ON THE BEHAVIOR OF MEROMORPHIC FUNCTIONS AROUND SOME NONISOLATED SINGULARITIES II

Pentti Järvi

University of Helsinki, Department of Mathematics P.O. Box 4, FIN-00014 Helsinki, Finland

Abstract. Let $G \subset \mathbb{C}$ be a domain, let E be a closed subset of G, and let f be meromorphic in $G \setminus E$ with at least one essential singularity in E. We show that $\limsup f^*(z) d(z, E)^\beta = \infty$ as $d(z, E) \to 0$ for every $\beta < \min(1, 2 - \alpha)$ provided that E is locally a null set for uniform domains and $\dim_H(E) \leq \alpha$. A similar result is obtained if E is a closed, totally disconnected subset of Glying on a quasicircle.

1. This paper is a supplement to [6]. The terminology and notation is as in [6]. Let $G \subset \mathbf{C}$ be a domain, let $E \subset G$ be a relatively closed set, and let fbe meromorphic in $G \setminus E$ with at least one essential singularity in E. In [6] we were concerned with the growth rate of the spherical derivative $f^*(z)$ as z tends to E. It was shown that

(1)
$$\limsup_{d(z,E)\to 0} f^*(z) d(z,E)^\beta = \infty \quad \text{for all } \beta < 1 - \frac{1}{2}\alpha$$

provided that E is of class N_D and the α -dimensional Minkowski content of E is finite [6, Theorem 3]. The result is sharp in the sense that $1 - \frac{1}{2}\alpha$ cannot be replaced by a larger constant without additional restrictions. In this note we show that the above estimate can be substantially improved provided that the distribution of the points of E is regular in a certain sense. For instance, this is the case if E lies on a quasicircle (in particular, if E is a linear set) or E is a Cantor set with constant ratio. The outline of proof is as follows. We first show that if (1) does not hold for some β , then any point of E possesses a neighborhood, in which f satisfies the so-called local Lipschitz condition of order $1 - \beta$. Secondly, owing to the geometry of E the local Lipschitz condition implies the global one. This in turn makes it possible to employ known results about removable singularities of holomorphic Lipschitz functions so as to arrive at a contradiction.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30D30; Secondary 30D40.

Pentti Järvi

2. Let $\sigma(\cdot, \cdot)$ denote the spherical metric in $\widehat{\mathbf{C}}$, i.e., σ is the metric induced by the density $1/(1+|z|^2)$. If f is meromorphic in a domain $G \subset \mathbf{C}$ and $\alpha \in (0,1]$, we say that f is in $\operatorname{Lip}_{\alpha}(G)$ provided that

(2)
$$\sigma(f(z_1), f(z_2)) \le m|z_1 - z_2|^{\alpha}$$

for some $m \ge 0$ and for all $z_1, z_2 \in G$. Furthermore, we say that $f \in \text{loc Lip}_{\alpha}(G)$ if (2) holds whenever z_1 and z_2 belong to an open disk contained in G (cf. [4]). Given $\alpha \in (0, 1]$ and m > 0, we set $r_0 = (\pi/4m)^{1/\alpha}$ and define $\varphi(\cdot; \alpha, m): G \to \mathbb{R}$ as follows

$$\varphi(z;\alpha,m) = \begin{cases} \frac{4m}{\pi} d(z,\partial G)^{\alpha-1}, & \text{when } d(z,\partial G) \leq r_0, \\ \left(\frac{4m}{\pi}\right)^{1/\alpha}, & \text{when } d(z,\partial G) \geq r_0. \end{cases}$$

In case $G = \mathbf{C}$ it is understood that $d(z, \partial G) \ge r_0$ for all $z \in G$. We begin by proving the spherical version of the Hardy–Littlewood theorem (see [1, Theorem 5.1]).

Lemma 1. Let $G \subset \mathbf{C}$ be a domain, let f be meromorphic in G, and let $\alpha \in (0, 1]$. Then $f \in \operatorname{loc} \operatorname{Lip}_{\alpha}(G)$ if and only if

$$f^*(z) \le \varphi(z; \alpha, m)$$
 in G for some $m > 0$.

