r \to 0} r^{\gamma(p-n)} \int_{B(\xi,r)} |\operatorname{grad} u(y)|^p \, dy > 0 \right\}.$$

In the harmonic case, we refer the reader to [15].

Theorem 5. Let u be a harmonic function on \mathbb{R}^n_+ satisfying (1) and $\xi \in \partial \mathbb{R}^n_+ - A_2$. If u has a finite limit along a rectifiable curve in \mathbb{R}^n_+ ending to ξ , then u has a T_∞ -limit at ξ .

To prove this theorem, let $\xi = 0$. It suffices to note that

$$|u(x) - u(e(|x|))|^n \leq M [\log(2|x|/x_n)]^{n-1} \int_{B_j \cap R^n_+} |\operatorname{grad} u(z)|^n dz$$

for all $x \in T_{\gamma}(0, a)$ with $2^{-j} \leq |x| < 2^{-j+1}$ (see [17, Theorem 1 and its proof]), because Theorem 2 implies that u(e(|x|)) has a limit at the origin.

5. Remarks

Remark 1. According to [15, Remark 5], for given $\gamma > 1$ and 1 , we can find a harmonic function <math>u on \mathbb{R}^n_+ satisfying (2) such that

(i) u has a nontangential limit at the origin.

(ii) $\limsup_{x\to 0, x\in T_{\gamma'}(0,a')-T_{\gamma'}(0,a)} u(x) = \infty$ for every $\gamma' > \gamma$ and a' > a. This shows that the assumption $\xi \in \partial R^n_+ - A_2$ is needed in Theorem 5.

Remark 2. We do not know whether Theorem 5 remains valid for general monotone functions or not.

Remark 3. For $x^{(j)} = (2^{-j}, 0, \dots, 0) \in \partial \mathbb{R}^n_+$ and $0 < r_j < 2^{-j-1}$, consider the sets

$$B_j = \left[B(x^{(j)}, 2^{-j-2}s_j) - B(x^{(j)}, r_j s_j) \right] - R_+^n, \quad \text{where } s_j = \left(\log \frac{1}{2^j r_j} \right)^{(2-n)/n}$$

Suppose $\{r_j\}$ is chosen so small that

$$\sum_{j} \left(\log \frac{1}{2^{j} r_{j}} \right)^{1-n} < \infty;$$

if this is the case, $B = \bigcup_j R^n_+ \cap B(x^{(j)}, r_j)$ is called $C_{1,n}$ -thin at the origin in the sense of [13]. Taking a sequence $\{a_j\}$ of positive numbers such that

$$\lim_{j \to \infty} a_j = \infty$$

and

(6)
$$\sum_{j} a_{j}^{n} \left(\log \frac{1}{2^{j} r_{j}} \right)^{1-n} < \infty,$$

we now define

$$f(y) = \begin{cases} a_j \left(\log \frac{1}{2^j r_j} \right)^{-1} |x^{(j)} - y|^{-1} & \text{when } y \in B_j, \\ 0 & \text{elsewhere,} \end{cases}$$

and

$$u(x) = \int_{\mathbb{R}^n} \frac{x_n - y_n}{|x - y|^n} f(y) \, dy, \quad x = (x_1, \dots, x_n), \ y = (y_1, \dots, y_n).$$

Then, as in [13, Proposition], we can prove:

(i) u is a harmonic function on \mathbb{R}^n_+ with finite Dirichlet integral.

- (ii) u has a nontangential limit at the origin.
- (iii) $\lim_{j \to \infty} u(x^{(j)} + (0, \dots, 0, r_j)) = \infty$.

