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Abstract. For geometrically finite Kleinian groups with parabolic elements we study that
part of the Lagrange spectrum which does not lie in the Markov spectrum. Using the ergodicity
of the associated geodesic flow with respect to the Liouville–Patterson measure, we obtain an
estimate for the asymptotic frequency with which recurrent geodesics enter certain cusp regions.
In particular, this allows a quantitative description of the logarithmic affinity of geodesic excursions
for the cusps.

1. Introduction

We consider geometrically finite (N + 1)-manifolds M of constant negative
curvature with cusps. These are manifolds which admit a representation by a
finite sided, convex, fundamental polyhedron ∆, a subset of the universal covering
space. The model for the universal covering space in use is the Poincaré ball model
(DN+1, d) , where d denotes the hyperbolic metric on the (N + 1)-dimensional
unit ball. M can be thought of as being a compact manifold Mo to which a finite
number of ‘cusps’ (‘imploding contact with infinity’) and possibly a finite number
of ‘funnels’ (‘exploding contact with infinity’) are attached. The fundamental
group G of M is a discrete subgroup of Con(N) , the group of all orientation
preserving diffeomorphisms of DN+1 , and is usually referred to as a geometrically
finite Kleinian group (we exclude the possibility of G being elementary). For the
investigation of Kleinian groups a certain parameter δ(G) has proved to be of
central interest. For any positive s form the Dirichlet series

∑

g∈G

e−sd(0,g0),

then δ = δ(G) is defined to be the exponent of convergence of this series and is
called the exponent of convergence of G .

In this paper we study a certain quantitative aspect of the geodesic dynamic
on M . Let R(∆) denote the recurrent part of the geodesic flow on M . R(∆) is
a subset of the unit tangent bundle S (∆). Each element of R(∆) gives rise to
a recurrent geodesic on M , that is a geodesic which returns infinitely often into
the compact part Mo of M , and neither starts nor ends in a funnel. For obvious
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geometric reasons the dynamic inside the funnels, that is, geodesics which either
start or end in a funnel, is of minor interest here. A consequence of the existence
of funnels is that the relevant ‘canonical measure’ is no longer comparable to the
Lebesque measure. In the geometrically finite case the relevant measure turns
out to be the Patterson measure, which we denote in the following by µ (for
a construction of µ we refer to [11] and [10]). It was shown by Sullivan ([16],
[10, Theorem 4.4.4]), that µ is an ergodic probability measure (with respect to
the action of G on L(G)). The support of µ is the limit set L(G) , the set of
accumulation points of the G-orbit of a point x in DN+1 . The Patterson measure
can be viewed as a measure on the fibre Rx(∆) and gives rise to a geodesic flow
invariant, ergodic measure ν̃ on R(∆). The measure ν̃ will be called the Liouville–

Patterson measure.
In [15, Proposition 4.9] we worked out measure theoretical results concerning

the ‘speed’ with which geodesic rays gradually occupy the cusp regions of M .
In particular we gave an elementary proof of a generalized version of Sullivan’s
logarithmic law for geodesics (LLG). This law considers the ‘distance function’

Ro(∆) × R+ ∋ (v, t) 7−→ Nt(v) ∈ R+,

where Nt(v) measures the hyperbolic distance between a suitable chosen compact
region Mo in M and the point one reaches after ‘travelling’ the hyperbolic distance
t along the geodesic ray corresponding to v . The ‘logarithmic law for geodesics’
then states that, for µ-almost all v in the fibre Ro(∆),

(LLG) lim sup
t→∞

Nt(v)

log t
=

1

2δ − kmax
,

where kmax denotes the maximal occurring rank for a cusp in M . This result
expresses the affinity of the geodesics for the cusp regions; but it does not give any
information concerning the ‘rate’ with which a geodesic eventually makes its way
deeper and deeper into the cusps.

