ON THE MOVEMENT OF THE POINCARÉ METRIC WITH THE PSEUDOCONVEX DEFORMATION OF OPEN RIEMANN SURFACES

Takashi Kizuka

Kyushu University 36 (Faculty Eng.), Graduate School of Mathematics Fukuoka 812, Japan; kizuka@math.kyushu-u.ac.jp

Abstract. The movement of the Poincaré metrics of open Riemann surfaces belonging to an analytic family defined on a 2-dimensional complex manifold Ω is logarithmically plurisubharmonic in Ω if Ω is Stein. As a corollary, we get a theorem due to Nishino.

0. Introduction

It has been known since Riemann that differentiable surfaces having a common constant Gauss curvature k are locally isometric to each other. Hence, thanks to Gauss-Bonnet's theorem, we know that a Riemann surface \mathfrak{R} of non-exceptional type has the *unique* complete hermitian metric $ds_{\mathfrak{R}}^2$ with constant Gauss curvature k = -4, which we call the *Poincaré metric* of \mathfrak{R} . Let \mathfrak{R} denote the universal covering surface of \mathfrak{R} with the canonical projection $\pi: \mathfrak{R} \longrightarrow \mathfrak{R}$. The induced metric $\pi^* ds_{\mathfrak{R}}^2$ is the erstwhile Poincaré metric of \mathfrak{R} , which is biholomorphically equivalent to the unit disc **D**.

Let Ω be a two-dimensional Stein manifold and let f be a holomorphic function defined on Ω such that $df \neq 0$ at each point of Ω . We treat the foliation defined by prime surfaces (irreducible components of level surfaces) of f in this paper. Let S_c be a prime surface of f with value c and suppose that S_c is not of exceptional type. We denote the Poincaré metric of S_c by ds_c^2 . In the case where S_c is of exceptional type, set $ds_c^2 \equiv 0$ on S_c . We also call ds_c^2 the Poincaré metric of S_c in the latter case. We prove that the movement of ds_c^2 is logarithmically plurisubharmonic in Ω in the following sense: Each point of Ω has a neighborhood U and a holomorphic function g in U such that z = g(p), w = f(p) ($p \in U$) defines a biholomorphic mapping of U onto a domain of \mathbb{C}^2 . Suppose that the Poincaré metrics ds_w^2 of prime surfaces S_w satisfying $S_w \cap U \neq \emptyset$ have the expression $ds_w = A(z, w)|d(z \mid S_w)|$ on $S_w \cap U$ with respect to the local holomorphic coordinate system (z, w). Then $\log A(z, w)$ must be a plurisubharmonic function in U. This assertion is independent of the choice of the function g.

This fact was first noted by H. Yamaguchi [4, Corollary 3] in 1981 for the special case that each level surface of f is biholomorphically equivalent to the

¹⁹⁹¹ Mathematics Subject Classification: Primary 32A10; Secondary 32G05.

Takashi Kizuka

unit disc and that the boundaries of Ω and S_c are smooth, where he has used Hadamard's variational method. We prove this result generally and directly using a purely function-theoretic idea.

1. Robin constant and Poincaré metric of the unit disc

Let ds^2 denote the Poincaré metric of the unit disc **D**. Let z be a local holomorphic coordinate system around a point p of **D** such that z(p) = 0. Assume that ds^2 has the expression

$$ds = A(z)|dz|$$

with respect to the local coordinate system z. Since $k = -(\Delta_z \log A)/A^2 = -4$, $\log A$ is a subharmonic function on the variable z.

Let ζ be a standard holomorphic coordinate system of **D** such that $\zeta(p) = 0$. Then $A(z) = |d\zeta/dz|/(1 - |\zeta|^2)$, and so $A(0) = |d\zeta/dz|_{z=0}$. Let g_p denote the Green function of **D** with pole at p. The Robin constant λ_z for (\mathbf{D}, p) with respect to the local coordinate system z is the real number

$$\lim_{z \to 0} g_p(z) + \log |z|.$$

Since $g_p = -\log |\zeta|$, we get $\lambda_z = \log(|dz/d\zeta|_{\zeta=0})$. Therefore $\lambda_z = -\log A(0)$. The following result can now be easily proved.

