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Abstract. We give here a complete solution of the coefficient problem for normalized uni-
valent functions on the unit disk, with k-quasiconformal extension for a small k, and derive an
explicit bound for k.

1. Introduction

While the coefficient problem is completely solved in the class of all normalized
univalent functions on the disk [dB], the question remains open for functions with
quasiconformal extension.

The strongest result here is established for the functions with k-quasiconfor-
mal extension where k is small; see [Kr2].

Let S be the class of functions f(z) = z+ Y .-, a,2" univalent in the unit
disk A = {|z| < 1}. The class S(k) consists of f € S admitting k-quasiconformal
extension onto the whole Riemann sphere C = CU {oo}, with additional normal-
ization f(co) = oco. Let

z
fi(z) = 0= kt2)? 2] <1, |t| =1,
p
Jno1= {f1(2n_1)}1/(n_1) =z+ ktlzn 4+ n=34....
n_

Consider on S a functional F' of the form

F(f) Zan—l—H(aml,amQ,...,ams),

where a; = a;(f); n,m; 2 2 and H is a holomorphic function of s variables in
an appropriate domain of C?. We assume that this domain contains the origin 0
and that H,0H vanish at 0 .

The mentioned result of [Kr2] is:

1991 Mathematics Subject Classification: Primary 30C50, 30C75.



350 Samuel L. Krushkal

Theorem 1. For any functional of the above form there exists a k(F) > 0
such that, for k < k(F),

(1) max |[F(f)| = |F(fn-1)|

S(k)

for some |t| =1.

As a corollary, one immediately gets for f € S(k) the sharp estimate

2k
) janl €
for k < k,,, with equality only for the function f,,_;. This solves the well-known
problem of Kiithnau and Niske; see [KuN]. The estimate (2) is interesting only for
n = 3, because for n = 2 there is the well-known bound |as| < 2k for all k € [0, 1]
with equality for the function f;.
The purpose of this paper is to improve on Theorem 1, supplementing it with
an explicit estimate for the quantity k(F).

2. Statement of results
The main result of the paper is:
Theorem 2. Let supg |F(f)| = M,,. Then the equality (1) holds for all
1

(3) b2 ormonon ) Fol):

The bound (3) is not sharp and can be improved.
Corollary. The estimate (2) is valid for all

1
n24+1"

(4) k<

Proof. Take F(f) = a,. Since M,, = n, by de Branges’s theorem [dB], one
immediately deduces from (3) that in this case

1

For simplicity, we consider here the functionals F' with holomorphic H de-
pending on a finite number of coefficients a,,. The latter condition is not essential;
one can take H depending on infinitely many a,, (provided the series expansion
of H converges in some complex Banach space). The result shows that the main
contribution here is given by the linear term a,,. The estimate (3) determines for
which k this is true.
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3. Proof of Theorem 2

We shall show that for k satisfying (3) all arguments employed in the proof of
Theorem 1 in [Kr2] remain valid after some modification. Actually, we only need
to modify the proof of Lemma 1.

On A* = {z € C: |z| > 1} we have the Beltrami coefficients py = 0;f/0. f
of the extensions f# of functions f € S(k); these coefficients range over the ball

B(A") ={p € Loo(C) : p | A =0, [[ullcc < 1}

Let B(A"); = {u € B(A") : |lu]| < k}.
Note that the Beltrami coefficient for f,,_; can be taken to be ktu,,, where
|t| =1 and

B
5) pin(2) = St

We shall also use the following notations. For a functional L: S — C define

A~

L(p) = L(f*),  pe B(A").