In this paper we add to the qualitative results of [15] a quantitative aspect
concerning the ‘frequency’ with which certain cusp regions are visited by ν̃ -almost
all recurrent geodesics. In order to illustrate our results, we assume that the
compact part Mo is chosen to be sufficiently large. By C we denote a connected
component of M \ Mo which represents a cusp of M ; and for a positive number
λ we let C(λ) denote that subregion of C which lies at a hyperbolic distance λ
from Mo . We then consider the ‘counting function’

R(∆) × R+ × (0, 1] ∋ (v, t, ε) 7−→ αp
t (v, ε) ∈ N,

where αp
t (v, ε) counts the number of visits to C

(

log(1/ε)
)

made after starting
at the base point of v in DN+1 and then ‘travelling’ a hyperbolic distance t
along the geodesic in M which is determined by v . Generalizing results obtained
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for cofinite Kleinian groups by Moeckel and Nakada ([8], [9]), we derive a law

for the asymptotic frequency of cusp excursions (LAF) for the general case of
geometrically finite Kleinian groups with parabolic elements. This law states the
existence of positive constants c and c′ , depending on the group G , such that,
for all sufficiently small, positive ε and for ν̃ -almost all v in R(∆),

(LAF) c ε2δ−k(p) ≤ lim
t→∞

αp
t (v, ε)

t
≤ c′ ε2δ−k(p);

where k(p) denotes the rank of the cusp p under consideration.
An immediate consequence of this result is an estimate for the ‘asymptotic

expectation’ of the number of cusp visits to a particular parabolic cusp with respect
to the number of cusp visits to some other parabolic cusp. To be precise, we deduce
the existence of positive constants co and c′o such that, for all sufficiently small,
positive ε , for all pairs (p, q) of different cusps and for ν̃ -almost all v and w in
R(∆),

co εk(q)−k(p) ≤ lim
t→∞

αp
t (v, ε)

αq
t (w, ε)

≤ c′o εk(q)−k(p).

Finally, we convert the statement of the law (LAF) into the language of hyper-
bolic rays which start at the origin in DN+1 and terminate in the limit set of the
Kleinian group G . We derive for µ-almost all limit points an asymptotic esti-
mate on the number of ‘ε-squeezed standard horoballs’ which are intersected after
‘travelling’ a hyperbolic distance t along those rays.

Also, we would like to point out that the results of this paper have a natural
interpretation in terms of elementary number theory. For this we recall some well
known facts from the theory of metric Diophantine approximation. For a positive
number c , an irrational number θ is called c-approximable if the inequality

∣

∣

∣

∣

θ − p

q

∣

∣

∣

∣

<
c

q2

can be fulfilled for infinitely many reduced fractions p/q , with q positive. Perron
([12]) first noticed that one can associate to each irrational number θ a positive
number

̺(θ) := inf
c>0

{c : θ is c-approximable}.

For c greater than or equal to the Hurwitz number 1/
√

5, each irrational number
is c-approximable and thus the Lagrange spectrum

L := {̺(θ) : θ irrational}

is a subset of the interval (0, 1/
√

5 ] . Markov showed that the intersection of L

with the interval (1/3, 1/
√

5 ] comprises a set M of countably many numbers
which accumulate only at the value 1/3 ([7]). The set M is called the Markov



362 Bernd Stratmann

spectrum. In [3] it was shown in detail how to derive the continued fraction
expansion of an irrational number from a coding for geodesics on the modular
surface PSL2(R)/PSL2(Z) (see also [13], [14]). In particular it turns out that
the set M corresponds to the set of simple (not self-intersecting) geodesic loops
on that surface. The results in this paper thus allow statements concerning the
complement of M in L .

If λ denotes the 1-dimensional Lebesgue measure and if we use the usual
notation for the regular continued fraction expansion of an element θ in the unit
interval, namely

θ =
1

θ1 +
1

θ2 + · · ·
= [θ1, θ2, . . .],

then the results in this paper give rise to the following number theoretical fact.

