EXACT COEFFICIENT ESTIMATES FOR UNIVALENT FUNCTIONS WITH QUASICONFORMAL EXTENSION

Samuel L. Krushkal

Bar-Ilan University, Research Institute for Mathematical Sciences Department of Mathematics, 52900 Ramat-Gan, Israel; krushkal@bimacs.cs.biu.ac.il

Abstract. We give here a complete solution of the coefficient problem for normalized univalent functions on the unit disk, with k -quasiconformal extension for a small k , and derive an explicit bound for k .

1. Introduction

While the coefficient problem is completely solved in the class of all normalized univalent functions on the disk [dB], the question remains open for functions with quasiconformal extension.

The strongest result here is established for the functions with k -quasiconformal extension where k is small; see [Kr2].

Let S be the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ univalent in the unit disk $\Delta = \{|z| < 1\}$. The class $S(k)$ consists of $f \in S$ admitting k-quasiconformal extension onto the whole Riemann sphere $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$, with additional normalization $\tilde{f}(\infty) = \infty$. Let

$$
f_1(z) = \frac{z}{(1 - ktz)^2}, \qquad |z| < 1, \ |t| = 1,
$$
\n
$$
f_{n-1} = \{f_1(z^{n-1})\}^{1/(n-1)} = z + \frac{2kt}{n-1}z^n + \cdots, \qquad n = 3, 4, \dots.
$$

Consider on S a functional F of the form

$$
F(f) = an + H(am1, am2,..., ams),
$$

where $a_j = a_j(f)$; $n, m_j \geq 2$ and H is a holomorphic function of s variables in an appropriate domain of \mathbb{C}^s . We assume that this domain contains the origin $\mathbf 0$ and that $H, \partial H$ vanish at 0.

The mentioned result of [Kr2] is:

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C50, 30C75.

Theorem 1. For any functional of the above form there exists a $k(F) > 0$ such that, for $k \leq k(F)$,

(1)
$$
\max_{S(k)} |F(f)| = |F(f_{n-1})|
$$

for some $|t| = 1$.

As a corollary, one immediately gets for $f \in S(k)$ the sharp estimate

$$
|a_n| \le \frac{2k}{n-1}
$$

for $k \leq k_n$, with equality only for the function f_{n-1} . This solves the well-known problem of Kühnau and Niske; see $[KuN]$. The estimate (2) is interesting only for $n \geq 3$, because for $n = 2$ there is the well-known bound $|a_2| \leq 2k$ for all $k \in [0,1]$ with equality for the function f_1 .

The purpose of this paper is to improve on Theorem 1, supplementing it with an explicit estimate for the quantity $k(F)$.

2. Statement of results

The main result of the paper is:

Theorem 2. Let $\sup_{S} |F(f)| = M_n$. Then the equality (1) holds for all

(3)
$$
k \leqq \frac{1}{2 + (n-1)(M_n + 1)} =: k_0(F).
$$

The bound (3) is not sharp and can be improved.

Corollary. The estimate (2) is valid for all

$$
(4) \t k \le \frac{1}{n^2 + 1}.
$$

Proof. Take $F(f) = a_n$. Since $M_n = n$, by de Branges's theorem [dB], one immediately deduces from (3) that in this case

$$
k_0(F) = \frac{1}{n^2 + 1}.
$$

For simplicity, we consider here the functionals F with holomorphic H depending on a finite number of coefficients a_m . The latter condition is not essential; one can take H depending on infinitely many a_m (provided the series expansion of H converges in some complex Banach space). The result shows that the main contribution here is given by the linear term a_m . The estimate (3) determines for which k this is true.

3. Proof of Theorem 2

We shall show that for k satisfying (3) all arguments employed in the proof of Theorem 1 in [Kr2] remain valid after some modification. Actually, we only need to modify the proof of Lemma 1.

