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Abstract. Let G ⊂ C be a domain, let E be a closed subset of G , and let f be meromorphic
in G\E with at least one essential singularity in E . We show that lim sup f∗(z) d(z, E)β = ∞ as
d(z, E) → 0 for every β < min(1, 2−α) provided that E is locally a null set for uniform domains
and dimH(E) ≤ α . A similar result is obtained if E is a closed, totally disconnected subset of G
lying on a quasicircle.

1. This paper is a supplement to [6]. The terminology and notation is as
in [6]. Let G ⊂ C be a domain, let E ⊂ G be a relatively closed set, and let f
be meromorphic in G \ E with at least one essential singularity in E . In [6] we
were concerned with the growth rate of the spherical derivative f∗(z) as z tends
to E . It was shown that

(1) lim sup
d(z,E)→0

f∗(z) d(z, E)β = ∞ for all β < 1 − 1
2
α

provided that E is of class ND and the α -dimensional Minkowski content of E
is finite [6, Theorem 3]. The result is sharp in the sense that 1 − 1

2α cannot
be replaced by a larger constant without additional restrictions. In this note we
show that the above estimate can be substantially improved provided that the
distribution of the points of E is regular in a certain sense. For instance, this is
the case if E lies on a quasicircle (in particular, if E is a linear set) or E is a Cantor
set with constant ratio. The outline of proof is as follows. We first show that if (1)
does not hold for some β , then any point of E possesses a neighborhood, in which
f satisfies the so-called local Lipschitz condition of order 1 − β . Secondly, owing
to the geometry of E the local Lipschitz condition implies the global one. This in
turn makes it possible to employ known results about removable singularities of
holomorphic Lipschitz functions so as to arrive at a contradiction.
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2. Let σ(·, ·) denote the spherical metric in Ĉ , i.e., σ is the metric induced by
the density 1/(1 + |z|2) . If f is meromorphic in a domain G ⊂ C and α ∈ (0, 1] ,
we say that f is in Lipα(G) provided that

(2) σ
(
f(z1), f(z2)

)
≤ m|z1 − z2|

α

for some m ≥ 0 and for all z1, z2 ∈ G . Furthermore, we say that f ∈ loc Lipα(G)
if (2) holds whenever z1 and z2 belong to an open disk contained in G (cf. [4]).
Given α ∈ (0, 1] and m > 0, we set r0 = (π/4m)1/α and define ϕ(·; α, m): G → R

as follows

ϕ(z; α, m) =






4m

π
d(z, ∂G)α−1, when d(z, ∂G) ≤ r0,

(4m

π

)1/α

, when d(z, ∂G) ≥ r0.

In case G = C it is understood that d(z, ∂G) ≥ r0 for all z ∈ G . We begin
by proving the spherical version of the Hardy–Littlewood theorem (see [1, Theo-
rem 5.1]).

Lemma 1. Let G ⊂ C be a domain, let f be meromorphic in G , and let

α ∈ (0, 1] . Then f ∈ loc Lipα(G) if and only if

f∗(z) ≤ ϕ(z; α, m) in G for some m > 0.

Proof. Suppose that f ∈ loc Lipα(G) . Then there exists m ≥ 0 such that

(3) σ
(
f(z1), f(z2)

)
≤ m|z1 − z2|

α

whenever z1 and z2 belong to an open disk in G . Fix z0 ∈ G such that

d(z0, ∂G) ≥ r0 =
( π

4m

)1/α

.

Performing a rotation of the Riemann sphere, we may assume that f(z0) = 0. By
(3) we have

σ
(
f(z), f(z0)

)
= σ

(
f(z), 0

)
≤ m|z − z0|

α ≤ mrα
0 = 1

4
π

for all z ∈ B(z0, r0) . This implies that |f(z)| ≤ 1 for all z ∈ B(z0, r0) . By
uniform continuity, f can be taken to be continuous in B(z0, r0) . Hence we may
apply the Cauchy integral formula to obtain

f∗(z0) = |f ′(z0)| =
1

2π

∣∣∣∣
∫

|z−z0|=r0

f(z) − f(z0)

