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Abstract. We consider the complex oscillation theory of the second order linear differential
equation f ′′ + (eP (z) + Q(z))f = 0, where P (z) and Q(z) are polynomials of degrees n ≥ 1 and
m ≥ 0 , respectively. The situation for the case n = 1 is clear. For the case n ≥ 2 , a result
of Bank and Langley [4] shows that if m < 2(n − 1) , then for any non-trivial solution f of the
equation, its exponent of the convergence of the zero sequence λ(f) equals to infinity. The same
result was also proved by them [5] for the case m > 2(n− 1) , provided some additional conditions
were assumed on P and Q . In this paper, a general result for the case m > 2(n− 1) is obtained.
We show that, in this case, λ(f) = (m + 2)/2 or λ(f) = ∞ holds for any non-trivial solution f
of the equation. This improves a former result of the author [8]. Moreover, we also obtain a result
for the case m = 2(n − 1) . Examples show that this result is sharp.

1. Introduction and results

We consider the differential equation of the form

(1.1) f ′′ + A(z)f = 0,

where A(z) is an entire function. First of all, it follows from the elementary theory
of differential equations that all solutions of (1.1) are entire functions, and that
the zeros of any non-trivial solution are simple.

In the study of oscillation theory for solutions to the equation (1.1), the case
where A(z) in (1.1) is a transcendental entire function of finite order has received
much attention since 1982. In this case, any non-trivial solution of (1.1) is of
infinite order of growth (in the sense of Nevanlinna). One of the main problems is
to find conditions on A(z) so that every solution f 6≡ 0 of (1.1) satisfies λ(f) = ∞ ,
where λ(f) denotes as usual the exponent of convergence for the zeros of f .
Our starting point is the following Theorem A which is a modified version of [1,
Lemma 8.2].
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Theorem A. Suppose that A(z) is a transcendental entire function of finite

order. Then the equation (1.1) admits two linearly independent zero-free solutions

if and only if A(z) can be represented as

(1.2) A(z) = eP (z) − 1
16

(
P ′(z)

)2
+ 1

4P ′′(z),

where P (z) is a non-constant polynomial.

Actually, Theorem A focused the interest to the oscillation theory of differ-
ential equations of the form

(1.3) f ′′ +
(
eP (z) + Q(z)

)
f = 0,

where P (z) and Q(z) are polynomials of degrees n ≥ 1 and m ≥ 0, respectively.
In the case of Theorem A, m = 2(n−1). The following earlier results demonstrate
the importance of this relation. The case n = 1 was settled completely by Bank,
Laine and Langley [2] and Langley [7]. In fact, then we get

Theorem B. Consider the equation

(1.4) f ′′ +
(
ez + Q(z)

)
f = 0,

where Q(z) is a polynomial.

(1) If Q(z) is non-constant, then λ(f) = ∞ for any non-trivial solution f of

(1.4).

(2) If Q(z) is a constant, say K , then the equation (1.4) admits a solution f 6≡ 0
with λ(f) < ∞ if and only if K = −(2p + 1)2/16 for some integer p ≥ 0 .

The remaining case n ≥ 2 was considered by Bank and Langley in [4] and
[5]. The following result is a special case of the Theorem in [4].

Theorem C. If m < 2(n− 1) , then λ(f) = ∞ for any non-trivial solution f
of (1.3).

In order to state the result in [5] where the case m > 2(n−1) was considered,
we first make the following definitions.

Definition 1. Let P (z) = anzn + · · · + a0 be a polynomial with n ≥ 1,
an = (α + iβ) 6= 0. Set δ(P, θ) = α cos nθ − β sin nθ . A ray arg z = θ is said to
be critical for eP (z) if δ(P, θ) = 0.

Definition 2. Let P (z) = anzn + · · · + a0 be a polynomial with n ≥ 0. A
ray arg z = θ is said to be critical for P (z) if arg an + (n + 2)θ = 0 (mod2π ).
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Remark. It is easily seen that a given polynomial P (z) of degree n ≥ 1 has
(n + 2) critical rays which form (n + 2) sectors of opening 2π/(n + 2). On the
other hand,

δ(P, θ) = α cos nθ − β sin nθ = 0

on the rays

arg z = θj := θ̃ +
j

n
π, j = 0, 1, . . . , 2n − 1,

which form 2n sectors of opening π/n for some θ̃ . Hence, there are 2n critical
rays for eP (z) . For later use, we denote by S+

1 , . . . , S+
n (respectively S−

1 , . . . , S−

n )
those open sectors where δ(P, θ) > 0 (respectively δ(P, θ) < 0), and denote further
S+ =

⋃n
i=1 S+

i , S− =
⋃n

i=1 S−

i .

With these definitions, we have the following

Theorem 3. Let m ≥ 2(n − 1) . Suppose that there exists a ray arg z = θ0

such that it is critical for eP (z) but not for Q(z) . Then λ(f) = ∞ for any

non-trivial solution f of (1.3).

