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Abstract. Let G C C be a domain, let E be a closed subset of G, and let f be meromorphic
in G\ E with at least one essential singularity in £. We show that limsup f*(z)d(z, E)? = oo as
d(z,E) — 0 for every § < min(1,2— «) provided that F is locally a null set for uniform domains
and dimy(EF) < . A similar result is obtained if E is a closed, totally disconnected subset of G
lying on a quasicircle.

1. This paper is a supplement to [6]. The terminology and notation is as
in [6]. Let G C C be a domain, let E C G be a relatively closed set, and let f
be meromorphic in G \ E with at least one essential singularity in E. In [6] we
were concerned with the growth rate of the spherical derivative f*(z) as z tends
to E. It was shown that

(1) limsup f*(2)d(z, E)® = oo forall 3 <1- a
d(z,E)—0

provided that E is of class Np and the a-dimensional Minkowski content of F
is finite [6, Theorem 3|. The result is sharp in the sense that 1 — %oz cannot
be replaced by a larger constant without additional restrictions. In this note we
show that the above estimate can be substantially improved provided that the
distribution of the points of E is regular in a certain sense. For instance, this is
the case if E lies on a quasicircle (in particular, if E' is a linear set) or E is a Cantor
set with constant ratio. The outline of proof is as follows. We first show that if (1)
does not hold for some (3, then any point of E possesses a neighborhood, in which
f satisfies the so-called local Lipschitz condition of order 1 — 3. Secondly, owing
to the geometry of E the local Lipschitz condition implies the global one. This in
turn makes it possible to employ known results about removable singularities of
holomorphic Lipschitz functions so as to arrive at a contradiction.
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2. Let o(+,-) denote the spherical metric in 6, i.e., o is the metric induced by
the density 1/(1+ |2|?). If f is meromorphic in a domain G C C and « € (0, 1],
we say that f is in Lip,(G) provided that

(2) o(f(z1), fz2)) < m|z1 — 2|

for some m > 0 and for all z1, 25 € G. Furthermore, we say that f € locLip,(G)
if (2) holds whenever z; and 2o belong to an open disk contained in G (cf. [4]).
Given a € (0,1] and m > 0, we set 7o = (7/4m)"/® and define ¢(-;a,m): G — R
as follows

am d(z,0G)*"',  when d(z,0G) < ro,
()0(27 a7m> = g 1/a
(4_m) , when d(z,0G) > 7.
7r

In case G = C it is understood that d(z,0G) > ry for all z € G. We begin
by proving the spherical version of the Hardy—Littlewood theorem (see [1, Theo-
rem 5.1]).

Lemma 1. Let G C C be a domain, let f be meromorphic in G, and let
a € (0,1]. Then f € locLip,(G) if and only if
[ (z) < o(z;a,m) in G for some m > 0.

Proof. Suppose that f € locLip,(G). Then there exists m > 0 such that

(3) o(f(z1), f(z2)) < m|z1 — 2|
whenever z; and zo belong to an open disk in G'. Fix zy € GG such that

d(z9,0G) > ro = (i)l/a.

4dm

Performing a rotation of the Riemann sphere, we may assume that f(z9) = 0. By
(3) we have

o (£(2). f(0)) = o(f(2),0) < mlz — 20| < mr§ = 1z

for all 2 € B(z9,70). This implies that |f(z)] < 1 for all z € B(zo,70). By
uniform continuity, f can be taken to be continuous in B(zp,7¢). Hence we may
apply the Cauchy integral formula to obtain

Pl =\l =g | [ TP

1 1
- jdz] = .
~ 27 |z—zo\2| d T0

(z — 29)?

|z—z0|=T0
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In case d(zg,0G) =r < 1y, we have similarly

RN § f(z) = f(20) 1 £ (2)]
Fr(z0) = 1f(20)l = 5 /|Z_ZO|:T CEEDE dz) < o /|Z_ZO|:T 2 = 2] |dz|
< Tmax{[ ()] |2 — 20| = 7} < - max{o(7(2),0) | |2~ z0| = r}
< 4—mro‘ = 4—mro‘_1 = 4—md(zo,8G)o‘_1.
wr s s

Hence f*(z) < ¢(z;a,m) for all z € G.

The proof of the converse implication proceeds along the same lines as in the
case of holomorphic functions (cf. [1, p. 75]). Hence we omit the details. o

A domain G C C is called uniform if there exist constants a,b € [1,00) such
that each pair of points 21, 2o in G can be joined by a rectifiable arc v C G such
that

I(7) < alz1 — 2|

and

min(I(v1),(72)) < bd(z, 0G) for each z € ~.

Here v; and -9 are the components of 7 \ {z}. This concept was introduced
by Martio and Sarvas [9]. They also observed that quasidisks are always uniform
domains [9, Corollary 2.33]. Recall that a domain in C is a quasidisk if it is
the image of an euclidean disk under a quasiconformal self-mapping of C. The
boundaries of quasidisks are called quasicircles.

Arguing as in the proof of [3, Theorem 2.1], we deduce from Lemma 1 another
useful result.

Lemma 2. Let G C C be a uniform domain, let f be meromorphic in G,
and let o € (0,1]. Then f € locLip,(G) if and only if f € Lip,(G).

3. A set E in the euclidean n-space R™ is porous in R™ if there exists
a constant ¢ € (0,1] such that each closed ball B(x,r) in R™ contains a point
z such that the open ball B(z,cr) does not meet E; see e.g. [10, p. 525]. For
example, Cantor sets with constant ratio in R™ are porous in R".

