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NEGATIVELY CURVED GROUPS HAVE

THE CONVERGENCE PROPERTY I
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Abstract. It is known that the Cayley graph Γ of a negatively curved (Gromov-hyperbolic)
group G has a well-defined boundary at infinity ∂Γ. Furthermore, ∂Γ is compact and metrizable.
In this paper I show that G acts on ∂Γ as a convergence group. This implies that if ∂Γ ≃ S1 ,
then G is topologically conjugate to a cocompact Fuchsian group.

0. Introduction

The theory of convergence groups was first introduced by Gehring and Mar-
tin [7] as a natural generalization of Möbius groups. All discrete quasiconformal
groups display the convergence property and at first glance this fact would seem
to imply a much larger class of groups. However, the work of Tukia [14], Gabai [5],
et al, shows that every convergence group acting on S1 is in fact conjugate to a
Möbius group by a homeomorphism of S1 (compare with 3.3 of [8]). Although this
is false in the case of S2 , all known counterexamples share the same construction
technique [10].

This paper deals exclusively with discrete (in the compact-open topology)
convergence groups acting on metric spaces. Let (X, d) be such a metric space.
In most of the literature, X is either Sn or B̄n although many results can be
generalized. We say that G ⊂ Homeo(X) is a convergence group if given any
sequence {gm} of distinct group elements, there exist (not necessarily distinct)
points x, y ∈ X and a subsequence {gn} such that

gn(z) → x locally uniformly on X \ {y}, and

g−1
n (z) → y locally uniformly on X \ {x}.

(Here “locally uniformly” means uniformly on compact subsets, i.e. if C ⊂ X \{y}
is compact and U is a neighborhood of x , then gn(C) ⊂ U for all sufficiently
large n .) Tukia has termed the above criteria (CON) and I will do the same.

1991 Mathematics Subject Classification: Primary 20F32; Secondary 57S05.

This research was supported in part by the Geometry Center, University of Minnesota, an

STC funded by the NSF, DOE, and Minnesota Technology, Inc.; and by an NSF research grant;

also by Brigham Young University.



334 Eric M. Freden

The idea of negatively curved groups is due to Gromov [8]. Other synonyms
in current use are Gromov hyperbolic, word hyperbolic or merely hyperbolic. The
fact that Gromov came up with a good idea has become evident in the last few
years—the entire research area of geometric group theory has exploded with the
introduction of negative curvature. All negatively curved groups are finitely pre-
sented. A nice argument showing that negative curvature is a group invariant can
be found in [13], see also [3]. The word and conjugacy problems can always be
solved for negatively curved groups [1], [8]. More recently Sela [12] has announced
that the isomorphism problem is also solvable in negatively curved groups. Since
negatively curved groups are in some sense generic [11], the unsolvability of the
above problems is the exception rather than the rule for finitely presented groups.

This paper links negatively curved groups and convergence groups. Some re-
sults in this area are already known. For instance, let M denote a closed rieman-
nian n -manifold with all sectional curvatures less than some negative constant.
By Toponogov’s comparison theorem [4], the universal cover M̃ has thin trian-
gles. The group G = π1(M) acts properly discontinuously, cocompactly and by

isometry on both its Cayley graph Γ and M̃ ; hence they are quasi-isometric [2],
[6]. Gromov has shown that negative curvature is a quasi-isometry invariant [6],
[8], therefore G is negatively curved. Martin and Skora [10] show that G also acts

as a convergence group on the boundary at infinity of M̃ . The main theorem in
this paper generalizes the above via combinatorial methods. Pekka Tukia has also
recently proved Theorem 3.4 using other methods [15].

In Section 1, I review definitions and some known results. Section 2 contains
some technical lemmas. The main theorem is proved in Section 3 along with
some related material. I acknowledge with gratitude the encouragement of Jim
Cannon. Eric Swenson developed some of the techniques and groundwork used in
Section 1. Dave Gabai, Steve Humphries, Gaven Martin, Bernard Maskit, and the
referee provided useful comments. I am indebted to Brigham Young University
for a stimulating research environment as well as for travel support.