Remark. For m > 2(n− 1), Theorem 3 is equivalent to [5, Theorem 1.1], in
the second order case, see also [8, Theorem 3.1.2]. The proof of [8, Theorem 3.1.2],
also applies in the case m = 2(n− 1). For completeness, we will prove Theorem 3
below.

In the case m > 2(n − 1), we first recall [8, Theorem 3.1.1], as

Theorem D. If m > 2(n − 1) , then n < λ(f) ≤ ∞ for any non-trivial

solution f of (1.3).

In this paper, we improve Theorem D by proving

Theorem 4. If m > 2(n − 1) , then, for any non-trivial solution f of (1.3),
we have either λ(f) = (m + 2)/2 or λ(f) = ∞ .

Remark. It remains open whether the case λ(f) = (m + 2)/2 can really
occur in Theorem 4.

Moreover, we also obtain a result for the case m = 2(n − 1).

Theorem 5. If m = 2(n − 1) , then, for any non-trivial solution f of (1.3),
we have either f is zero-free, or λ(f) = n , or λ(f) = ∞ .

Remark. The following examples, along with [8, Theorem 3.1.4], show that
all cases in Theorem 5 can occur.

Example 1. Let q ≥ 3 be an odd number. Then the equation

f ′′ +
(
ez − 1

16q2
)
f = 0

admits two linearly independent solutions f1 , f2 with the property that λ(f1) =
λ(f2) = 1. In this example, P (z) = z , Q(z) = −q2/16, n = 1 and bm = −q2/16.
Hence, m = 2(n − 1).
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Example 2. Let n be a positive integer. Then, by Theorem A above, the
equation

f ′′ + A(z)f = 0

with
A(z) = −1

4

(
e−2zn

+ n2z2(n−1) + 2n(n − 1)zn−2
)

admits two linearly independent zero-free solutions. In fact, we can rewrite A(z)
in the form

A(z) = eP (z) − 1
16

(
P ′(z)

)2
+ 1

4P ′′(z),

where
P (z) = −2zn − log(−4).

We see immediately that m = 2(n − 1).

2. Two lemmas

Lemma 1 below, which can be deduced from Lemma 1 in [7], plays a key role
in the proof of our theorems. Recalling Definition 2, we obtain

Lemma 1. Let arg z = θ0 be a critical ray for Q(z) = bmzm + bm−2z
m−2 +

· · · + b0 , where bm 6= 0 and m ≥ 2 . Let Q0(z) be an entire function. Suppose

that there exists α > 0 such that in { θ0 − α < arg z < θ0 + α } ,

Q0(z) = bmzm + O(|z|m−2).

Then there exists a path Γθ0
tending to infinity in { θ0 − α < arg z < θ0 + α }

such that on Γθ0
we have arg z → θ0 and all solutions of

f ′′ + Q0(z)f = 0

tend to zero as z → ∞ along Γθ0
.

The following lemma is an easy modification of [2, Lemma 3]. Recalling the
notions S+ and S− introduced in the remark below Definition 2, we have

Lemma 2. Let P (z) be a polynomial of degree n ≥ 1 , and let ε > 0 be a

given constant. Let B(z) 6≡ 0 be analytic for all z of sufficiently large modulus,

and of order less than n . Consider the function A(z) := B(z) exp
(
P (z)

)
on a

ray reiθ . Then there exists a set E0 ⊂ [0, 2π) with linear measure zero, such that

(1) If θ ∈ S+ \ E0 , there exists an r(θ) such that for r ≥ r(θ) ,
∣∣A(reiθ)

∣∣ ≥ exp
(
(1 − ε)δ(P, θ)rn

)
.

(2) If θ ∈ S− , there exists an r(θ) such that for r ≥ r(θ) ,
∣∣A(reiθ)

∣∣ ≤ exp
(
(1 − ε)δ(P, θ)rn

)
.
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3. Proofs of the theorems

First of all, we may assume, by a suitable transformation, that Q(z) = bmzm+
bm−2z

m−2 + · · · + b0 . We suppose that the equation (1.3) admits a non-trivial
solution f0 such that λ(f0) < ∞ . Therefore, by the Hadamard factorization
theorem, we can write f0 in the form

(3.1) f0(z) = π(z)eh(z),

where h(z) is an entire function and π(z) is the canonical product formed with
the zeros of f0 , hence σ(π) = λ(π) = λ(f0) < ∞ , where and in what follows, σ(f)
denotes the order of growth of f . Moreover, for the function h(z) in (3.1), we
can infer from [6, pp. 96–98], see also [8, Chapter 3], that there exists a rational

function Q̃(z) such that for any θ ∈ S− , we have

(3.2) h′(reiθ) = Q̃(reiθ) + O(r−1),

as r → ∞ , while for any θ ∈ S+
q , 1 ≤ q ≤ n ,

(3.3) h′(reiθ) = cq · e
P (reiθ)/2 + Q̃(reiθ) + O(r−2),

as r → ∞ , where cq is a constant satisfying cq
2 + 1 = 0.