For all N in N and for λ-almost all θ = [θ1, θ2, . . .] in the unit interval we

have

lim
n→∞

card{m : 1 ≤ m ≤ n and θm ≥ N}
n +

∑n
i=1 log θi

= ko · log
(

1 +
1

N

)

;

where

ko :=

(

log 2 +

∞
∑

n=1

log n · log

(

1 +
1

n(n + 2)

))−1

= (log 5.2 . . .)−1.

We remark that this result may be derived also from an application of the
ergodic theorem to the continued fraction map (see also [6]).

The author would like to thank the Sonderforschungsbereich 170 at the Uni-
versity of Göttingen for its support and hospitality.

2. Preliminaries

In this section we recall some concepts of the theory of Kleinian groups and
their associated geodesic dynamic. These concepts should provide the reader with
the necessary background for an understanding of the following section. As already
mentioned in the introduction, G < Con(N) always denotes a non-elementary,
geometrically finite Kleinian group which contains parabolic elements; by ∆ we
denote a convex, finite sided fundamental polyhedron for the discontinuous action
of G on DN+1 . If H

(

L(G)
)

denotes the convex hull of the limit set L(G) , we may
then assume without loss of generality, that the origin 0 in DN+1 is an element
of ∆ ∩ H

(

L(G)
)

. Our list of required concepts begins with a brief resumé on the
subject of parabolic fixed points.

Parabolic cusps. Let P denote a complete set of inequivalent parabolic
fixed points of G . It is well known that P is a finite set of points in SN . We
assume that each element of P lies at the boundary of ∆. If P is chosen in
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this fashion, then the elements of P are called basic parabolic fixed points. To
each basic parabolic fixed point p we associate a horoball Hp of radius r(p) ,
that is a Euclidian N -ball in DN+1 of radius r(p) which ‘touches’ SN at the
point p . For p in P we let Gp denote the stabilizer of p in G . Then it is
a well known fact that the radii rp of the ‘basic horoballs’ Hp can be chosen
such that the set

⋃

p∈P {g(Hp) : g ∈ G/Gp} comprises a set of pairwise disjoint
horoballs ([2, p. 248]). If in particular the radii r(p) are chosen to be maximal with
respect to this disjointness property (which we shall assume from now on), then
the G-orbit of these horoballs represents the so called standard set of horoballs

and this set will be denoted by {Hg(p)(rg) : g ∈ Tp, p ∈ P} , where Tp , the so
called top representation of Gp in G , denotes a geometrically chosen set of coset
representatives of G/Gp (for more details on this the reader is referred to [15,
Chapter 2]). For a positive ε less than or equal to 1 and for p in P , we define
Hp

ε ⊆ Hp to be the horoball at p of radius ε r(p) .
A consequence of the Bieberbach theorem is that, for each p in P , the sta-

bilizer Gp contains a subgroup G∗
p of finite index such that G∗

p is isomorphic to

Zk(p) for some k(p) in N . The number k(p) is called the rank of p . It then follows
that there exists a ‘fundamental domain’ Qp

∞ for the action of G∗
p on SN \ {p}

(Qp
∞ is the image under the Cayley transformation of the ‘fundamental paral-

lelopiped’ introduced in [15]). By this we mean an N -dimensional, closed subset
of SN , whose spherical diameter q∞(p) is chosen to be minimal with respect to
the following properties:

1. L(G) \ {p} ⊂ G∗
p(Q

p
∞);

2. for all distinct g and h in G∗
p ,

g
(

int (Qp
∞)
)

∩
(

int (Qp
∞)
)

= ∅;

3. Qp
∞ lies ‘opposite’ p , i.e., every geodesic with initial point in Qp

∞ and end
point p has non-trivial intersection with ∆ ∩ ∂Hp .

We let Qp
∞ ×{p} denote the set of geodesics which have their initial point in

Qp
∞ and which end in p . Further, for positive ε , we define the subset Qp

ε of ∂Hp
ε

by

Qp
ε := (Qp

∞ × {p}) ∩ ∂Hp
ε .

The hyperbolic diameter of Qp
ε will be denoted by qε(p) .