1. Preliminaries

Let (X, d) be a metric space, with a, b ∈ X . A path connecting a and b is the
image of a continuous function α: [0, 1] → X satisfying α(0) = a and α(1) = b .
The length of this path is defined by

length(α) = sup
n∑

i=1

d
(
α(xi−1), α(xi)

)

where the supremum is taken over all finite partitions {0 = x0, x1, . . . , xn = 1} of
[0, 1] . X is a path metric space if for any a, b ∈ X there exists a path α connecting
a and b with d(a, b) = length(α) . Any such path realizing the distance between
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endpoints is referred to as geodesic. If there is no ambiguity it is easier to denote
a geodesic path between a and b by ab . A ray is the image of a continuous map
R: [0,∞) → X . (It is convenient to refer to both the map and its image as R ,
and to refer to R(t) merely as t if the context is clear.) The ray R is geodesic
if every finite sub-segment of R is geodesic, i.e. R is an isometry onto its image.
Geodesic lines are defined similarly.

Let (X, d) be a path metric space. A (geodesic) triangle ∆(a, b, c) ⊂ X
consists of three distinct points a, b, c ∈ X (called vertices) and three geodesic
segments ab , bc , and ac (called edges). It is not true in general that such a
triangle is determined by its vertices (consider X = S2 ).

Definition 1.1. Let δ ≥ 0. A path metric space (X, d) is negatively curved

(δ) or δ -hyperbolic if for each geodesic triangle ∆(a, b, c) ⊂ X and for each x ∈ ab
it is true that

d(x, bc ∪ ac) < δ.

The triangle ∆(a, b, c) is said to be δ -thin (see Figure 1.1).

Figure 1.1

In most of the literature the above inequality is not strict—however, several
of the lemmas proved below are shorter using strict inequality. It is easy to see
that the two definitions are equivalent.

The thin triangles condition has been attributed to Rips. There are many
equivalent definitions of negative curvature, for example, exponential divergence
of rays [2], an inequality with respect to the “overlap” or generalized inner-product
[8], and a linear inequality relating area to perimeter [8]. Thin triangles seems to be
the most intuitive of the above and will be used in this paper. Let ε > 0. Examples
of negatively curved path metric spaces are trees which have ε-thin triangles and
Hn , hyperbolic n -space, which has thin triangles with δ = log(1 +

√
2 ) + ε .

Exercise 1.2. If X has thin triangles (δ ), then quadrilaterals are 2δ -thin
(refer to Figure 1.1).



336 Eric M. Freden

Definition 1.3. Let G denote a group with finite generating set C , closed
with respect to inverses. Let Γ = Γ(G, C) denote the Cayley graph of G with
respect to the given generating set. This is a simplicial 1-complex with one vertex
for each group element. The directed edge set is E = {(h, c, hc) : h ∈ G, c ∈ C}
where h, hc represent the initial and terminal vertices respectively, and c is the
label of the segment in between (see Figure 1.2).

Figure 1.2

It is not hard to see that Γ is homogeneous—every vertex looks like every
other vertex. It is often convenient to pick a specific vertex as an origin. Usually
this vertex will be denoted as 0 and will correspond to the group identity. The
group G acts on Γ by left multiplication. If h is a vertex, (h, c, hc) is a directed
edge and g ∈ G , then g · h = gh represents another vertex and g · (h, c, hc) is
the directed edge (gh, c, ghc) . Depending on the context, a word c1c2 . . . ck can
represent

i) a group element in G
ii) the vertex of Γ labelled c1c2 . . . ck

iii) the edge path from 0 to the vertex in ii)
iv) an edge path from any vertex h to the vertex hc1c2 . . . ck .

Consider each edge as being isometric to the unit interval. In this way Γ
becomes a locally compact path metric space. The distance function is referred to
as the word metric. A minimal representation for a group element h becomes a
geodesic edge path from 0 to h ; relators correspond to closed loops in Γ. By def-
inition, G acts on Γ freely and properly discontinuously as a group of isometries.
For each generator c ∈ C , consider the set of open half edges emanating from 0.
The union of these edges, along with the vertex 0 forms a fundamental domain D
for the group action, as can be seen by checking the following conditions:

i) g(D) ∩ D = ∅ for all g except the identity,
ii) every z ∈ Γ is G equivalent to a point in D ,
iii) the “sides” of D are paired by elements of G ,
iv) if K ⊂ Γ is compact, g(D) ∩ K = ∅ except for finitely many g ∈ G .
Evidently Γ/G is a bouquet of circles, with one circle for each generator. Any

compact subset of Γ is contained in the union of finitely many edges and vertices.
Bearing this in mind, the following is immediate.
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Exercise 1.4. If V, W ⊂ Γ are compact sets, then g(V ) ∩ W = ∅ for all but
finitely many g ∈ G .