Lemma 1.1. Let D_j (j = 1, 2, ...) be a sequence of simply connected subdomains of the unit disc **D** such that $D_j \subset D_{j+1}$ and **D** = $\cup D_j$. Then the sequence of the Poincaré metrics ds_j^2 of D_j converges monotonously to the Poincaré metric ds^2 of **D**.

2. The movement of $ds_{c,\alpha}^2$

Let Ω be a two-dimensional Stein manifold. Suppose that there exists a holomorphic function f on Ω such that $df \neq 0$ at each point of Ω . Fix a smooth strictly plurisubharmonic function ρ in Ω such that $\Omega^{\alpha} = \{p \in \Omega \mid \rho(p) < \alpha\}$ is relatively compact in Ω for each real number α .

For a point p_0 of Ω , fix a holomorphic function g in a relatively compact neighborhood U of p_0 such that z = g(p), w = f(p) $(p \in U)$ defines a biholomorphic mapping G of U onto a bidisc $B = \{(z, w) \in \mathbb{C} \mid |z| < 1, |w - f(p_0)| < \varepsilon\}$ for some positive constant ε . Fix a real number α such that $U \subset \subset \Omega^{\alpha}$. Set $O = G^{-1}(\{(z, w) \in B \mid z = 0\})$. Let c be a complex number satisfying $|c - f(p_0)| < \varepsilon$. Let S_c^{α} denote the prime surface of $f \mid \Omega^{\alpha}$ with value c which passes O, where $f \mid \Omega^{\alpha}$ is the restriction of f to Ω^{α} , and $ds_{c,\alpha}^{2}$ the Poincaré metric of S_c^{α} . In this section, we prove that the movement of $ds_{c,\alpha}^{2}$ is logarithmically plurisubharmonic in U.

Set $O_c = O \cap S_c^{\alpha}$. Because of the subharmonicity of the restriction $\rho \mid S_c$ of ρ to S_c , we get the following lemma due to T. Nishino [2].

Lemma 2.2. Let S_c denote the prime surface of f with value c which contains S_c^{α} . Let γ be a closed continuous curve on S_c^{α} beginning and ending at O_c . If γ is not null-homotopic on S_c^{α} with base point O_c , then γ is not null-homotopic on S_c^{α} .

Set $a = f(p_0)$. Let \ddot{S} be a domain in the prime surface S_a such that $S_a{}^{\alpha} \subset \subset \ddot{S} \subset S_a$. We also get the following

Lemma 2.3. There exists a tubular neighborhood V of \ddot{S} in Ω and a holomorphic mapping φ of V onto \ddot{S} such that the mapping $\Phi: p \mapsto (\varphi(p), f(p))$ $(p \in V)$ maps V onto the direct product $\ddot{S} \times \Gamma$ biholomorphically where $\Gamma = \{c \in \mathbf{C} \mid |c-a| < \delta\}$ for some positive number δ and such that $S_c^{\alpha} \subset (S_c \cap V) \subset S_c$ for each $c \in \Gamma$.

Proof. We prove this lemma using Nishino's trick. Each point of Ω has a holomorphically convex neighborhood W with a holomorphic vector field X_W such that $(X_W)_p f = 1$ for each point p in W. Since Ω is Stein, we can construct a global holomorphic vector field X on Ω which satisfies $X_p f = 1$ for each point p in Ω . The system of local solutions of the partial differential equation $X_p g = 0$ defines a *transversal* holomorphic foliation on Ω with the holomorphic foliation defined by the prime surfaces of f. It proves the lemma.