Geodesic flows. If S (DN+1) denotes the unit tangent bundle over DN+1 ,
then S (DN+1) is the union of fibres Sz(D

N+1) , where the union is taken with
respect to all base points z in DN+1 . The canonical projection pr : S (DN+1) →
DN+1 maps an element of S (DN+1) to the base point of the fibre of which it is
an element.

On S (DN+1) we introduce the metric d∗ , which is induced by an additive
combination of the hyperbolic metric d and the metric θ , where θ is defined as
follows. Consider in S (DN+1) two elements v and w such that pr(v) and pr(w)
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are close. Move v from pr(v) to pr(w) by parallel displacement, which leads to
an element v′ . Then, θ(v, w) is defined to be the angle (at most π ) between v′

and w .
As usual, an element v in S (DN+1) is parameterized by a triple (v−, v+, s)

in
(

(SN × SN ) \ {diag .}
)

× R , where v− , respectively v+ , denotes the initial
respectively end point of the unique geodesic γ(v) determined by v , and s is the
‘signed’ hyperbolic distance between the summit of the geodesic γ(v) (i.e., that
point on γ(v) which lies at maximal Euclidian distance from the boundary SN )
and the base point pr(v) ; ‘signed’ means that s is positive if and only if pr(v) is
an element of that half of γ(v) which lies between v+ and the summit.

Let Φt denote the geodesic flow on S (DN+1) . We recall that Φt is defined
for t in R and v = (v−, v+, s) in S (DN+1) , by

Φt(v
−, v+, s) = (v−, v+, s + t).

On S (DN+1) we introduce an equivalence relation ‘∼ ’ as follows. Two elements
v and w of S (DN+1) are equivalent if and only if there exists an element g in G
such that γ(v) = g

(

γ(w)
)

and pr(v) = g
(

pr(w)
)

are satisfied. The unit tangent
bundle over ∆ is then defined by

S (∆) := S (DN+1)/ ∼ .

Factoring out this equivalence relation, we see that the flow Φt on S (DN+1)
induces a flow φt on S (∆), and φt is called the geodesic flow on S (∆).

In this paper we are mainly interested in a certain subset R(∆) of S (∆).
Roughly speaking, the elements of R(∆) give rise to geodesics on the manifold
DN+1/G which are recurrent in either their future or their past, but neither start
nor end in a funnel. To be precise, R(∆) is defined as follows:

R(∆) :=
{

v ∈ S (∆) : v−, v+ ∈ L(G) and pr(v) ∈ ∆
}

.

If L (G) denotes the set of loxodromic fixed points of G , then it is known ([1,
Theorem 5.3.8]) that (L (G)×L (G))\{diag .} is dense in

(

L(G)×L(G)
)

\{diag .} .

Since each element of
(

L (G)×L (G)
)

\ {diag .} gives rise to a closed geodesic on
the manifold DN+1/G , it follows that the set R(∆) admits an interpretation as
the closure of the set of all closed geodesics on DN+1/G .

Local cross sections. In order to define special subsets of R(∆), we recall
the notion of a local cross section with respect to some fixed time. For this let ̺
denote some positive number. A closed subset C of S (∆) which lies transversal
to the flow φt , is called a local cross section for φt with respect to the time ̺ if
one has for each element v in C ,

⋃

|t|<̺

φt(v) ∩ C = v.
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In the following section a central part is played by certain subsets of R(∆). The
elements of these sets are based on the boundary of ‘ε-squeezed’ standard horoballs
and point inward into these horoballs. To be precise, for positive ε less than or
equal to 1 and for p in P , we define the following cross section which is based on
∆ ∩ ∂Hp

ε ,

C
p(ε) :=

{

v = (v−, v+, s) ∈ R(∆) : v− ∈ Qp
∞, pr(v) ∈ Qp

ε and s < 0
}

.

From the construction it is evident that there exists a positive constant τ = τ(G) ,
such that, for each p in P and for each positive ε less than or equal to 1, the
section C p(ε) is a local cross section for φt with respect to τ .