Call a metric space proper if the closure of every metric ball is compact (i.e.
the Heine–Borel theorem holds).

Definition 1.5. A finitely generated group G is negatively curved, or word

hyperbolic if the corresponding Cayley graph Γ is negatively curved.

Definition 1.6. Let (X, d) be a proper path metric space with δ -thin trian-
gles for some fixed δ > 0. Two geodesic rays R, S: [0, +∞) → X are equivalent,
written R ∼ S , if

lim sup
t→+∞

d
(
R(t), S(t)

)
< +∞.

Another way to say this is that R strays at most a bounded distance from S and
vice versa. Indicate by [R] the equivalence class containing R .

Exercise 1.7. In fact, the bounded distance mentioned above is (asymptoti-
cally) at most 2δ . (Hint: quadrilaterals are 2δ -thin.)

One might worry about rays that start at different places. In fact, this is
usually not a problem. Given any ray R and point x ∈ X there is a ray S
starting from x that is equivalent to R (see I.2 of [13]). Therefore if x and y are
distinct points of X , there is a bijection between the set of ray classes starting at
x and those starting at y .

Definition 1.8. The boundary at infinity ∂X is defined as the set of equiv-
alence classes of (geodesic) rays.

It is necessary to put a topology on ∂X that is independent of ray base points.
The following is a generalization of classical hyperbolic geometry.

Definition 1.9. If R is a ray in X (or more generally any closed set) and
x ∈ X , define a relation (multi-valued “function”) by

pR(x) =
{
r ∈ R : d(x, r) = d(x, R)

}
.

The set pR(x) is called the closest point projection of x into R (see Figure 1.3).

Figure 1.3
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Observe that if p ∈ pR(x) and t ∈ xp then p ∈ pR(t) also. In the special
case X = Γ, a negatively curved Cayley graph, if x is a point and R a geodesic
(segment, ray, line) there can be at most finitely many points (all necessarily
vertices) in pR(x) . Furthermore, pR is a “continuous” relation, in the sense that
if x is sufficiently close to y , then pR(x) is in a neighborhood of pR(y) .

Definition 1.10. Let R be a ray and r ∈ R . Define the halfspace determined

by R and r as

H(R, r) =
{
x ∈ X : d(x, R[r, +∞)) ≤ d

(
x, R[0, r)

)}
.

Set H−(R, r) = X \ H(R, r) . Call H−(R, r) the complementary halfspace.

A point is in H−(R, r) if all of its projections into R lie in the initial segment
R[0, r) . If at least one of its closest projections lies on the subray R[r, +∞) , then
the point is in H(R, r) , see Figure 1.4. Although a halfspace and its complement
are defined differently, they are almost indistinguishable in the large. Any theorem
proved about halfspaces is true (or has an analog) for complementary halfspaces.
The halfspaces yield neighborhoods for ∂X in the following way.

Figure 1.4

Definition 1.11. Given a halfspace H(R, r) , define an (open) disk at infinity

by

D(R, r) =
{
[S] : S is a ray, and lim inf

s→+∞

d
(
S(s), H−(R, r)

)
= +∞

}
.

Let D−(R, r) signify X \ D(R, r) ; see Figure 1.5.
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Figure 1.5

Swenson [13] gives a nice argument showing that the disks at infinity form a
base for the same topology on ∂X used by Gromov, et al, and verifies indepen-
dently that ∂X is compact, metrizable, and finite dimensional. The compactifica-
tion X = X∪∂X can be given a global metric which induces the original topology
on X and agrees with that of ∂X . I prefer, however, to ignore the global metric
in favor of combinatorial arguments dealing with halfspaces and disks. This is
particularly relevant in the case that X is the Cayley graph Γ of a negatively
curved group.

2. Some geometric properties of Γ

Let G be a negatively curved group with fixed (finite) generating set C and
associated Cayley graph Γ. One can define an extension of the action of G to ∂Γ
in the obvious way: if R ⊂ Γ is a (geodesic) ray, set g([R]) = [g(R)] . Suppose
that S is another ray equivalent to R . Then by definition there exists N ∈ Z+

such that for all r ∈ R and all s ∈ S , both d(r, S) < N and d(s, R) < N . But
every g ∈ G is an isometry on Γ, so d

(
g(r), g(S)

)
< N and d

(
g(s), g(R)

)
< N .

