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Abstract. The movement of the Poincaré metrics of open Riemann surfaces belonging to
an analytic family defined on a 2 -dimensional complex manifold Ω is logarithmically plurisubhar-
monic in Ω if Ω is Stein. As a corollary, we get a theorem due to Nishino.

0. Introduction

It has been known since Riemann that differentiable surfaces having a common
constant Gauss curvature k are locally isometric to each other. Hence, thanks to
Gauss–Bonnet’s theorem, we know that a Riemann surface R of non-exceptional
type has the unique complete hermitian metric ds2R with constant Gauss curvature

k = −4, which we call the Poincaré metric of R . Let R̃ denote the universal
covering surface of R with the canonical projection π: R̃ −→ R . The induced
metric π∗ds2

R
is the erstwhile Poincaré metric of R̃ , which is biholomorphically

equivalent to the unit disc D .
Let Ω be a two-dimensional Stein manifold and let f be a holomorphic func-

tion defined on Ω such that df 6= 0 at each point of Ω. We treat the foliation
defined by prime surfaces (irreducible components of level surfaces) of f in this
paper. Let Sc be a prime surface of f with value c and suppose that Sc is not of
exceptional type. We denote the Poincaré metric of Sc by dsc

2 . In the case where
Sc is of exceptional type, set dsc

2 ≡ 0 on Sc . We also call dsc
2 the Poincaré met-

ric of Sc in the latter case. We prove that the movement of dsc
2 is logarithmically

plurisubharmonic in Ω in the following sense: Each point of Ω has a neighborhood

U and a holomorphic function g in U such that z = g(p) , w = f(p) (p ∈ U)
defines a biholomorphic mapping of U onto a domain of C2 . Suppose that the

Poincaré metrics dsw
2 of prime surfaces Sw satisfying Sw ∩ U 6= ∅ have the ex-

pression dsw = A(z, w)|d(z | Sw)| on Sw ∩U with respect to the local holomorphic

coordinate system (z, w) . Then logA(z, w) must be a plurisubharmonic function

in U . This assertion is independent of the choice of the function g .
This fact was first noted by H. Yamaguchi [4, Corollary 3] in 1981 for the

special case that each level surface of f is biholomorphically equivalent to the
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unit disc and that the boundaries of Ω and Sc are smooth, where he has used
Hadamard’s variational method. We prove this result generally and directly using
a purely function-theoretic idea.

1. Robin constant and Poincaré metric of the unit disc

Let ds2 denote the Poincaré metric of the unit disc D . Let z be a local
holomorphic coordinate system around a point p of D such that z(p) = 0. Assume
that ds2 has the expression

ds = A(z)|dz|

with respect to the local coordinate system z . Since k = −(∆z logA)/A2 = −4,
logA is a subharmonic function on the variable z .

Let ζ be a standard holomorphic coordinate system of D such that ζ(p) = 0.

Then A(z) = |dζ/dz|/(1 − |ζ|2) , and so A(0) = |dζ/dz|z=0 . Let gp denote the
Green function of D with pole at p . The Robin constant λz for (D, p) with
respect to the local coordinate system z is the real number

lim
z→0

gp(z) + log |z|.

Since gp = − log |ζ| , we get λz = log(|dz/dζ|ζ=0) . Therefore λz = − logA(0).
The following result can now be easily proved.

Lemma 1.1. Let Dj (j = 1, 2, . . .) be a sequence of simply connected

subdomains of the unit disc D such that Dj ⊂ Dj+1 and D = ∪Dj . Then

the sequence of the Poincaré metrics dsj
2 of Dj converges monotonously to the

Poincaré metric ds2 of D .

2. The movement of dsc,α
2

Let Ω be a two-dimensional Stein manifold. Suppose that there exists a
holomorphic function f on Ω such that df 6= 0 at each point of Ω. Fix a smooth
strictly plurisubharmonic function ̺ in Ω such that Ωα = {p ∈ Ω | ̺(p) < α} is
relatively compact in Ω for each real number α .