Proof. Suppose that $f \in \text{loc Lip}_{\alpha}(G)$. Then there exists $m \geq 0$ such that

(3)
$$\sigma(f(z_1), f(z_2)) \le m|z_1 - z_2|^{\alpha}$$

whenever z_1 and z_2 belong to an open disk in G. Fix $z_0 \in G$ such that

$$d(z_0, \partial G) \ge r_0 = \left(\frac{\pi}{4m}\right)^{1/\alpha}$$

Performing a rotation of the Riemann sphere, we may assume that $f(z_0) = 0$. By (3) we have

$$\sigma(f(z), f(z_0)) = \sigma(f(z), 0) \le m|z - z_0|^{\alpha} \le mr_0^{\alpha} = \frac{1}{4}\pi$$

for all $z \in B(z_0, r_0)$. This implies that $|f(z)| \leq 1$ for all $z \in B(z_0, r_0)$. By uniform continuity, f can be taken to be continuous in $\overline{B}(z_0, r_0)$. Hence we may apply the Cauchy integral formula to obtain

$$f^*(z_0) = |f'(z_0)| = \frac{1}{2\pi} \left| \int_{|z-z_0|=r_0} \frac{f(z) - f(z_0)}{(z-z_0)^2} dz \right|$$

$$\leq \frac{1}{2\pi} \int_{|z-z_0|=r_0} \frac{1}{|z-z_0|^2} |dz| = \frac{1}{r_0}.$$

In case $d(z_0, \partial G) = r < r_0$, we have similarly

$$f^{*}(z_{0}) = |f'(z_{0})| = \frac{1}{2\pi} \left| \int_{|z-z_{0}|=r} \frac{f(z) - f(z_{0})}{(z-z_{0})^{2}} dz \right| \le \frac{1}{2\pi} \int_{|z-z_{0}|=r} \frac{|f(z)|}{|z-z_{0}|^{2}} |dz|$$
$$\le \frac{1}{r} \max\{|f(z)| \mid |z-z_{0}|=r\} \le \frac{4}{\pi r} \max\{\sigma(f(z), 0) \mid |z-z_{0}|=r\}$$
$$\le \frac{4m}{\pi r} r^{\alpha} = \frac{4m}{\pi} r^{\alpha-1} = \frac{4m}{\pi} d(z_{0}, \partial G)^{\alpha-1}.$$

Hence $f^*(z) \leq \varphi(z; \alpha, m)$ for all $z \in G$.

The proof of the converse implication proceeds along the same lines as in the case of holomorphic functions (cf. [1, p. 75]). Hence we omit the details. \Box

A domain $G \subset \mathbf{C}$ is called *uniform* if there exist constants $a, b \in [1, \infty)$ such that each pair of points z_1, z_2 in G can be joined by a rectifiable arc $\gamma \subset G$ such that

$$l(\gamma) \le a|z_1 - z_2|$$

and

$$\min(l(\gamma_1), l(\gamma_2)) \le bd(z, \partial G) \quad \text{for each } z \in \gamma.$$

Here γ_1 and γ_2 are the components of $\gamma \setminus \{z\}$. This concept was introduced by Martio and Sarvas [9]. They also observed that quasidisks are always uniform domains [9, Corollary 2.33]. Recall that a domain in **C** is a quasidisk if it is the image of an euclidean disk under a quasiconformal self-mapping of $\hat{\mathbf{C}}$. The boundaries of quasidisks are called quasicircles.

Arguing as in the proof of [3, Theorem 2.1], we deduce from Lemma 1 another useful result.

Lemma 2. Let $G \subset \mathbf{C}$ be a uniform domain, let f be meromorphic in G, and let $\alpha \in (0, 1]$. Then $f \in \operatorname{loc} \operatorname{Lip}_{\alpha}(G)$ if and only if $f \in \operatorname{Lip}_{\alpha}(G)$.

3. A set E in the euclidean n-space \mathbf{R}^n is *porous* in \mathbf{R}^n if there exists a constant $c \in (0, 1]$ such that each closed ball $\overline{B}(x, r)$ in \mathbf{R}^n contains a point z such that the open ball B(z, cr) does not meet E; see e.g. [10, p. 525]. For example, Cantor sets with constant ratio in \mathbf{R}^n are porous in \mathbf{R}^n .