Let \widetilde{V} denote the universal covering of the tubular neighborhood V of \ddot{S} in Lemma 2.3 whose canonical projection we denote by $\varpi: \widetilde{V} \to V$. The analytic surface $\varpi^{-1}(S_c \cap V)$ is the universal covering surface of $S_c \cap V$ and the manifold \widetilde{V} is biholomorphically equivalent to the direct product $\mathbf{D} \times \Gamma$. So we identify \widetilde{V} with $\mathbf{D} \times \Gamma$ hereafter. Fix a connected component U^* of $\varpi^{-1}(U \cap V)$. Set $\mathscr{D}^{\alpha} = \bigcup_c S_c^{\alpha}$. Then \mathscr{D}^{α} is a subdomain of $V \cap \Omega^{\alpha}$ (cf. Nishino [1]). Let \check{S}_c^{α} denote a connected component of $\varpi^{-1}(S_c^{\alpha})$ which passes U^* . Because of Lemma 2.2, each \check{S}_c^{α} is a simply connected subdomain of $\mathbf{D} \times \{c\}$. Hence \check{S}_c^{α} is the universal covering surface of S_c^{α} with the projection $\varpi \mid \check{S}_c^{\alpha}$. Set $\check{\mathscr{D}} = \bigcup_c \check{S}_c^{\alpha}$, which is a subdomain of \widetilde{V} . The manifold $\check{\mathscr{D}}$ is an unramified covering of \mathscr{D}^{α} and the section of $\check{\mathscr{D}}$ by the complex line w = c is \check{S}_c^{α} .

Let ξ be a standard holomorphic coordinate system of \mathbf{D} . In the following, we treat the manifold $\tilde{V} = \mathbf{D} \times \Gamma$ as a domain of the direct product $\mathbf{P} \times \Gamma$ where \mathbf{P} is the Riemann sphere equipped with the inhomogeneous coordinate system ξ . The subdomain $\tilde{\mathscr{D}}$ of $\mathbf{D} \times \Gamma$ is pseudoconvex in $\mathbf{P} \times \Gamma$ since the frontier points of $\tilde{\mathscr{D}}$ in $\mathbf{D} \times \Gamma$ are strongly pseudoconvex. Let $d\check{s}_c^2$ denote the Poincaré metric of \check{S}_c^{α} which has the expression $d\check{s}_w = \check{A}(\xi, w) |d(\xi \mid \check{S}_w^{\alpha})|$ with respect to the coordinate system (ξ, w) of $\tilde{\mathscr{D}}$. It suffices for us to prove that $\log \check{A}(\xi, w)$ is plurisubharmonic in U^* .

As is seen in the beginning of Section 1, $\log \check{A}(\xi, c)$ is a subharmonic function in $U^* \cap \check{S}^{\alpha}_c$ for each constant $c \in \Gamma$. So, for a subdomain Γ' of Γ , we prove that $\log \check{A}(\psi(w), w)$ is a subharmonic function on the variable w for an arbitrary holomorphic function ψ in Γ' satisfying $(\psi(w), w) \in U^*$ for each $w \in \Gamma'$. Let $\lambda_{\xi'}{}^w$ denote the Robin constant for $(\check{S}^{\alpha}_w, (\psi(w), w))$ with respect to the local coordinate system $\xi'|\check{S}^{\alpha}_w$ where ξ' is the meromorphic function $\xi - \psi(w)$ defined on $\mathbf{P} \times \Gamma'$. Since $\check{A}(\xi, w)|d(\xi|\check{S}^{\alpha}_w)| = \check{A}(\xi' + \psi(w), w)|d(\xi'|\check{S}^{\alpha}_w)|$, it follows from Section 1 that $\lambda_{\xi'}{}^w = -\log \check{A}(\psi(w), w)$. Set $\sigma = \{(\xi, w) \in \mathbf{P} \times \Gamma' \mid \xi = \psi(w)\}$. Consider the mapping Ψ of $(\mathbf{P} \times \Gamma') - \sigma$ onto $\Gamma' \times \mathbf{C}$ defined by x = w(p), $y = 1/\xi'(p)$ $(p \in (\mathbf{P} \times \Gamma') - \sigma)$. The complement K of the image $\Psi(\check{\mathscr{D}} - \sigma)$ in $\Gamma' \times \mathbf{C}$ is a pseudoconcave subset of $\Gamma' \times \mathbf{C}$. Let K_t denote the section $K \cap L_t$ of K by the complex line $L_t = \{(x, y) \in \Gamma' \times \mathbf{C} \mid x = t\}$. As H. Yamaguchi proved in 1971 by a function-theoretic deduction, the transfinite diameter $d_{\infty,t}$ of K_t is a logarithmically subharmonic function on the variable t (cf. Yamaguchi [5]). Thanks to G. Szegö [3], we know that $\lambda_{\xi'}{}^t = -\log d_{\infty,t}$. Hence we have proved that $\log \check{A}(\psi(w), w)$ is a subharmonic function on the variable w.