On $\Delta^* = \{z \in \hat{\mathbf{C}} : |z| > 1\}$ we have the Beltrami coefficients $\mu_f = \partial_{\bar{z}} f / \partial_z f$ of the extensions f^{μ} of functions $f \in S(k)$; these coefficients range over the ball

$$
B(\Delta^*) = \{ \mu \in L_\infty(\mathbf{C}) : \mu \mid \Delta = 0, \|\mu\|_\infty < 1 \}.
$$

Let $B(\Delta^*)_k = \{ \mu \in B(\Delta^*) : ||\mu|| \leqq k \}.$

Note that the Beltrami coefficient for f_{n-1} can be taken to be $kt\mu_n$, where $|t| = 1$ and

(5)
$$
\mu_n(z) = \frac{|z|^{n+1}}{\bar{z}^{n+1}}.
$$

We shall also use the following notations. For a functional $L: S \to \mathbb{C}$ define

$$
\hat{L}(\mu) = L(f^{\mu}), \qquad \mu \in B(\Delta^*).
$$

If L is complex Gateaux differentiable, \hat{L} is a holomorphic functional on $B(\Delta^*)$. All our functionals have this property.

For $\mu \in L_{\infty}(\Delta^*)$, $\varphi \in L_1(\Delta^*)$ we define

$$
\langle \mu, \varphi \rangle = -\frac{1}{\pi} \iint\limits_{\Delta^*} \mu \varphi \, dx \, dy \qquad (z = x + iy).
$$

For small k, the functions $f^{\mu} \in S(k)$ can be represented by

(6)
$$
f^{\mu}(\zeta) = \zeta - \frac{\zeta^2}{\pi} \iint\limits_{\Delta^*} \frac{\mu(z) \, dx \, dy}{z^2(z - \zeta)} + O(||\mu||^2),
$$

where the estimate of the remainder term is uniform on compact subsets of C (see e.g. [Kr1, Ch. 2]); this easily implies

$$
\hat{F}(\mu) = \left\langle \mu, \frac{1}{z^{n+1}} \right\rangle + O_n(||\mu||^2)
$$

and hence

$$
\|\hat{F}'(\mathbf{0})\| = \sup \left\{ \left| \left\langle \mu, \frac{1}{z^{n+1}} \right\rangle \right| : \|\mu\| \leq 1 \right\} = \frac{1}{\pi} \iint_{\Delta^*} \frac{dx \, dy}{|z|^{n+1}} = \frac{2}{n-1}.
$$

Now, applying the Schwarz lemma to the function

$$
h_{\mu}(t)=\hat{F}(t\mu)-\hat{F}'({\bf 0})t\mu\text{: }\Delta\to{\bf C},
$$

where $\mu \in B(\Delta^*)$ is fixed, we get

(7)
$$
|\hat{F}(\mu) - \hat{F}'(0)\mu| \leq (M_n + ||\hat{F}'(0)||) ||\mu||^2 = (M_n + \frac{2}{n-1}) ||\mu||^2.
$$

Consider the auxiliary functional

(8)
$$
\hat{F}_p(\mu) = \hat{F}(\mu) + (p-1)\xi\left\langle \mu, \frac{1}{z^{p+1}} \right\rangle
$$

where $p \neq n$ is fixed and $|\xi| < \frac{1}{2}$ $\frac{1}{2}$. Then

(9)
$$
\sup_{B(\Delta^*)} |\hat{F}_p(\mu)| < M_n + 1
$$

and, similarly to (7),

(10)
$$
\left| \hat{F}_p(\mu) - \hat{F}'(\mathbf{0})\mu - (p-1)\xi \left\langle \mu, \frac{1}{z^{p+1}} \right\rangle \right| \leq \left(M_n + 1 + \frac{2}{n-1} \right) ||\mu||^2.
$$

We shall require that

(11)
$$
\left(M_n + 1 + \frac{2}{n-1}\right) ||\mu||^2 < \frac{1}{n-1} ||\mu||
$$

or, equivalently,

(3')
$$
\|\mu\| \leq \frac{1}{2 + (n-1)(M_n + 1)} = k_0(F).
$$

Consider now any function f_0 in $S(k)$ maximizing |F| over $S(k)$ (the existence of such functions follows from compactness). Let μ_0 be an extremal dilatation of f_0 , i.e.

$$
\|\mu_0\|_{\infty} = \inf\{\|\mu\|_{\infty} \leq k : f^{\mu} | \Delta = f_0 | \Delta\}.
$$

Note that $\|\mu_0\|_{\infty} = k$ by the maximum modulus principle. Suppose that $\mu_0 \neq$ $kt\mu_n$, where $|t|=1$, and μ_n is defined by (5). We show that this leads to contradiction for k satisfying (3). First of all, we may establish the following important property of extremal maps:

Lemma 1. If k satisfy (3), then for all $2 \leq p \neq n$,

$$
\left\langle \mu_0, \frac{1}{z^{p+1}} \right\rangle = 0.
$$

Proof. Note that, from (6),

$$
\left\langle \mu_0, \frac{1}{z^{p+1}} \right\rangle = \lim_{\tau \to \infty} \frac{a_p(f^{\tau \mu_0})}{\tau}.
$$

Consider the classes $S(\tau k_0)$ where $k_0 = k_0(F)$ is defined in (3) and $0 < \tau < 1$. It follows from (6) that, as $\tau \to 0$,

(12)
$$
\max\{|\hat{F}(\mu)| : \|\mu\| \leq \tau k_0\} = \frac{\tau k_0}{\pi} \iint_{\Delta^*} \frac{dx \, dy}{|z|^{n+1}} + O_n(\tau^2) = |\hat{F}(\tau \mu_0)| + O_n(\tau^2).
$$

A similar calculation for functional (8) implies

(13)
$$
\max_{B(\Delta^*)_k} |\hat{F}_p(\mu)| = \frac{\tau k_0}{\pi} \iint_{\Delta^*} \left| \frac{1}{z^{n+1}} + \frac{(p-1)\xi}{z^{p+1}} \right| dx dy + O_n(\tau^2),
$$

where the remainder term estimate follows from (10) and depends $(as in (12))$ only on M_n and k_0 .

Using the known properties of the norm

$$
h_p(\xi) = \iint\limits_{\Delta^*} |z^{-n-1} + (p-1)\xi z^{-p-1}| \, dx \, dy
$$

following from the Royden [Ro] and Earle–Kra [EK] lemmas, we deduce from (12), (13) that for small ξ there should be

(14)
$$
\max_{B(\Delta^*)_{\tau k_0}} |\hat{F}_p(\mu)| = \max_{B(\Delta^*)_{\tau k_0}} |\hat{F}(\mu)| + \tau o_p(\xi) + O_p(\tau^2 \xi) + O_n(\tau^2).
$$

On the other hand, we have as $\xi \to 0, \tau \to 0$, from (8)

$$
|\hat{F}_p(\tau\mu_0)| = |\hat{F}(\tau\mu_0)| + \text{Re}\frac{\hat{F}(\tau\mu_0)}{|\hat{F}(\tau\mu_0)|}(p-1)\xi\langle\tau\mu_0, \frac{1}{z^{p+1}}\rangle + O(\tau^2\xi^2)
$$

= $|\hat{F}(\tau\mu_0)| + \tau(p-1)|\xi|\langle\mu_0, \frac{1}{z^{p+1}}\rangle| + O(\tau^2\xi^2)$

with suitable choices of $\xi \to 0$. Comparing this with (14), (10), (11), we conclude that $\langle \mu_0, z^{-p-1} \rangle = 0$. The proof of Lemma is completed.

This lemma is one of the central points in the proof of the Theorems 1 and 2. The crucial point in the proof of Lemma 1 is that we now have to check here that simultaneously an *infinite* (countable) number of ortogonality conditions remain valid for all k satisfying (3) .

The next part of the proof is similar to [Kr2]. We briefly check that the arguments remain valid for all k .

Consider the Grunsky coefficients of the function $\sqrt{f(z^2)}$ which are defined from the series expansion

$$
\log \frac{\left(f(z^2)\right)^{1/2} - \left(f(\zeta^2)\right)^{1/2}}{z - \zeta} = -\sum_{m,n=1}^{\infty} \omega_{mn} z^m \zeta^n,
$$

taking the branch of logarithm which vanishes at 1. The diagonal coefficients $\omega_{n-1,n-1}(f)$ are related to the Taylor coefficients of f by

(15)
$$
\omega_{n-1,n-1} = \frac{1}{2}a_n + P(a_2, \ldots, a_{n-1})
$$

where P is a polynomial without constant or linear terms (see [Hu]). Moreover, for $f \in S(k)$ there is the well-known bound

$$
|\omega_{n-1,n-1}| \leq \frac{k}{n-1}
$$

with equality only for the functions f_{n-1} .