Canonical measures. As we have already said in the introduction, we
denote by µ the Patterson measure. For geometrically finite Kleinian groups it
is well known that µ is an ergodic and ‘δ -conformal’ probability measure which
is supported on the limit set L(G) and which has no atomic part ([10], [16]). By
δ -conformal we mean that for each Borel subset E of SN and for each g in G ,

µ
(

g(E)
)

=

∫

E

P
(

g−1(0), ξ
)δ(G)

dµ(ξ);

where the Poisson kernel P is defined as usual for z in DN+1 and ξ in SN by
P (z, ξ) := (1 − |z|2) · |z − ξ|−2 .

For g in Con(N) and x, y in DN+1 ∪ SN , an elementary calculation shows
that

|g(x) − g(y)|2 = |g′(x)| · |g′(y)| · |x − y|2.
Using this estimate we obtain a (G×G)-invariant measure ν on

(

L(G)×L(G)
)

\
{diag .} by

dν(ξ, η) :=
dµ(ξ) dµ(η)

|ξ − η|2δ
.

Using the above mentioned parametrization of S (∆), it is now possible to define
on S (∆) a measure ν̃ by

dν̃(ξ, η, s) := dν(ξ, η) · ds.

The measure ν̃ is called the Liouville–Patterson measure. For the geometrically
finite case it was shown by Sullivan ([16]) that ν̃ is a finite and φt -invariant
measure, and further that the geodesic flow is ergodic with respect to ν̃ . Because
of its finiteness, we can assume in the following without loss of generality that ν̃
is actually a probability measure on R(∆).

Geometry of horoballs. For ξ in SN let sξ denote the hyperbolic ray
in DN+1 with initial point the origin and with end point ξ . For positive t , we
denote by ξt the point on sξ which lies at a hyperbolic distance t from the origin.
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Further, we let sξt
be the geodesic segment on sξ which lies between ξt and the

origin. The ‘shadow projection’ Π is a map from DN+1 onto SN which is defined
for subsets A of DN+1 by

Π(A) := {ξ ∈ SN : sξ ∩ A 6= ∅}.
For the moment let us fix a horoball H(1) in DN+1 with diameter 1. Thus
in particular 0 is an element of H(1). For positive ε less than or equal to 1
let H(ε) ⊆ H(1) denote the horoball of radius ε and with the same point of
tangency at SN as H(1). Let η(ε) in SN be chosen such that sη(ε) is tangent to
H(ε) . If further z(ε) denotes the unique point in DN+1 at which sη(ε) intersects
∂H(1) \ {0} , then we derive the following ‘horoball excursion formula’.

Lemma 1. There exist positive constants c1 and c2 such that, for each

positive ε less than or equal to 1 , we have

(HEF1) c1 ε2 ≤ 1 − |z(ε)| ≤ c2 ε2.

Proof. Let z∗(ε) be the point of tangency of sη(ε) at H(ε) . From the theorem
of Pythagoras we deduce that

(1 − ε)2 = |z∗(ε)|2 + ε2,

and thus
2ε = 1 − |z∗(ε)|2.

On the other hand, it is well known ([1]) that there exist universal, positive con-
stants c and c′ such that

c (1 − |z∗(ε)|) ≤ e−d(0,z∗(ε)) ≤ c′
(

1 − |z∗(ε)|
)

,

and thus
1
2c
(

1 − |z∗(ε)|2
)

≤ e−d(0,z∗(ε)) ≤ c′
(

1 − |z∗(ε)|2
)

.

Combining these two estimates, it follows that

c ε ≤ e−d(0,z∗(ε)) ≤ 2c′ ε.

Since d
(

0, z(ε)
)

= 2d
(

0, z∗(ε)
)

, we have that

c2 ε2 ≤ e−d(0,z(ε)) ≤ 4c′
2

ε2,

and hence
c2

c′
ε2 ≤ 1 − |z(ε)| ≤ 4c′

2

c
ε2.