(z − z0)2
dz

∣∣∣∣

≤
1

2π

∫

|z−z0|=r0

1

|z − z0|2
|dz| =

1

r0
.
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In case d(z0, ∂G) = r < r0 , we have similarly

f∗(z0) = |f ′(z0)| =
1

2π

∣∣∣∣

∫

|z−z0|=r

f(z) − f(z0)

(z − z0)2
dz

∣∣∣∣ ≤
1

2π

∫

|z−z0|=r

|f(z)|

|z − z0|2
|dz|

≤
1

r
max

{
|f(z)| | |z − z0| = r

}
≤

4

πr
max

{
σ
(
f(z), 0

)
| |z − z0| = r

}

≤
4m

πr
rα =

4m

π
rα−1 =

4m

π
d(z0, ∂G)α−1.

Hence f∗(z) ≤ ϕ(z; α, m) for all z ∈ G .

The proof of the converse implication proceeds along the same lines as in the
case of holomorphic functions (cf. [1, p. 75]). Hence we omit the details.

A domain G ⊂ C is called uniform if there exist constants a, b ∈ [1,∞) such
that each pair of points z1 , z2 in G can be joined by a rectifiable arc γ ⊂ G such
that

l(γ) ≤ a|z1 − z2|

and
min

(
l(γ1), l(γ2)

)
≤ bd(z, ∂G) for each z ∈ γ.

Here γ1 and γ2 are the components of γ \ {z} . This concept was introduced
by Martio and Sarvas [9]. They also observed that quasidisks are always uniform
domains [9, Corollary 2.33]. Recall that a domain in C is a quasidisk if it is

the image of an euclidean disk under a quasiconformal self-mapping of Ĉ . The
boundaries of quasidisks are called quasicircles.

Arguing as in the proof of [3, Theorem 2.1], we deduce from Lemma 1 another
useful result.

Lemma 2. Let G ⊂ C be a uniform domain, let f be meromorphic in G ,

and let α ∈ (0, 1] . Then f ∈ loc Lipα(G) if and only if f ∈ Lipα(G) .

3. A set E in the euclidean n -space Rn is porous in Rn if there exists
a constant c ∈ (0, 1] such that each closed ball B(x, r) in Rn contains a point
z such that the open ball B(z, cr) does not meet E ; see e.g. [10, p. 525]. For
example, Cantor sets with constant ratio in Rn are porous in Rn .

We follow [11, p. 118] and say that a closed set E ⊂ C is a null set for uniform

domains, or an NUD set, if E is nowhere dense and C \ E is a uniform domain.
It is easily seen that a closed set E ⊂ R is porous in R if and only if E is NUD.
More generally, invoking Väisälä’s compactness criterion [11, Corollary 3.8] one
realizes that a closed subset of C of the form E = E1×E2 with Ei ⊂ R , i = 1, 2,
is NUD if and only if both E1 and E2 are porous in R . It is known that compact
parts of an NUD set always belong to ND (cf. [11, Remark 5.3.4]). In particular,
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each NUD set is totally disconnected. Furthermore, we say that a closed, totally
disconnected subset E of a domain G ⊂ C is locally NUD in G if each point of E
has a neighborhood U such that E ∩ U is NUD. For instance, the set of integers
is locally NUD in C but not NUD.

In what follows, Hα refers to the α -dimensional Hausdorff measure.

Theorem 1. Let G ⊂ C be a domain and let E be locally NUD in G with

dimH(E) ≤ α for some α ∈ [0, 2) . Let f be meromorphic in G \ E with at least

one essential singularity in E . Then

lim sup
d(z,E)→0

f∗(z) d(z, E)β = ∞ for all β < min(1, 2 − α).

Proof. Suppose, on the contrary, that there are positive constants C and r0

such that f∗(z) d(z, E)β ≤ C for all z ∈ G \ E with d(z, E) ≤ r0 and for some
β < min(1, 2− α) . Fix z0 ∈ E and let U be a simply connected neighborhood of
z0 with smooth boundary such that U ⊂ B(z0, r0) and E ∩ U is NUD. It follows
from Lemma 1 that f | U \ E belongs to locLip1−β(U \ E) . Since U \ E is a
uniform domain [11, Theorem 5.4], we deduce from Lemma 2 that f | U \ E ∈

Lip1−β(U \E) . This implies that f admits a continuous extension f̂ to the whole

of U . By an auxiliary rotation of the Riemann sphere, we may assume that f̂ is
bounded in some disk B(z0, r) ⊂ U . This means that f̂ satisfies in B(z0, r) an
euclidean Lipschitz condition of order 1−β . Now α < 2−β implies H2−β(E) = 0.