Therefore g(R) and g(S) are equivalent rays, meaning that the action on ∂Γ is
well-defined.

In light of the above, one may dispense with equivalence classes of rays and
use individual representatives. Since G is a group, it follows that g: ∂Γ → ∂Γ is a
bijection. To show that G acts as a group of homeomorphisms, it suffices to show
that each g−1 is continuous on ∂Γ. Observe that g maps halfspaces to halfspaces,
hence basic disk neighborhoods to basic disk neighborhoods. Thus g is an open
map, so g−1 is continuous.

Definition 2.1. A negatively curved group is elementary if ∂Γ contains at
most two points. It is non-elementary otherwise.
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Elementary groups are either torsion or virtually cyclic depending on whether
∂Γ is empty or contains exactly two points (see, e.g. the discussion following
II.17 in [13]). On the other hand, any non-elementary negatively curved group G
contains a rank two free subgroup, and hence ∂Γ is in fact uncountable (see 8.2
of [8]). In the non-elementary case, G is a discrete subgroup of Homeo(∂Γ) using
the compact-open topology. The argument is a transparent consequence of the
convergence conditions (CON) which are established in the proof of Theorem 3.4.
The action of G on ∂Γ is not necessarily effective (meaning nonidentity elements
can act trivially). Let H be the subgroup of G that acts trivially on ∂Γ. Clearly
H is normal, and (CON) shows that H must be finite. The quotient G0 = G/H
acts effectively.

The next four properties are generalizations of hyperbolic geometry applied
to Γ. The first result is “folklore” (a proof can be found on page 19 of [3]). It
says that there is a (not necessarily unique) geodesic between every two points at
infinity.

Lemma 2.2. If R, S ⊂ Γ are inequivalent rays, then there is a geodesic line

P : R → Γ such that P− = P (−∞, 0] is equivalent to R and P+ = P [0, +∞) is

equivalent to S .

Definition 2.3. Recall that a subset S of a path metric space is quasiconvex

(K ) for some K ≥ 0, if every geodesic segment α with α(0), α(1) ∈ S satisfies
supt∈[0,1] d

(
α(t), S

)
< K .

Figure 2.1

Lemma 2.4. Let R ⊂ Γ be a ray and r ∈ R . If a, b ∈ H(R, r) and

c ∈ ab , then d
(
c, H(R, r)

)
< 2δ . (Half-spaces and complements of half-spaces are

quasiconvex ((2δ).)

Proof. Let p ∈ pR(b) and q ∈ pR(a) . Consider the (2δ -thin) quadrilateral
abpq . The point c must be within 2δ of bp ∪ pq ∪ qa , and all of these segments
lie in H(R, r) , see Figure 2.1. A similar argument shows that H−(R, r) is also
quasiconvex (2δ ).
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Lemma 2.5. Let R be a ray, r = R(r) a point on R , and k a positive real

number. Then the distance from H−(R, r) to H(R, r + kδ) exceeds (k − 12)δ .

(Halfspaces are “thick”, see Figure 2.2).

Figure 2.2

Proof. We may assume that k > 12. Let a ∈ H−(R, r) and b ∈ H(R, r+kδ) .
Choose closest point projections p ∈ pR(a) , and q ∈ pR(b) with the latter inside
H(R, r + kδ) . Set p′ = R(p + 4δ) and q′ = R(q − 4δ) .

Claim. d(p′, ap) ≥ 2δ .
If not, there exists a point t ∈ ap with d(t, p′) < 2δ . Since p ∈ pR(t) (see
remarks following 1.9), it follows that d(t, p) < d(t, p′) < 2δ . But then the triangle
inequality says

4δ = d(p, p′) ≤ d(p, t) + d(t, p′) < 2δ + 2δ = 4δ

which is most certainly a contradiction (see Figure 2.3). Therefore the claim holds.

By exactly the same argument, each of d(p′, bq ) , d(q′, bq ) , and d(q′, ap ) is
at least 2δ . Using thin quadrilaterals (Exercise 1.2) both p′, q′ are within 2δ of
ab . Let a′, b′ be respective closest point projections of p′, q′ into ab . Then

kδ ≤ d(p, q) = 4δ + d(p′, q′) + 4δ

< 4δ + 2δ + d(a′, b′) + 2δ + 4δ

< 4δ + 2δ + d(a, b) + 2δ + 4δ

= 12δ + d(a, b).