For a point p0 of Ω, fix a holomorphic function g in a relatively compact
neighborhood U of p0 such that z = g(p) , w = f(p) (p ∈ U ) defines a biholo-
morphic mapping G of U onto a bidisc B = {(z, w) ∈ C | |z| < 1, |w−f(p0)| < ε}
for some positive constant ε . Fix a real number α such that U ⊂⊂ Ωα . Set
O = G−1({(z, w) ∈ B | z = 0}) . Let c be a complex number satisfying
|c − f(p0)| < ε . Let Sc

α denote the prime surface of f | Ωα with value c which
passes O , where f |Ωα is the restriction of f to Ωα , and dsc,α

2 the Poincaré met-
ric of Sc

α . In this section, we prove that the movement of dsc,α
2 is logarithmically

plurisubharmonic in U .
Set Oc = O ∩ Sc

α . Because of the subharmonicity of the restriction ̺ | Sc of
̺ to Sc , we get the following lemma due to T. Nishino [2].
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Lemma 2.2. Let Sc denote the prime surface of f with value c which

contains Sc
α . Let γ be a closed continuous curve on Sc

α beginning and ending

at Oc . If γ is not null-homotopic on Sc
α with base point Oc , then γ is not

null-homotopic on Sc with base point Oc .

Set a = f(p0) . Let S̈ be a domain in the prime surface Sa such that Sa
α ⊂⊂

S̈ ⊂⊂ Sa . We also get the following

Lemma 2.3. There exists a tubular neighborhood V of S̈ in Ω and a

holomorphic mapping ϕ of V onto S̈ such that the mapping Φ: p 7→
(
ϕ(p), f(p)

)

(p ∈ V ) maps V onto the direct product S̈×Γ biholomorphically where Γ = {c ∈
C | |c−a| < δ} for some positive number δ and such that Sc

α ⊂⊂ (Sc∩V ) ⊂⊂ Sc

for each c ∈ Γ .

Proof. We prove this lemma using Nishino’s trick. Each point of Ω has a
holomorphically convex neighborhood W with a holomorphic vector field XW

such that (XW )pf = 1 for each point p in W . Since Ω is Stein, we can construct
a global holomorphic vector field X on Ω which satisfies Xpf = 1 for each point
p in Ω. The system of local solutions of the partial differential equation Xpg = 0
defines a transversal holomorphic foliation on Ω with the holomorphic foliation
defined by the prime surfaces of f . It proves the lemma.

Let Ṽ denote the universal covering of the tubular neighborhood V of S̈ in
Lemma 2.3 whose canonical projection we denote by ̟: Ṽ → V . The analytic
surface ̟−1(Sc ∩ V ) is the universal covering surface of Sc ∩ V and the manifold

Ṽ is biholomorphically equivalent to the direct product D × Γ. So we identify
Ṽ with D × Γ hereafter. Fix a connected component U∗ of ̟−1(U ∩ V ) . Set
Dα =

⋃
c Sc

α . Then Dα is a subdomain of V ∩Ωα (cf. Nishino [1]). Let Šα
c denote

a connected component of ̟−1(Sc
α) which passes U∗ . Because of Lemma 2.2,

each Šα
c is a simply connected subdomain of D× {c} . Hence Šα

c is the universal
covering surface of Sc

α with the projection ̟ | Šα
c . Set Ď =

⋃
c Š

α
c , which is

a subdomain of Ṽ . The manifold Ď is an unramified covering of Dα and the
section of Ď by the complex line w = c is Šα

c .
Let ξ be a standard holomorphic coordinate system of D . In the following,

we treat the manifold Ṽ = D×Γ as a domain of the direct product P×Γ where
P is the Riemann sphere equipped with the inhomogeneous coordinate system ξ .
The subdomain Ď of D×Γ is pseudoconvex in P×Γ since the frontier points of
Ď in D×Γ are strongly pseudoconvex. Let dšc

2 denote the Poincaré metric of Šα
c

which has the expression dšw = Ǎ(ξ, w)|d(ξ | Šα
w)| with respect to the coordinate

system (ξ, w) of Ď . It suffices for us to prove that log Ǎ(ξ, w) is plurisubharmonic
in U∗ .