Hence we may apply [3, Corollary III.4.5] to conclude that f̂ is holomorphic in
B(z0, r) . This completes the proof.

Remark 1. We show that the above result is sharp in the sense that the con-
stant min(1, 2−α) cannot be replaced by a larger one without further restrictions.
Assume first that α ∈ (1, 2). There is a compact NUD set E , say a Cantor set
with constant ratio, such that 0 < Hα(E) < ∞ . The existence of a meromorphic
function f in C \ E , without meromorphic extension to C , with

lim sup
d(z,E)→0

f∗(z) d(z, E)2−α < ∞

now follows from [3, Corollary III.4.5] in view of Lemma 1. On the other hand,
by [8, Theorem 1] there is a meromorphic function f in C \ {0} with an essential
singularity at 0 such that

lim sup
z→0

|z|f∗(z) = 1
2 .

This settles the case α ∈ [0, 1] .

There is another instance, in which one can exploit Lemma 2. We have in
mind the case that the exceptional set E lies on the common boundary of two
adjacent uniform domains, i.e., E is a subset of a quasicircle.
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Theorem 2. Let G ⊂ C be a domain, let C ⊂ Ĉ be a quasicircle, and let

E ⊂ C be a closed, totally disconnected subset of G with dimH(E) ≤ α for some

α ∈ [0, 2) . Let f be meromorphic in G \ E with at least one essential singularity

in E . Then

lim sup
d(z,E)→0

f∗(z) d(z, E)β = ∞ for all β < min(1, 2 − α).

Proof. Suppose there are positive constants c and r0 such that f∗(z) d(z, E)β

≤ c for all z ∈ G\E with d(z, E) ≤ r0 and for some β < min(1, 2−α) . Fix z0 ∈ E
and let U ⊂ B(z0, r0) be a quasidisk with z0 ∈ U such that U \C consists of two
quasidisks U1 and U2 with C ∩ U = ∂U1 ∩ ∂U2 . Now f | Uj ∈ loc Lip1−β(Uj) ,
j = 1, 2. By [9, Corollary 2.33], U1 and U2 are uniform domains. Hence by
Lemma 2, f | Uj ∈ Lip1−β(Uj) , j = 1, 2. This implies that both of them have a

continuous extension to the common boundary C ∩U . Since the boundary values
coincide in (C ∩ U) \ E and this set is dense in C ∩ U , the boundary values are
equal throughout C∩U . In other words, f has a continuous extension to U . It is
now a simple matter to verify that f | U \ E belongs to Lip1−β(U \ E) . Arguing
as in the proof of Theorem 1, we then realize that f is even meromorphic in U .
The proof is complete.

Remark 2. Again the constant min(1, 2 − α) is the largest possible. If
α ∈ (1, 2), pick a self-similar Cantor set E with 0 < Hα(E) < ∞ . Thanks to
the construction of Gehring and Väisälä [5], E can be realized as a subset of a
quasicircle. The assertion now follows as in Remark 1. In case α ∈ [0, 1] , we may
again refer to [8, Theorem 1].

Corollary. Let G ⊂ C be a domain and let E be a linear, closed, totally

disconnected subset of G . Suppose that f is meromorphic in G \E with at least

one essential singularity in E . Then

lim sup
d(z,E)→0

f∗(z) d(z, E)1−ε = ∞ for all ε > 0.

4. It is clear that the statements corresponding to Theorems 1 and 2 are valid
also in the setting of holomorphic functions. Defining the global and local Lipschitz
classes for holomorphic functions as in Section 2 but using the euclidean metric
instead of the spherical one, we obtain the following result (cf. [7, Theorem C]).

Theorem 3. Let G ⊂ C be a domain, let E be locally NUD in G , and let

f ∈ loc Lipα(G \ E) be holomorphic in G \ E . If H1+α(E) = 0 , then f admits a

holomorphic extension to G . The same conclusion holds if E is a closed, totally

disconnected subset of G lying on a quasicircle.
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