We follow [11, p. 118] and say that a closed set E C C is a null set for uniform
domains, or an NUD set, if E is nowhere dense and C\ E is a uniform domain.
It is easily seen that a closed set £ C R is porous in R if and only if £ is NUD.
More generally, invoking Véiséld’s compactness criterion [11, Corollary 3.8] one
realizes that a closed subset of C of the form F = E; x Fy with E; CR,1=1,2,
is NUD if and only if both F; and FE5 are porous in R. It is known that compact
parts of an NUD set always belong to Np (cf. [11, Remark 5.3.4]). In particular,
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each NUD set is totally disconnected. Furthermore, we say that a closed, totally
disconnected subset E of a domain G C C is locally NUD in G if each point of
has a neighborhood U such that £ NU is NUD. For instance, the set of integers
is locally NUD in C but not NUD.

In what follows, H® refers to the a-dimensional Hausdorff measure.

Theorem 1. Let G C C be a domain and let E be locally NUD in G with
dimgy (F) < « for some « € [0,2). Let f be meromorphic in G\ E with at least
one essential singularity in E'. Then

limsup f*(2)d(z, E)® = oo for all < min(1,2 — ).
d(z,E)—0

Proof. Suppose, on the contrary, that there are positive constants C' and rq
such that f*(z)d(z, E)? < C for all z € G\ E with d(z, E) < ry and for some
B <min(1,2 — «). Fix zg € E and let U be a simply connected neighborhood of
2o with smooth boundary such that U C B(zg,r9) and ENU is NUD. It follows
from Lemma 1 that f | U\ E belongs to locLip; (U \ E). Since U \ F is a
uniform domain [11, Theorem 5.4], we deduce from Lemma 2 that f | U\ E €
Lip;_z(U\ E). This implies that f admits a continuous extension f to the whole

of U. By an auxiliary rotation of the Riemann sphere, we may assume that f is
bounded in some disk B(zp,r) C U. This means that f satisfies in B(z,r) an
euclidean Lipschitz condition of order 1—3. Now o < 2— 3 implies H>"#(E) = 0.
Hence we may apply [3, Corollary II1.4.5] to conclude that f is holomorphic in
B(zp,r). This completes the proof. o

Remark 1. We show that the above result is sharp in the sense that the con-
stant min(1,2—a«) cannot be replaced by a larger one without further restrictions.
Assume first that o € (1,2). There is a compact NUD set E, say a Cantor set
with constant ratio, such that 0 < H*(F) < co. The existence of a meromorphic
function f in C\ E, without meromorphic extension to C, with

limsup f*(2)d(z, B)*>™® < oo
d(2,E)—0

now follows from [3, Corollary II1.4.5] in view of Lemma 1. On the other hand,
by [8, Theorem 1] there is a meromorphic function f in C\ {0} with an essential
singularity at 0 such that

limsup |z|f*(2) = 3.

z—0
This settles the case a € [0, 1].
There is another instance, in which one can exploit Lemma 2. We have in

mind the case that the exceptional set E lies on the common boundary of two
adjacent uniform domains, i.e., E is a subset of a quasicircle.
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Theorem 2. Let G C C be a domain, let C C C be a quasicircle, and let
E C C be a closed, totally disconnected subset of G with dimy(FE) < « for some
a €[0,2). Let f be meromorphic in G\ E with at least one essential singularity
in E. Then

limsup f*(2)d(z, E)® = oo for all < min(1,2 — ).
d(z,E)—0

Proof. Suppose there are positive constants ¢ and ro such that f*(z)d(z, E)?
< cforall z € G\ E with d(z, F) < rg and for some § < min(1,2—a«). Fix 29 € E
and let U C B(zp,70) be a quasidisk with zg € U such that U\ C consists of two
quasidisks Uy and Uy with CNU = Uy NdU,. Now f | U; € locLip; 4(U;),
j = 1,2. By [9, Corollary 2.33], U; and U, are uniform domains. Hence by
Lemma 2, f | U; € Lip;_g(U;), j = 1,2. This implies that both of them have a
continuous extension to the common boundary CNU . Since the boundary values
coincide in (CNU) \ E and this set is dense in C'N U, the boundary values are
equal throughout CNU . In other words, f has a continuous extension to U. It is
now a simple matter to verify that f | U \ E belongs to Lip;_z4(U \ E). Arguing
as in the proof of Theorem 1, we then realize that f is even meromorphic in U .
The proof is complete. o

Remark 2. Again the constant min(1,2 — «) is the largest possible. If
a € (1,2), pick a self-similar Cantor set F with 0 < H*(E) < oo. Thanks to
the construction of Gehring and Vaisald [5], E can be realized as a subset of a
quasicircle. The assertion now follows as in Remark 1. In case « € [0, 1], we may
again refer to [8, Theorem 1].

Corollary. Let G C C be a domain and let E be a linear, closed, totally
disconnected subset of G. Suppose that f is meromorphic in G\ E with at least
one essential singularity in E'. Then

limsup f*(2)d(z, E)' ¢ = o0 for all € > 0.
d(z,E)—0

4. 1t is clear that the statements corresponding to Theorems 1 and 2 are valid
also in the setting of holomorphic functions. Defining the global and local Lipschitz
classes for holomorphic functions as in Section 2 but using the euclidean metric
instead of the spherical one, we obtain the following result (cf. [7, Theorem C]).

Theorem 3. Let G C C be a domain, let E be locally NUD in G, and let
f €locLip, (G \ E) be holomorphic in G\ E. If H***(E) =0, then f admits a
holomorphic extension to G. The same conclusion holds if F is a closed, totally
disconnected subset of G lying on a quasicircle.
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