The conclusion follows.
The statement and argument of Lemma 2.4 need to be modified when the two

endpoints are at infinity.
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Figure 2.3

Lemma 2.6. If R ⊂ Γ is a ray, r ∈ R and L ⊂ Γ is a (geodesic) line with

endpoints L(+∞) and L(−∞) both inside D(R, r + 14δ) , then L ⊂ H(R, r) .

Proof. By hypothesis, there exist sub-rays L+ and L− of L entirely contained
in H(R, r+14δ) . Let a ∈ L+ and b ∈ L− . Then ab (the segment of L between a
and b) stays within 2δ of H(R, r+14δ) by quasiconvexity. Lemma 2.5 implies that
H(R, r+14δ) is more than 2δ from H−(R, r) and the result follows (Figure 2.4).

Figure 2.4

The last result of this section is proved by a straightforward 2δ -thin quadri-
laterals argument (see I.12 of [13]).
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Exercise 2.7. Let X be negatively curved and R ⊂ X a ray. If r = R(r) ∈ R
and p ∈ H(R, r + 8δ) , then d(p, R) < d

(
p, H−(R, r)

)
+ 4δ .

3. Convergence and the Main Theorem

The boundary ∂X of a negatively curved space X was originally defined in
terms of sequences of points in X convergent at infinity (see 1.8 of [8]). Here is a
very intuitive definition of the latter phrase.

Definition 3.1. Let X be a negatively curved space, {an} ⊂ X a sequence,
and R ⊂ X a (geodesic) ray. Define an → [R] to mean: given any r (= R(r))
there exists a positive integer N such that an ∈ H(R, r) for all n ≥ N .

The pointwise convergence at infinity of a sequence of functions {fn} on X
now makes sense. (Since ∂X is a metric space, one needs no special definition of
convergence for a sequence of points in ∂X .) Uniform convergence at infinity is
defined similarly:

Definition 3.2. Let S ⊂ X , {fn} a sequence of functions each mapping X
into X , and R ⊂ X a ray. Define fn(x) → [R] uniformly on S to mean: given
any r (= R(r)) there exists a positive integer N such that fn(S) ⊂ H(R, r) for
all n ≥ N .

Theorem 3.3. Let R ⊂ Γ be a ray based at 0 , and {gm} a sequence of

distinct group elements. If gm(z0) → w = [R] for some point z0 ∈ Γ , then

gm(z) → w for all z ∈ Γ . Furthermore, the convergence is uniform on compact

subsets of Γ .

Proof. Let ε > 0 and let B denote the open ball with center z0 and radius ε .
Let r ∈ R and choose N > (4ε/δ) + 8. By hypothesis there is some M > 0 such
that wm = gm(z0) ∈ H(R, r + Nδ) for all m ≥ M . Set R+ = R[r + Nδ) as the
sub-ray of R from r + Nδ onward. There are two possibilities.

Case 1. d(wm, R+) ≥ 4δ + ε (the distance from wm to R+ is “large”).
We know wm ∈ H(R, r + Nδ) ⊂ H(R, r + 8δ) . Using 2.7 we have

d(wm, R)− 4δ < d
(
wm, H−(R, r)

)
,

so
ε = (4δ + ε) − 4δ ≤ d(wm, R) − 4δ < d

(
wm, H−(R, r)

)
.

Therefore gm(B) = B(wm, ε) ⊂ H(R, r) .

Case 2. d(wm, R+) < 4δ + ε (the distance from wm to R+ is “small”).
In this case, gm(B) is in the 4δ + 2ε neighborhood of R+ . Let z ∈ gm(B) , so
d(z, R+) < 4δ + 2ε . Suppose that z 6∈ H(R, r) . Then z must be closer to the
segment 0r than to R+ , in particular d(z, 0r ) < 4δ + 2ε . Thus

Nδ = d(0r, R+) ≤ d(0r, z) + d(z, R+) < (4δ + 2ε) + (4δ + 2ε) = 8δ + 4ε,
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contradicting our choice of N > (4ε/δ) + 8. It follows that z lies in H(R, r) and
hence gm(B) ⊂ H(R, r) .

Set Z =
{
z ∈ Γ : gm(z) → [R]

}
. By the above, Z is open. But Z is also

closed: If {zi} ⊂ Z with zi → z , then for large i , z ∈ B(zi, ̺) for some fixed
̺ > 0. By the previous paragraph, z ∈ Z , meaning Z = Γ. Uniform convergence
on closed balls (hence on compact sets) is immediate.