For a fixed, positive number q we now partition ∂H(1) into spherical annuli
of hyperbolic width q ; i.e., we define annuli inductively as follows:

A1 := {z ∈ ∂H(1) : d(0, z) ≤ q};
and for n in N greater than 1, let

An :=
{

z ∈ ∂H(1) \
n−1
⋃

k=1

Ak : 0 < d(z, An−1) ≤ q
}

.

The following ‘horoball excursion formula’ is easily obtained from Lemma 1 and
we shall therefore omit the proof.
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Lemma 2. There exist positive constants c3 and c4 , depending on q , such

that, for each n in N and z in An , we have

(HEF2)
c3

n2
≤ 1 − |z| ≤ c4

n2
.

3. Asymptotic frequencies

In this section we shall prove our main result. We begin by giving an estimate
for the Liouville–Patterson measure of the local cross sections with respect to the
time τ which were introduced in the preceding section. The estimate is required
in the proof of our theorem.

Proposition 1. There exist positive constants k1, k2 and εo such that, for

each p in P and for each positive ε less than εo , we have

k1 ε2δ−k(p) ≤ ν
(

C
p(ε)

)

≤ k2 ε2δ−k(p).

Proof. Let p in P be given. For convenience, we assume that the origin 0 in
DN+1 is an element of Hp ∩ H

(

L(G)
)

(for the kind of arguments we will give in
the following, this simplifying assumption changes only the constants which occur
by a factor which depends on the hyperbolic distance between 0 and ∂Hp ). It is
known that

(

∂Hp ∩H
(

L(G)
))

/G∗
p is a compact subset of DN+1 ([17], [15, Chap-

ter 2]). Using this fact it follows that we can choose a ‘horospherical fundamental
domain’ Qp

1 on ∂Hp , that is a fundamental domain for the action of G∗
p on Hp

whose hyperbolic diameter q1(p) is minimal with respect to this property. We can
further assume that Qp

1 is chosen such that it contains the origin. Now, we define
horospherical annuli on ∂Hp of constant hyperbolic width q1(p) as follows.

Let
Dp

1 :=
{

z ∈ ∂Hp : d(0, z) ≤ q1(p)
}

;

and for m in N greater than 1, let

Dp
m :=

{

z ∈ ∂Hp \
m−1
⋃

k=1

Dp
k : 0 < d(z, Dp

m−1) ≤ q1(p)
}

.

An elementary Euclidean volume argument then implies the existence of positive
constants c1 and c2 such that

(1) c1 nk(p)−1 ≤ card{g ∈ G∗
p : g(0) ∈ Dp

n} ≤ c2 nk(p)−1.

Let g be in G∗
p such that g(0) is contained in Dp

n for some n in N . Using the
formula (HEF 2), derived in the preceding section, one obtains the existence of
positive constants c3 and c4 , depending on q1(p) , such that

c3 n−2 ≤ 1 − |g(0)| ≤ c4 n−2.
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Combining this estimate with the fact that |ξ − g−1(0)| is bounded from above
and below for all ξ in Qp

∞ , it follows that

(2) µ
(

g(Qp
∞)
)

=

∫

Q
p
∞

P (g−1(0), ξ)δ dµ(ξ) ≍ µ(Qp
∞) · (1 − |g(0)|2)δ ≍ n−2δ;

Here and in the following, the sign ‘≍ ’ is used to denote that the quotient of the
two related quantities is bounded from below and above.

Combining (1) and (2), we obtain the existence of positive constants c5 and
c6 such that

(3) c5 nk(p)−1−2δ ≤ µ

(

⋃

g∈G∗
p

g(0)∈D
p
n

g(Qp
∞)

)

≤ c6 nk(p)−1−2δ.

Let ε be positive and less than or equal to 1. As mentioned in the preceding
section, a cross section of the geodesic flow φt admits a representation as a subset
of SN × SN . In particular, there exists a uniquely determined subset Rp

ε of SN

such that C p(ε) is represented in this fashion by Qp
∞×Rp

ε . From the construction
it then follows that there exists a positive constant ̺o , depending on q1(p) , such
that

(4) Π
(

Hp(̺oε)
)

⊂ Rp
ε ⊂ Π

(

Hp(̺
−1
o ε)

)

.