If L is complex Gateaux differentiable, L is a holomorphic functional on B (A*).
All our functionals have this property.
For p € Loo(A*), ¢ € L1(A*) we define

1 .
<u,¢>=—;//us@dxdy (z =z +1y).
A*

For small k, the functions f* € S(k) can be represented by
w(z) dx dy 2
(© Q) = ¢ // S o).

where the estimate of the remainder term is uniform on compact subsets of C (see
e.g. [Krl, Ch. 2]); this easily implies

) = (s ey ) + Onllul)

and hence

1

- dx dy
/ prmm— < pr—
1)1 = sup{ [ {1, ey )|« 1l < 1 // =
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Now, applying the Schwarz lemma to the function
hu(t) = F(tp) — F'(0)tu: A — C,

where p € B(A*) is fixed, we get

M) )~ F )l < (o + [ Ol = (M + ) Il

Consider the auxiliary functional

A

. 1
(8) Fy(w) = F(p) + (p = V(1 o7 ):
where p # n is fixed and |¢| < 3. Then

(9) sup |E,(u)| < M, +1
B(A*)

and, similarly to (7),

. 1

(1) |B(n) — F O~ 0~ e )| £ (Mo 1+ 2 Il

We shall require that
2 2 1
11 (M 1 —) —
() w1 =)l < =l
or, equivalently,

, 1
(3) I £ e

= ko(F).

Consider now any function fy in S(k) maximizing |F| over S(k) (the existence
of such functions follows from compactness). Let pg be an extremal dilatation of
fo, i.e.

lroll oo = inf{llplloe = k= f* [ A= fo | A}

Note that ||uoll,, = k¥ by the maximum modulus principle. Suppose that o #
ktu,, where |t| = 1, and p, is defined by (5). We show that this leads to
contradiction for k satisfying (3). First of all, we may establish the following
important property of extremal maps:
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Lemma 1. If k satisfy (3), then for all 2 < p # n,

1
</”’07 p+1 > = 0.

Proof. Note that, from (6),

Consider the classes S(7kg) where ko = ko(F) is defined in (3) and 0 < 7 < 1.
It follows from (6) that, as 7 — 0,

(12) max{|P ()| : ] < Tho} = T2 // |dg|c”iy1 o7 = Plria)l +0n(r™).

A similar calculation for functional (8) implies

(13) max | F,(u)| = _ ko //
B(A*),

where the remainder term estimate follows from (10) and depends (as in (12)) only
on M, and kg.
Using the known properties of the norm

E‘dxdwo (r2),

Zn—l—l Zp—l—l

- / = g (p— 1)e P da dy

following from the Royden [Ro] and Earle-Kra [EK] lemmas, we deduce from (12),
(13) that for small £ there should be

(14) sl |Fy(p)| = sl |F(11)] + T0p(€) + Op(72E) + On(72).

On the other hand, we have as £ — 0,7 — 0, from (8)

. F(Tpo) 1 242
[Ey(po)| = 1P (p0)| + Re ﬁ@—l)gw@,ﬁmwwm

= |F(ryio)| + 70— DIE] (10, 1 )| + 0€)

with suitable choices of €& — 0. Comparing this with (14), (10), (11), we conclude
that (ug, 2 ?~1) = 0. The proof of Lemma is completed.
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This lemma is one of the central points in the proof of the Theorems 1 and 2.
The crucial point in the proof of Lemma 1 is that we now have to check here that
simultaneously an infinite (countable) number of ortogonality conditions remain
valid for all & satisfying (3).

The next part of the proof is similar to [Kr2]. We briefly check that the
arguments remain valid for all k.
Consider the Grunsky coefficients of the function 4/ f(22?) which are defined

from the series expansion

f22 1/2_ fCQ 1/2 0o .
U@t

log

m,n=1

taking the branch of logarithm which vanishes at 1. The diagonal coefficients
wn—1.n—1(f) are related to the Taylor coefficients of f by

(15> Wn—1,n—-1— %an'i'P(aQa---uan—l)

where P is a polynomial without constant or linear terms (see [Hu|). Moreover,
for f € S(k) there is the well-known bound

k
|wn—1,n—1| § m

with equality only for the functions f,_1.
Therefore, the map A,_1: B(A*) — B(A*) defined by