As is seen in the beginning of Section 1, log Ǎ(ξ, c) is a subharmonic function
in U∗ ∩ Šα

c for each constant c ∈ Γ. So, for a subdomain Γ′ of Γ, we prove
that log Ǎ

(
ψ(w), w

)
is a subharmonic function on the variable w for an arbitrary
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holomorphic function ψ in Γ′ satisfying
(
ψ(w), w

)
∈ U∗ for each w ∈ Γ′ . Let

λξ′

w denote the Robin constant for
(
Šα

w, (ψ(w), w)
)

with respect to the local

coordinate system ξ′|Šα
w where ξ′ is the meromorphic function ξ − ψ(w) defined

on P × Γ′ . Since Ǎ(ξ, w)|d(ξ|Šα
w)| = Ǎ(ξ′ + ψ(w), w)|d(ξ′|Šα

w)| , it follows from
Section 1 that λξ′

w = − log Ǎ
(
ψ(w), w

)
. Set σ = {(ξ, w) ∈ P × Γ′ | ξ = ψ(w)} .

Consider the mapping Ψ of (P × Γ′) − σ onto Γ′ × C defined by x = w(p) ,
y = 1/ξ′(p) (p ∈ (P × Γ′) − σ ). The complement K of the image Ψ(Ď − σ) in
Γ′ ×C is a pseudoconcave subset of Γ′ ×C . Let Kt denote the section K ∩Lt of
K by the complex line Lt = {(x, y) ∈ Γ′ × C | x = t} . As H. Yamaguchi proved
in 1971 by a function-theoretic deduction, the transfinite diameter d∞,t of Kt

is a logarithmically subharmonic function on the variable t (cf. Yamaguchi [5]).
Thanks to G. Szegö [3], we know that λξ′

t = − log d∞,t . Hence we have proved
that log Ǎ

(
ψ(w), w

)
is a subharmonic function on the variable w .

3. Conclusions

Since dsc,β ≤ dsc,α for real numbers α and β satisfying α < β , it is sufficient
for the proof of the assertion in Introduction to prove that dsc,α → dsc (α→ ∞).

Let S̃c denote the universal covering surface of Sc with the canonical projection
π: S̃c → Sc . Fix a point p̃ of π−1(p0) . Let Dc

α denote the connected component
of π−1(Sc

α) which contains p̃ . Because of Lemma 2.2, Dc
α is a simply connected

domain of S̃c and Dc
α ⊂ Dc

β for real numbers α and β satisfying α < β . Sup-
pose that Sc is not of exceptional type. Since S̃c =

⋃
αDc

α , we get by Lemma 1.1
that dsc,α → dsc (α→ ∞). When Sc is of exceptional type, we can prove easily
that dsc,α → 0 (α → ∞). Using a tubular neighborhood of Sc

α , we can prove
by this fact that A(z, w) in Introduction is upper semi-continuous. Hence A(z, w)
must be logarithmically plurisubharmonic by the result of the previous section.

Therefore we get the following

Theorem. Let f be a holomorphic function on a two-dimensional Stein

manifold Ω such that df 6= 0 at each point of Ω . Then the movement of the

Poincaré metrics of prime surfaces of f is logarithmically plurisubharmonic in Ω .

Corollary (T. Nishino [2]). Let f be a holomorphic function on a two-

dimensional Stein manifold. Set e = {c ∈ C | at least one prime surface of f with

value c is of exceptional type} . If the logarithmic capacity of e is not zero, then

every prime surface of f is smooth and of exceptional type.

In the case where df 6= 0 at each point, the proof of the above corollary is
straightforward. For the general case, we must prove the fundamental lemma of
T. Nishino [2] in a modified form to fit our situation. But the above theorem
makes the proof of the modified fundamental lemma fairly easy.
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