Therefore, the map $\Lambda_{n-1}: B(\Delta^*) \to B(\Delta^*)$ defined by

$$
\Lambda_{n-1}(\mu) = \{(n-1)\omega_{n-1,n-1}(\mu)\}\mu_n
$$

is holomorphic and fixes the disk $\{t\mu_n : |t| < 1\}$. The differential of Λ_{n-1} at $\mu = 0$ can be easily computed from (6), (15). It is an operator $P_n: L_\infty(\Delta^*) \to L_\infty(\Delta^*)$ given by

$$
P_n(\mu) = \beta_n \langle \varphi_n, \mu \rangle \mu_n, \qquad \varphi_n = \frac{1}{z^{n+1}}.
$$

Let us define $P_n(\mu) = \alpha(k)\mu_n$. Since, by assumption, f_0 is not equivalent to f_{n-1} , we have

$$
\left\{\Lambda_{n-1}\left(\frac{t}{k}\mu_0\right) : |t| < 1\right\} \subsetneqq \{ |t| < 1\}.
$$

Thus, by the Schwarz lemma,

$$
(16)\qquad \qquad |\alpha(k)| < k.
$$

Now consider the function

$$
\nu_0 = \mu_0 - \alpha(k)\mu_n
$$

and show that ν_0 eliminates integrable holomorphic functions on Δ^* .

From Lemma 1 and the mutual orthogonality of the powers z^m , $m \in \mathbf{z}$,

$$
\left\langle \nu_0, \frac{1}{z^{p+1}} \right\rangle = 0
$$

for $p = 2, 3, \ldots, p \neq n$. To establish that

$$
\left\langle \nu_0, \frac{1}{z^{n+1}} \right\rangle = 0,
$$

consider the conjugate operator

$$
P_n^*(\varphi) = \beta_n \langle \mu_n, \varphi \rangle \varphi_n, \qquad \varphi_n = \frac{1}{z^{n+1}},
$$

which maps $L_1(\Delta^*)$ onto $L_1(\Delta^*)$ and fixes the subspace $\{\lambda \varphi_n : \lambda \in \mathbf{C}\}\$. The definition of ν_0 implies $P_n(\nu_0) = 0$. Thus, for some λ ,

$$
\langle \nu_0, \varphi_n \rangle = \lambda \langle \nu_0, P_n^* \varphi_n \rangle = \lambda \langle P_n \nu_0, \varphi_n \rangle = 0.
$$

Now consider in $L_1(\Delta^*)$ the subspace $A_1(\Delta^*)$ of functions φ which are holomorphic on Δ^* and satisfy the condition $\varphi(z) = O(|z|^{-3})$ as $|z| \to \infty$. Let

$$
A_1(\Delta^*)^{\perp} = {\mu \in L_{\infty}(\Delta^*) : \langle \mu, \varphi \rangle = 0 \text{ for all } \varphi \in A_1(\Delta^*)}.
$$

Since the functions $\varphi_n = 1/z^{n+1}, \quad n = 2, 3, \ldots$, form a complete set in $A_1(\Delta^*)$, we have proved that $\nu_0 \in A_1(\Delta^*)^{\perp}$.

Now we use the well-known properties of extremal quasiconformal maps (see e.g. [Ga], [Kr1], [RS]). First of all, since μ_0 is extremal for f_0 ,

$$
\left\|\mu_0\right\|_{\infty}=\inf\{|\langle \mu_0,\varphi\rangle|: \varphi\in A_1(\Delta^*),\ \|\varphi\|=1\};
$$

moreover, such an equality is necessary and sufficient for $\mu \in B(\Delta^*)$ to be extremal for f^{μ} . Hence, for any $\nu \in A_1(\Delta^*)^{\perp}$,

$$
\|\mu_0\|_{\infty} = \inf\{|\langle \mu_0 + \nu \rangle| : \varphi \in A_1(\Delta^*), \ \|\varphi\| = 1\} \leq \|\mu_0 + \nu\|_{\infty}.
$$

Thus we have

Lemma 2. If f_0 is extremal,

(17)
$$
\|\mu_0\|_{\infty} = k \leq \|\mu_0 - \nu_0\|_{\infty}.
$$

We may now complete the proof of Theorem 2. By (17)

$$
k \leq ||\mu_0 - \nu_0||_{\infty} = ||\alpha(k)\mu_n||_{\infty} = |\alpha(k)|,
$$

which contradicts (16). Hence f_0 is equivalent to f_{n-1} and we can take $\mu_0 = k t \mu_n$ for some $|t| = 1$.