An—1(p) ={(n = Dwn—1,n—1(k) titn

is holomorphic and fixes the disk {tu,, : [t| < 1}. The differential of A,,_; at u =0
can be easily computed from (6), (15). It is an operator P,,: Loo(A*) — Loo(A¥)

given by
1
Pr(p) = Br{pns 1) tin, Pn = il

Let us define P,(u) = a(k)wu,. Since, by assumption, fy is not equivalent to
frn_1, we have

t
{An_1<zu0> ] < 1} C{lt|<1}.
Thus, by the Schwarz lemma,

(16) (k)] < k.

Now consider the function
vo = po — (k) pn
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and show that vy eliminates integrable holomorphic functions on A*.
From Lemma 1 and the mutual orthogonality of the powers 2z, m € z,

—1 =0
<V0’ ZP+1> -

for p=2,3,...,p# n. To establish that

1 =0
() 0.

consider the conjugate operator

* 1
Pr(e) = Bnlin, £)¢en, Pn = il

which maps Lj(A*) onto L;(A*) and fixes the subspace {Ap, : A € C}. The
definition of vy implies P, (v9) = 0. Thus, for some A,

<V07§0n> - >\<V07P7>:90n> - >\<P71V07(10n> =0.

Now consider in L; (A*) the subspace A;(A*) of functions ¢ which are holo-
morphic on A* and satisfy the condition ¢(z) = O(|z| %) as |z| — co. Let

AL (AN ={p € Loo(A*) : (i, ) = 0 for all p € A;(A*)}.

Since the functions ¢, = 1/2""! n = 2,3,..., form a complete set in
A1 (A*), we have proved that vy € A;(A*)L.

Now we use the well-known properties of extremal quasiconformal maps (see
e.g. [Gal, [Krl], [RS]). First of all, since pg is extremal for fj,

loll, = int{l (o, @) & € A1(A%), [l = 1}:

moreover, such an equality is necessary and sufficient for ;. € B(A*) to be extremal
for f#. Hence, for any v € A;(A*)*,

lolloe = mf{[{uo + )] - 0 € AL(A7), [lell = 1} = [lpo + vl -

Thus we have

Lemma 2. If f; is extremal,
(17) o0l =% = 1o — 10l -
We may now complete the proof of Theorem 2. By (17)
kS o = wllee = lak)pnll = la(k)],

which contradicts (16). Hence fy is equivalent to f,,—; and we can take pg = ktu,
for some [t| =1.
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4. Complementary remarks and open questions

1) The estimates (1)-(3) also hold in the class Si(1) of functions f € S with
k-quasiconformal extensions f normalized by f(1) =1.

The proof is similar, only (6) should be replaced with the corresponding rep-
resentation formula for f € Si(1) [Krl, Ch. 5]:

o _CZ(C—D w(z) dz dy as .
Q) = ¢~ S8 A/*/ZQ(Z_1>(Z_O+O<||M||>, Jull — 0.

2) Similar results are valid for the class X (k) of functions g(z) = z +
oo o bnz™™, z € A*, with k-quasiconformal extensions to C which fix the origin.

The next two problems still remain open:

1) Does there exist an estimate of coefficients a,, (n = 3) for f € S(k) which
holds for k& < ko with a single kg > 07

2) Can we find exact estimates of coefficients a,, for univalent functions on
the disk with quasiconformal extension in the general case when the dilatation
k <1 is arbitrary?

For f € S(k), one gets from (7) the estimate

2k 2
< — —— | k?
|an|_n—1 <n+n—1)
for any k£, 0 < k < 1, (cf. [KrKu, Part 1, Ch. 2]). Note also that Grinshpan
[Gr] established the exact growth order, with respect to n, of the coefficients a,,
of f € § with k-quasiconformal extension, without any additional normalization:
|an| < enk.
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