Theorem 3.4. G acts as a convergence group on ∂Γ (compare with 8.1.G
of [8]).

Proof. Suppose G is elementary. If ∂Γ = ∅ then the theorem is vacuously
true. If ∂Γ consists of two points, then every g ∈ G either fixes or interchanges
these points, and again the theorem is vacuously true. Assume that G is non-
elementary.

Let {gm} be a sequence of distinct group elements and pick any vertex 0 as
an origin. Without loss of generality we may assume that 0 ∈ Γ corresponds to
the identity of G so that gm(0) = gm · id = gm , and that each gm is a minimal
representative as a word in the generating set of G . From a geometric viewpoint
this means that gm regarded as an edge path from 0 is a geodesic segment. By
passing to a subsequence if necessary, we may suppose that d(0, gm) ≥ 2m + 1
for each m ∈ Z+ . Let S1 be the (finite) set of edges having 0 as a vertex.
It is evident that infinitely many of the edge paths gm pass through some edge
s1 ∈ S1 . Pass to this corresponding subsequence {g1,m} , and pick out and save
a shortest element h1 from this subsequence.

Let v1 denote the other vertex of s1 . Let S2 be the collection of edges
having v1 as a vertex. Infinitely many of the edge paths g1,m pass through some
edge s2 ∈ S2 other than s1 . Let v2 denote the other vertex of s2 and pass to the
corresponding subsequence {g2,m} . Pick out and save a shortest word h2 (distinct
from h1 ) from this new subsequence. Proceed recursively to obtain an edge path
S = s1s2s3 · · · and a diagonal subsequence {hi} of the original sequence. By
construction, each path 0hi has an initial segment lying on S of length at least i .

Note that S , being a nested increasing limit of geodesic segments, is a geodesic
ray with initial point 0. Let s ∈ S . Then for large i , a shortest path from the
vertex hi = hi(0) to 0 passes through s . This implies that hi ∈ H(S, s) for all
sufficiently large i , i.e. hi(0) → [S] . Repeat the above construction with respect
to the sequence {h−1

i } to obtain a geodesic ray T , and subsequence {gn} such
that g−1

n (0) → [T ] .
The strategy is to show that given any half-spaces H(S, s) and H(T, t) about

S , T respectively, we can find an N such that gn

(
H−(T, t)

)
⊂ H(S, s) for all

n ≥ N . Since for any neighborhood U of [S] and compact K ⊂ ∂Γ \ [T ] we
can find s and t far enough from 0 so that K ⊂ D−(T, t) and D(S, s) ⊂ U , the
above sentence implies gn → [S] uniformly on K . Similarly, g−1

n → [T ] locally
uniformly on ∂Γ \ [S] , establishing (CON).
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We know that each gn as a word (edge path) consists of an initial string
sn ⊂ S of length n and that sn is the initial part of sn+1 . Similarly g−1

n has
initial string tn ⊂ T of length n . Since the length of gn is at least 2n+1 we know
the end of sn does not involve the start of t−1

n , i.e. gn = snwnt−1
n , where wn is

some word of length at least one. Now observe that snwnt−1
n is a geodesic path

implies that the segment sngn = sn(0)gn(0) lies inside H(S, sn) , see Figure 3.1.

Figure 3.1

Let s ∈ S . Choose N large enough so that sN ≥ s + 13δ and tN ≥ t + 15δ .
Let z ∈ H−(T, t) and suppose by way of contradiction that gn(z) ∈ H−(S, s) for
some n ≥ N . Let q ∈ pS

(
gn(z)

)
and consider the triangle gn(0)qgn(z) . By choice

of n , we know that d(sn, q) ≥ 13δ . Using thickness of half-spaces (Lemma 2.5)
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d(sn, qgn(z)) > δ . Therefore thin triangles says that

d
(
sn, gn(0)gn(z)+

)
= d

(
g−1

n (sn), 0z
)

= d
(
tnw−1

n , 0z
)

< δ.

However, the vertex tnw−1
n lies in the half-space H(T, tn) ⊂ H(T, t + 15δ) .

Using thickness of half-spaces, the distance from H(T, tn) to H−(T, t) is more
than 3δ . Finally, since H−(T, t) is quasiconvex (Lemma 2.4), we know that the
path 0z strays at most 2δ from H−(T, t) . Hence

3δ < d
(
tnw−1

n , H−(T, t)
)
≤ d

(
tnw−1

n , 0z
)

+ 2δ < δ + 2δ = 3δ, a contradiction.