3. Conclusions

Since $ds_{c,\beta} \leq ds_{c,\alpha}$ for real numbers α and β satisfying $\alpha < \beta$, it is sufficient for the proof of the assertion in Introduction to prove that $ds_{c,\alpha} \to ds_c$ $(\alpha \to \infty)$. Let \tilde{S}_c denote the universal covering surface of S_c with the canonical projection $\pi: \tilde{S}_c \to S_c$. Fix a point \tilde{p} of $\pi^{-1}(p_0)$. Let D_c^{α} denote the connected component of $\pi^{-1}(S_c^{\alpha})$ which contains \tilde{p} . Because of Lemma 2.2, D_c^{α} is a simply connected domain of \tilde{S}_c and $D_c^{\alpha} \subset D_c^{\beta}$ for real numbers α and β satisfying $\alpha < \beta$. Suppose that S_c is not of exceptional type. Since $\tilde{S}_c = \bigcup_{\alpha} D_c^{\alpha}$, we get by Lemma 1.1 that $ds_{c,\alpha} \to ds_c$ $(\alpha \to \infty)$. When S_c is of exceptional type, we can prove easily that $ds_{c,\alpha} \to 0$ $(\alpha \to \infty)$. Using a tubular neighborhood of S_c^{α} , we can prove by this fact that A(z, w) in Introduction is upper semi-continuous. Hence A(z, w)must be logarithmically plurisubharmonic by the result of the previous section.

Therefore we get the following

Theorem. Let f be a holomorphic function on a two-dimensional Stein manifold Ω such that $df \neq 0$ at each point of Ω . Then the movement of the Poincaré metrics of prime surfaces of f is logarithmically plurisubharmonic in Ω .

Corollary (T. Nishino [2]). Let f be a holomorphic function on a twodimensional Stein manifold. Set $e = \{c \in \mathbb{C} \mid \text{at least one prime surface of } f$ with value c is of exceptional type $\}$. If the logarithmic capacity of e is not zero, then every prime surface of f is smooth and of exceptional type.

In the case where $df \neq 0$ at each point, the proof of the above corollary is straightforward. For the general case, we must prove the fundamental lemma of T. Nishino [2] in a modified form to fit our situation. But the above theorem makes the proof of the modified fundamental lemma fairly easy.

References

- NISHINO, T.: Nouvelles recherches sur les fonctions entières de plusieurs variables complexes (I). - J. Math. Kyoto Univ. 8, 1968, 49–200.
- [2] NISHINO, T.: Nouvelles recherches sur les fonctions entières de plusieurs variables complexes (III). - J. Math. Kyoto Univ. 10, 1970, 245–271.
- [3] SZEGÖ, G.: Bemerkungen zu einer Arbeit von Herrn M. Fékete. Math. Zeit. 21, 1924, 203–208.
- [4] YAMAGUCHI, H.: Calcul des variations analytiques. Japan. J. Math. 7, 1981, 319–377.
- [5] YAMAGUCHI, H.: Variation of domains over \mathbb{C}^n . Lecture Note in Brown Univ., 1988.

Received 14 February 1994