We follow [11, p. 118] and say that a closed set $E \subset \mathbf{C}$ is a null set for uniform domains, or an NUD set, if E is nowhere dense and $\mathbf{C} \setminus E$ is a uniform domain. It is easily seen that a closed set $E \subset \mathbf{R}$ is porous in \mathbf{R} if and only if E is NUD. More generally, invoking Väisälä's compactness criterion [11, Corollary 3.8] one realizes that a closed subset of \mathbf{C} of the form $E = E_1 \times E_2$ with $E_i \subset \mathbf{R}$, i = 1, 2, is NUD if and only if both E_1 and E_2 are porous in \mathbf{R} . It is known that compact parts of an NUD set always belong to N_D (cf. [11, Remark 5.3.4]). In particular, each NUD set is totally disconnected. Furthermore, we say that a closed, totally disconnected subset E of a domain $G \subset \mathbf{C}$ is locally NUD in G if each point of E has a neighborhood U such that $E \cap U$ is NUD. For instance, the set of integers is locally NUD in \mathbf{C} but not NUD.

In what follows, H^{α} refers to the α -dimensional Hausdorff measure.

Theorem 1. Let $G \subset \mathbf{C}$ be a domain and let E be locally NUD in G with $\dim_H(E) \leq \alpha$ for some $\alpha \in [0, 2)$. Let f be meromorphic in $G \setminus E$ with at least one essential singularity in E. Then

$$\limsup_{d(z,E)\to 0} f^*(z) \, d(z,E)^\beta = \infty \qquad \text{for all } \beta < \min(1,2-\alpha).$$

Proof. Suppose, on the contrary, that there are positive constants C and r_0 such that $f^*(z) d(z, E)^{\beta} \leq C$ for all $z \in G \setminus E$ with $d(z, E) \leq r_0$ and for some $\beta < \min(1, 2 - \alpha)$. Fix $z_0 \in E$ and let U be a simply connected neighborhood of z_0 with smooth boundary such that $U \subset B(z_0, r_0)$ and $E \cap U$ is NUD. It follows from Lemma 1 that $f \mid U \setminus E$ belongs to $\operatorname{loc}\operatorname{Lip}_{1-\beta}(U \setminus E)$. Since $U \setminus E$ is a uniform domain [11, Theorem 5.4], we deduce from Lemma 2 that $f \mid U \setminus E \in \operatorname{Lip}_{1-\beta}(U \setminus E)$. This implies that f admits a continuous extension \hat{f} to the whole of U. By an auxiliary rotation of the Riemann sphere, we may assume that \hat{f} is bounded in some disk $B(z_0, r) \subset U$. This means that \hat{f} satisfies in $B(z_0, r)$ an euclidean Lipschitz condition of order $1-\beta$. Now $\alpha < 2-\beta$ implies $H^{2-\beta}(E) = 0$. Hence we may apply [3, Corollary III.4.5] to conclude that \hat{f} is holomorphic in $B(z_0, r)$. This completes the proof. \square

Remark 1. We show that the above result is sharp in the sense that the constant $\min(1, 2-\alpha)$ cannot be replaced by a larger one without further restrictions. Assume first that $\alpha \in (1, 2)$. There is a compact NUD set E, say a Cantor set with constant ratio, such that $0 < H^{\alpha}(E) < \infty$. The existence of a meromorphic function f in $\mathbb{C} \setminus E$, without meromorphic extension to \mathbb{C} , with

$$\limsup_{d(z,E)\to 0} f^*(z) \, d(z,E)^{2-\alpha} < \infty$$

now follows from [3, Corollary III.4.5] in view of Lemma 1. On the other hand, by [8, Theorem 1] there is a meromorphic function f in $\mathbb{C} \setminus \{0\}$ with an essential singularity at 0 such that

$$\limsup_{z \to 0} |z| f^*(z) = \frac{1}{2}.$$

This settles the case $\alpha \in [0, 1]$.

There is another instance, in which one can exploit Lemma 2. We have in mind the case that the exceptional set E lies on the common boundary of two adjacent uniform domains, i.e., E is a subset of a quasicircle.