To show (i) and (ii), we note by (6) that

$$\int f(y)^n \, dy \le M \sum_j a_j^n \left(\log \frac{1}{2^j r_j} \right)^{-n+1} < \infty$$

and

$$u(0) = \int (-y_n) |y|^{-n} f(y) \, dy$$

$$\leq M \sum_j a_j \left(\log \frac{1}{2^j r_j} \right)^{-1} 2^{jn} \int_{B_j} (-y_n) |x^{(j)} - y|^{-1} \, dy$$

$$\leq M \sum_j a_j \left(\log \frac{1}{2^j r_j} \right)^{-n+1} < \infty.$$

Finally we see that for $x \in R^n_+ \cap B(x^{(j)}, r_j)$,

$$u(x) \ge Ma_j \left(\log \frac{1}{2^j r_j} \right)^{-1} \int_{r_j s_j}^{2^{-j-2} s_j} (|x - x^{(j)}| + r)^{1-n} r^{-1} r^{n-1} dr \ge Ma_j,$$

which implies that

$$\lim_{x \to 0, x \in B} u(x) = \infty.$$

Remark 4. The examples in Remarks 1 and 3 show that the existence of nontangential limits may not always imply that of tangential limits.

References

- [1] BEURLING, A.: Ensembles exceptionnels. Acta Math. 72, 1940, 1–13.
- [2] CARLESON, L.: Selected Problems on Exceptional Sets. Van Nostrand, Princeton, 1967.
- [3] CRUZEIRO, A.B.: Convergence au bord pour les fonctions harmoniques dans \mathbb{R}^d de la classe de Sobolev W_1^d . C. R. Acad. Sci. Paris Sér. I Math. 294, 1982, 71–74.
- [4] GAVRILOV, V.I.: On the theorems of Beurling, Carleson and Tsuji on exceptional sets. -Math. USSR-Sb. 23, 1974, 1–12.
- [5] GILBARG, D., and N.S. TRUDINGER: Elliptic Partial Differential Equations of Second Order, Second Edition. - Springer-Verlag, 1983.
- [6] HEINONEN, J., T. KILPELÄINEN, and O. MARTIO: Nonlinear Potential Theory of Degenerate Elliptic Equations. - Clarendon Press, 1993.
- [7] MANFREDI, J.J., and E. VILLAMOR: Traces of monotone Sobolev functions. J. Geom. Anal. (to appear).
- [8] MEYERS, N.G.: A theory of capacities for potentials in Lebesgue classes. Math. Scand. 26, 1970, 255–292.
- [9] MEYERS, N.G.: Continuity properties of potentials. Duke Math. J. 42, 1975, 157–166.
- [10] MIKLYUKOV, V.M.: A certain boundary property of *n*-dimensional mappings with bounded distortion. Mat. Zametki 11, 1972, 159–164.
- [11] MIZUTA, Y.: On the existence of non-tangential limits of harmonic functions. Hiroshima Math. J. 7, 1977, 161–164.
- [12] MIZUTA, Y.: Existence of non-tangential limits of solutions of non-linear Laplace equation.
 Hiroshima Math. J. 10, 1980, 365–368.
- [13] MIZUTA, Y.: On the behavior of harmonic functions near a hyperplane. Analysis 2, 1982, 203–218.

- [14] MIZUTA, Y.: On the behavior of potentials near a hyperplane. Hiroshima Math. J. 13, 1983, 529–542.
- [15] MIZUTA, Y.: On the boundary limits of harmonic functions with gradient in L^p . Ann. Inst. Fourier 34, 1984, 99–109.
- [16] MIZUTA, Y.: Boundary behavior of p-precise functions on a half space of \mathbb{R}^n . Hiroshima Math. J. 18, 1988, 73–94.
- [17] MIZUTA, Y.: On the boundary limits of harmonic functions. Hiroshima Math. J. 18, 1988, 207–217.
- [18] MIZUTA, Y.: Continuity properties of potentials and Beppo-Levi-Deny functions. Hiroshima Math. J. 23, 1993, 79–153.
- [19] RESHETNYAK, YU.G.: Space Mappings with Bounded Distortion. Translations of Mathematical Monographs 73, Amer. Math. Soc., 1989.
- [20] SERRIN, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 1964, 247–302.
- [21] VÄISÄLÄ, J.: Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229, Springer-Verlag, 1971.
- [22] VUORINEN, M.: On functions with a finite or locally bounded Dirichlet integral. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 177–193.
- [23] VUORINEN, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math. 1319, Springer-Verlag, 1988.
- [24] WALLIN, H.: On the existence of boundary values of a class of Beppo Levi functions. -Trans. Amer. Math. Soc. 120, 1965, 510–525.

Received 18 January 1994