4. Complementary remarks and open questions

1) The estimates (1)–(3) also hold in the class $S_k(1)$ of functions $f \in S$ with k-quasiconformal extensions \tilde{f} normalized by $\tilde{f}(1) = 1$.

The proof is similar, only (6) should be replaced with the corresponding representation formula for $f \in S_k(1)$ [Kr1, Ch. 5]:

$$
f^{\mu}(\zeta) = \zeta - \frac{\zeta^2(\zeta - 1)}{\pi} \iint\limits_{\Delta^*} \frac{\mu(z) \, dx \, dy}{z^2(z - 1)(z - \zeta)} + O(\|\mu\|), \qquad \text{as } \|\mu\| \to 0.
$$

2) Similar results are valid for the class $\Sigma(k)$ of functions $g(z) = z + z$ $\sum_{n=0}^{\infty} b_n z^{-n}$, $z \in \Delta^*$, with k-quasiconformal extensions to \widehat{C} which fix the origin.

The next two problems still remain open:

1) Does there exist an estimate of coefficients a_n $(n \ge 3)$ for $f \in S(k)$ which holds for $k \leq k_0$ with a single $k_0 > 0$?

2) Can we find exact estimates of coefficients a_n for univalent functions on the disk with quasiconformal extension in the general case when the dilatation $k < 1$ is arbitrary?

For $f \in S(k)$, one gets from (7) the estimate

$$
|a_n| \le \frac{2k}{n-1} + \left(n + \frac{2}{n-1}\right)k^2
$$

for any $k, 0 \leq k < 1$, (cf. [KrKu, Part 1, Ch. 2]). Note also that Grinshpan [Gr] established the exact growth order, with respect to n , of the coefficients a_n of $f \in S$ with k-quasiconformal extension, without any additional normalization: $|a_n| \leq cn^k$.

References

- [dB] DE BRANGES, L.: A proof of the Bieberbach conjecure. Acta Math. 154, 1985, 137–152.
- [EK] Earle, C. J., and I. Kra: On sections of some holomorphic families of closed Riemann surfaces. - Acta Math. 137, 1976, 49–79.
- [Ga] GARDINER, F. P.: Teichmüller theory and Quadratic Differentials. John Wiley, New York, 1987.
- [Gr] GRINSHPAN, A. Z.: On the growth of coefficients of univalent functions with quasiconformal extension. - Siberian Math. J. 23:2, 1982, 208–211.
- [Hu] Hummel, J. A.: The Grunsky coefficients of a schlicht function. Proc. Amer. Math. Soc. 15, 1964, 142–150.
- [Kr1] KRUSHKAL, S. L.: Quasiconformal Mappings and Riemann Surfaces. V. H. Winston, Washington, 1979.
- [Kr2] Krushkal, S. L.: The coefficient problem for univalent functions with quasiconformal extension. - In: Holomorphic Functions and Moduli I, Math. Sci. Research Inst. Publications 10, D. Drasin et al. (editors), Springer-Verlag, New York, 1988, 155–161.
- [KrKu] KRUSCHKAL, S. L., und R. KÜHNAU: Quasikonforme Abbildungen neue Methoden und Anwendungen. - Teubner-Texte zur Math. 54, Teubner, Leipzig, 1983.
- [KuN] KÜHNAU, R., und W. NISKE: Abschätzung des dritten Koeffizienten bei den quasikonform fortsetzbaren Funktionen der Klasse S . - Math. Nachr. 78, 1977, 185–192.
- [RS] REICH, E., and K. STREBEL: Extremal quasiconformal mappings with given boundary values. - In: Contributions to Analysis, L. V. Ahlfors et al. (editors), Academic Press, New York, 1974, 375–392.
- [Ro] Royden, H. L.: Automorphisms and isometries of Teichm¨uller space. In: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66, Princeton Univ. Press, Princeton, 1971, 369–383.

Received 17 March 1994