Therefore gn(z) ∈ H(S, s) after all, and since z was arbitrary, gn maps all of
H−(T, t) into H(S, s) as required.

Recall that if G is a convergence group on a space Y , then the limit set Λ(G)
consists of all points y ∈ Y such that there exists x ∈ Y and a distinct sequence
{gn} ⊂ G such that gn(x) → y . The ordinary set Ω(G) is the complement of the
limit set. Since any compact C ⊂ (Γ ∪ ∂Γ) with ∂Γ 6⊂ C is contained in some
suitably large halfspace (along with the corresponding disk at infinity), the proof
of 3.4 yields

Corollary 3.5. G acts as a convergence group on Γ = Γ∪∂Γ , with Ω(G) = Γ
and Λ(G) = ∂Γ .

Gehring and Martin [7] classify elements of convergence groups (acting on Sn )
as elliptic, parabolic, or loxodromic. Elliptic elements are torsion, parabolics have a
unique fixed point on Sn , and loxodromics have two fixed points on Sn . (Tukia has
recently extended almost the entire theory to the category of compact Hausdorff
spaces in Section 2 of [15].) Similarly (see 8.1 of [8]), Gromov classifies the elements
of any negatively curved group as either elliptic (=torsion) or hyperbolic (=non-
torsion). He shows that a hyperbolic element has two fixed points on ∂Γ, one
being attractive and the other repulsive. In light of 3.4 it is clear that if G is
negatively curved then g ∈ G is hyperbolic if and only if g is loxodromic. I will
use the term “loxodromic” exclusively hereafter.

Not every convergence group is negatively curved. The Kleinian group gen-
erated by p1(z) = z + 1 and p2(z) = z + i is an elementary convergence group on
S2 isomorphic to Z ⊕ Z . Such a group cannot be negatively curved. Evidently
the presence of (non-accidental) parabolic elements in a convergence group is not
compatible with negative curvature. Theorem 3.7 gives the details.

Definition 3.6. Let G be a (discrete) convergence group acting on a compact
metric space (X, d) . We say that the limit point w is a point of approximation if
there is associated with w a sequence {gm} of distinct group elements such that
for each x ∈ X \ {w} there is some ε = ε(x) satisfying d

(
gm(w), gm(x)

)
≥ ε for

all m .
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As an example, let G be a Kleinian group and g ∈ G a loxodromic element.
The fixed points of g on S2 are both points of approximation. On the other
hand, no parabolic fixed point can be a point of approximation [9]. Evidently,
every loxodromic fixed point (in the boundary at infinity) of a negatively curved
group is a point of approximation. In fact more is true.

Theorem 3.7. Let G be a negatively curved group. Then every x ∈ ∂Γ is

a point of approximation (compare with 8.2.J in [8]) .

Proof. Let x, y ∈ ∂Γ be distinct points and let L be any geodesic line with
L(+∞) = x and L(−∞) = y . Pick a vertex on L , call it v0 . Let L+ denote that
part of L between v0 and x . Label the succesive vertices of L from v0 tending
towards x as v1, v2, v3, . . . . For each m , let gm ∈ G be the group element taking
vm to v0 . Use the convergence property to obtain a subsequence {gk} and rays
S and T such that

gk → [S] locally uniformly on ∂Γ \ [T ]

and
g−1

k → [T ] locally uniformly on ∂Γ \ [S].

We can pass to a further subsequence so that {gj([T ])} converges as well.
Since g−1

j (v0) → [L+] by construction, it is clear that both T and L+ represent
the point x ∈ ∂Γ. Because y ∈ ∂Γ was chosen to be distinct from x = [T ] we
know that gj(y) → [S] . Suppose for the moment that gj([T ]) → [S] also. Pick
s ∈ S so that v0 6∈ H(S, s) . Then for all sufficiently large j it is true that both
gj(x) = gj([T ]) and gj(y) are inside D(S, s + 14δ) . Lemma 2.6 implies that the
geodesic gj(L) is contained in H(S, s) . But then

v0 = gj(vj) ∈ gj(L) ⊂ H(S, s),

a contradiction. Therefore gj(x) cannot converge to [S] . Since gj(w) → [S] for
all w 6= x , it is clear that x is a point of approximation.
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