In order to compute the µ measure of Rp
ε , let elements ξ+ and ξ− of SN be

chosen such that sξ± is tangential to Hp(̺
±1
o ε) . An application of the formula

(HEF 1) gives that the hyperbolic length of the segment sξ± \ {0} ∩ Hp is equal
to log(̺±1

o ε)−2 (apart from an additive constant). This implies that there exist
positive numbers κ+(ε) and κ−(ε) such that

(5) κ±(ε) ≍ ε−1

and

(6) sξ± \ {0} ∩ ∂Hp ∈ Dp

κ±(ε)
.

Using (3), (5) and (6), we deduce

µ
(

Π
(

Hp(̺
±1
o ε)

))

≍
∞
∑

m=κ±(ε)

∑

g∈G∗
p

g(0)∈D
p
m

g(Qp
∞)

≍
∞
∑

m=κ±(ε)

mk(p)−1−2δ ≍
(

κ±(ε)
)k(p)−2δ ≍ ε2δ−k(p).
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Using (4), this implies the existence of positive constants c7 and c8 such that

(7) c7 ε2δ−k(p) ≤ µ(Rp
ε) ≤ c8 ε2δ−k(p).

Let ε chosen to be sufficiently small; i.e., let ε be positive and less than εo(p) ,
where the positive constant εo(p) , depending on q1(p) , is chosen such that

Rp

εo(p) ∩ Qp
∞ = ∅.

Now, there exists a positive constant c9 , depending on εo(p) and thus on q1(p) ,
such that, for all (ξ, η) in Qp

∞ × Rp
ε ,

(8) c9 < |ξ − η| ≤ π.

Using (7) and (8), we deduce, for ε less than εo(p) ,

ν
(

C
p(ε)

)

=

∫

Q
p
∞

∫

R
p
ε

dµ(ξ) dµ(η)

|ξ − η|2δ
≍ µ(Qp

∞) · µ(Rp
ε) ≍ ε2δ−k(p).

If we define εo := min{εo(p) : p ∈ P} , and adjust the constants in order to get
rid of the simplifying assumption that 0 is an element of ∂Hp , the proposition
follows.

We may now turn to the main result of this paper. For this, we recall the
definition of the ‘counting function’ under consideration. For v in R(∆), p in P ,
positive ε less than εo and for positive t , we define

αp
t (v, ε) := card

{

s ∈ [0, t] : φs(v) ∈ C
p(ε)

}

.

This function counts, while one is ‘travelling’ the hyperbolic distance t , the number
of visits of the geodesic ray determined by v into the particular cusp region which
is given by Hp

ε . For this function we have the following result.

Theorem. For all p in P , for all positive ε less than εo and for ν̃ -almost

all v in R(∆) , we have

(LAF) k1 ε2δ−k(p) ≤ lim
t→∞

αp
t (v, ε)

t
≤ k2 ε2δ−k(p)

(k1, k2 and εo are the constants of Proposition 1).

Proof. Let p be in P and let ε be positive and less than εo . We have seen
in the preceding section that C p(ε) is a local cross section for the flow φt with
respect to the time τ . Here, τ is some fixed, positive number which depends
on G . We may define the ‘τ -flow box’ C̃ p(ε) by

C̃
p(ε) :=

⋃

0<u<τ

g−u

(

C
p(ε)

)

.
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Let χ
(·)

denote the characteristic function. For v in R(∆) and positive t , we
have

(9) τ ·
(

αp
t (v, ε) − 1

)

≤
∫ t

0

χ
C̃ p(ε)

(

φs(v)
)

ds ≤ τ ·
(

αp
t (v, ε) + 1

)

.

Using the ergodicity of the measure ν̃ and applying Hopf’s generalization of the
Birkhoff ergodic theorem ([4], [5]), it follows, for ν̃ -almost all v in R(∆), that

(10) lim
t→∞

1

t

∫ t

0

χ
C̃ p(ε)

(

φs(v)
)

ds = ν̃
(

C̃
p(ε)

)

.