Theorem 2. Let $G \subset \mathbf{C}$ be a domain, let $C \subset \widehat{\mathbf{C}}$ be a quasicircle, and let $E \subset C$ be a closed, totally disconnected subset of G with $\dim_H(E) \leq \alpha$ for some $\alpha \in [0, 2)$. Let f be meromorphic in $G \setminus E$ with at least one essential singularity in E. Then

$$\limsup_{d(z,E)\to 0} f^*(z) \, d(z,E)^\beta = \infty \qquad \text{for all } \beta < \min(1,2-\alpha).$$

Proof. Suppose there are positive constants c and r_0 such that $f^*(z) d(z, E)^{\beta} \leq c$ for all $z \in G \setminus E$ with $d(z, E) \leq r_0$ and for some $\beta < \min(1, 2-\alpha)$. Fix $z_0 \in E$ and let $U \subset B(z_0, r_0)$ be a quasidisk with $z_0 \in U$ such that $U \setminus C$ consists of two quasidisks U_1 and U_2 with $C \cap \overline{U} = \partial U_1 \cap \partial U_2$. Now $f \mid U_j \in \operatorname{loc\,Lip}_{1-\beta}(U_j)$, j = 1, 2. By [9, Corollary 2.33], U_1 and U_2 are uniform domains. Hence by Lemma 2, $f \mid U_j \in \operatorname{Lip}_{1-\beta}(U_j)$, j = 1, 2. This implies that both of them have a continuous extension to the common boundary $C \cap \overline{U}$. Since the boundary values are equal throughout $C \cap \overline{U}$. In other words, f has a continuous extension to U. It is now a simple matter to verify that $f \mid U \setminus E$ belongs to $\operatorname{Lip}_{1-\beta}(U \setminus E)$. Arguing as in the proof of Theorem 1, we then realize that f is even meromorphic in U. The proof is complete. \Box

Remark 2. Again the constant $\min(1, 2 - \alpha)$ is the largest possible. If $\alpha \in (1, 2)$, pick a self-similar Cantor set E with $0 < H^{\alpha}(E) < \infty$. Thanks to the construction of Gehring and Väisälä [5], E can be realized as a subset of a quasicircle. The assertion now follows as in Remark 1. In case $\alpha \in [0, 1]$, we may again refer to [8, Theorem 1].

Corollary. Let $G \subset \mathbf{C}$ be a domain and let E be a linear, closed, totally disconnected subset of G. Suppose that f is meromorphic in $G \setminus E$ with at least one essential singularity in E. Then

$$\limsup_{d(z,E)\to 0} f^*(z) \, d(z,E)^{1-\varepsilon} = \infty \qquad \text{for all } \varepsilon > 0.$$

4. It is clear that the statements corresponding to Theorems 1 and 2 are valid also in the setting of holomorphic functions. Defining the global and local Lipschitz classes for holomorphic functions as in Section 2 but using the euclidean metric instead of the spherical one, we obtain the following result (cf. [7, Theorem C]).

Theorem 3. Let $G \subset \mathbb{C}$ be a domain, let E be locally NUD in G, and let $f \in \operatorname{loc}\operatorname{Lip}_{\alpha}(G \setminus E)$ be holomorphic in $G \setminus E$. If $H^{1+\alpha}(E) = 0$, then f admits a holomorphic extension to G. The same conclusion holds if E is a closed, totally disconnected subset of G lying on a quasicircle.

Pentti Järvi

References

- [1] DUREN, P.: Theory of H^p Spaces. Academic Press, New York, 1970.
- [2] GARNETT, J.: Analytic Capacity and Measure. Lecture Notes in Math. 297, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [3] GEHRING, F.W., and O. MARTIO: Quasidisks and the Hardy–Littlewood property. -Complex Variables Theory Appl. 2, 1983, 67–78.
- [4] GEHRING, F.W., and O. MARTIO: Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 203–219.
- [5] GEHRING, F.W., and J. VÄISÄLÄ: Hausdorff dimension and quasiconformal mappings. -J. London Math. Soc. 6 (2), 1973, 504–512.
- [6] JÄRVI, P.: On the behavior of meromorphic functions around some nonisolated singularities. - Ann. Acad. Sci. Fenn. Ser. A I Math. 19, 1994, 367–374.
- [7] KOSKELA, P.: Removable singularities for analytic functions. Michigan Math. J. 40, 1993, 459–466.
- [8] LEHTO, O.: The spherical derivative of meromorphic functions in the neighborhood of an isolated singularity. - Comment. Math. Helv. 33, 1959, 196–205.
- [9] MARTIO, O., and J. SARVAS: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1979, 383–401.
- [10] VÄISÄLÄ, J.: Porous sets and quasisymmetric mappings. Trans. Amer. Math. Soc. 299, 1987, 525–533.
- [11] VÄISÄLÄ, J.: Uniform domains. Tôhoku Math. J. 40, 1988, 101–118.

Received 24 March 1994