The fact that C p(ε) is a local cross section with respect to τ implies that

(11) ν̃
(

C̃
p(ε)

)

= τ · ν
(

C
p(ε)

)

.

Combining (9), (10) and (11), we derive, for ν̃ -almost all v in R(∆),

lim
t→∞

αp
t (v, ε)

t
= ν

(

C
p(ε)

)

.

Using Proposition 1, it now follows that

k1 ε2δ−k(p) ≤ lim
t→∞

αp
t (v, ε)

t
≤ k2 ε2δ−k(p).

An immediate consequence of the preceding theorem is a statement concerning
the relative asymptotic frequency of cusps visits. For this we define, for p and
q in P , v and w in R(∆) and positive ε less than εo , the relative asymptotic

frequency Rp,q
ε (v, w) of the p-cusp visits of the geodesic corresponding to v with

respect to the q -cusp visits of the geodesic corresponding to w , by

Rp,q
ε (v, w) := lim

t→∞

αp
t (v, ε)

αq
t (w, ε)

.

Corollary. There exist positive constants k3 and k4 such that, for each p
and q in P , for each positive ε less than εo and for ν̃ -almost all v and w in

R(∆) , we have

k3 εk(q)−k(p) ≤ Rp,q
ε (v, w) ≤ k4 εk(q)−k(p).

This corollary reflects the way in which the geodesic dynamic is effected by the
interplay of cusps of different ranks. For example, let us consider a geometrically
finite 3-manifold with two cusps p and q such that k(p) = 2 and k(q) = 1. It is
intuitively clear that the proportion of the limit set in the shadow of a standard
horoball associated to p is in a certain sense greater than the proportion of the
limit set in the shadow of an equally sized standard horoball associated to q . In
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this particular case, the corollary states that for a recurrent geodesic the ‘asymp-
totic expectation’ of visiting the cusp at p is roughly ε−1 times higher than the
‘asymptotic expectation’ of visiting the cusp at q .

Finally, we convert the statement of the Theorem into a statement concerning
the asymptotic frequencies with which geodesic rays emanating from the origin in
DN+1 intersect ‘ε-squeezed’ standard horoballs. For this we consider the ‘counting
function’ βp

t (ξ, ε) , an analogue of αp
t (v, ε) . The function βp

t (ξ, ε) is defined for ξ
in L(G) , p in P , positive ε less than εo and positive t , by

βp
t (ξ, ε) := card

{

g ∈ Tp : sξu
∩ Hg(p)(εrg) 6= ∅ for some u ∈ (0, t]

}

.

We obtain the following result.

Proposition 2. For each p in P , for all positive ε less than εo and for

µ-almost all ξ in L(G) , we have

k1 ε2δ−k(p) ≤ lim
t→∞

βp
t (v, ε)

t
≤ k2 ε2δ−k(p)

(k1, k2 and εo are the constants of Proposition 1).

Proof. Consider the set of leaves of the strong stable foliation on S (∆) whose
images under the projection pr contain the origin in ∆; i.e., consider the set

W ss
o :=

⋃

v∈So(∆)

W ss(v),

where W ss(v) is defined for v in S (∆) by

W ss(v) :=
{

w ∈ S (∆) : lim
t→∞

d∗
(

φt(v), φt(w)
)

= 0
}

.

It is clear that if (LAF) is satisfied for some v in So(∆), then (LAF) is also
satisfied for each w in W ss(v) . On the other hand, if some w in S (∆) satisfies
(LAF), then (LAF) also holds for φt(w) for all t in R . Thus we have

– if (LAF) holds for v in So(∆), (LAF) holds for each w in
⋃

t∈R
φt

(

W ss(v)
)

.

The proposition now follows from our theorem when we recall that 0 is assumed
to be an element of H

(

L(G)
)

and that the following inclusion is satisfied:

R(∆) ⊆ ⋃

t∈R

φt(W
ss
o ).
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