On the other hand, denote

W (z) := π(z)e
1
4 P (z)+

∫
z

a
Q̃(t) dt

,(3.4)

G(z) := h(z) − 1
4
P (z) −

∫ z

a

Q̃(t) dt.(3.5)

Then, it follows immediately from (3.1) that

(3.6) f0(z) = W (z)eG(z).

Choose now a in (3.4) and (3.5) sufficiently large by modulus such that Q̃(z) has
no poles in |z| > r0 = |a| . Hence W (z) is analytic in |z| > r0 . To finish the
proofs, we quote two conclusions from [8, pp. 53–54] for later use.

Conclusion (i). For any q = 1, 2, . . . , n , there exists a constant Jq 6= 0,∞
such that

(3.7) lim
r→∞

W (reiθ) = Jq , θ ∈ S+
q \ Ẽ0,

where Ẽ0 , not depending on q , is a set in [0, 2π) with linear measure zero.



384 Shupei Wang

Conclusion (ii). W (z) is of order no greater than (m + 2)/2. (Here m is
the degree of Q(z) .)

We are ready to finish the proof of our theorems.

Completion of the proof of Theorem 3. Under the assumption of Theo-
rem 3, since m ≥ 2(n−1), there must exist two adjoining critical rays for Q(z) , say
arg z = θ1 and arg z = θ2 , such that θ1 < θ0 < θ2 and that δ(P, θ1) · δ(P, θ2) < 0.
Without loss of generality, we may assume that δ(P, θ) < 0 in θ1 ≤ θ < θ0 , while
δ(P, θ) > 0 if θ0 < θ ≤ θ2 .

Consider now the domain Ω1 bounded by the path Γθ1
(arising from Lemma 1

with α < ε) and the ray arg z = θ0 + ε , and contained in the sector θ1 − ε <

arg z < θ0 + ε . We choose ε > 0 such that (θ0 + 2ε) < θ2 and (θ0 + ε) /∈ Ẽ0 .
Then Ω1 ∩ {|z| > R} is an unbounded domain contained in a sector of opening
θ0 − θ1 + 2ε < θ2 − θ1 = 2π/(m + 2), provided R (≥ r0 ) is large enough.

Now W (z) is of order no greater than (m + 2)/2 by the above conclusion
(ii), and by (3.7), W (z) → Jq ( 6= 0,∞) along the ray arg z = θ0 + ε for some
1 ≤ q ≤ n , while W (z) → 0 along the path Γθ1

by Lemma 1. A standard
application of the Phragmén–Lindelöf principle to the domain Ω1 ∩{|z| > R} and
the function W (z) yields a contradiction immediately. This completes the proof
of Theorem 3.

Completion of the proof of Theorem 4. Observing Theorem 3, we need
only to consider the case that every critical ray for eP (z) is also critical for Q(z) .
Hence, it follows immediately that (m + 2) must be an integer multiple of 2n .

We first prove that σ(W ) = (m + 2)/2. In fact, by the above conclusion
(ii), σ(W ) ≤ (m + 2)/2. Therefore, we need only to show that the assumption
σ(W ) < (m + 2)/2 will yield a contradiction. To this end, we pick two adjoining
critical rays for Q(z) , say arg z = θ′ and arg z = θ′′ , such that θ′ < θ′′ , that
arg z = θ′′ is also critical for eP (z) and that δ(P, θ′) < 0. All these can be done
since m > 2(n − 1).

Note that θ′′−θ′ = 2π/(m + 2) and that σ(W ) < 1
2 (m + 2), we can choose an

ε > 0 such that σ(W ) < π/(θ′′ − θ′ + ε) < 1
2(m + 2) and θ′′+ 1

2ε /∈ Ẽ0 . Again, as
in the proof of Theorem 3 above, we consider the domain Ω′ bounded by the path
Γθ′ (arising from Lemma 1) and the ray arg z = θ′′ + 1

2ε . By applying the same
argument as in the proof of Theorem 3, we also get a contradiction. Therefore,
σ(W ) = 1

2
(m + 2).

Next, we will prove λ(f0) = (m + 2)/2. In fact, by (3.4), it follows that
λ(f0) = λ(π) = λ(W ) ≤ (m + 2)/2, the order of W (z) . We now assume that
λ(f0) < 1

2 (m + 2). Since m > 2(n − 1), it follows from (3.4) that

(3.8) W (z) = W1(z)eα1z(m+2)/2

,

where W1(z) is an analytic function in |z| > r0 with order less than 1
2 (m + 2),

and α1 is a non-zero constant.
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Therefore, by Lemma 2 and the remark below Definition 2, there are (m+2)
sectors, each with opening 2π/(m + 2), such that W (z) tends to zero in every
second of these sectors and to infinity in the remaining ones. On the other hand,
as we know from the above conclusion (i), W (z) tends to a non-zero constant
along almost all radii in n sectors of total angular measure π . This results in a
contradiction. Hence, λ(f0) = 1

2
(m + 2), and we are done.

Completion of the proof of Theorem 5. Since m = 2(n − 1), it follows
from the above conclusion (ii) that σ(W ) ≤ n . Hence, by (3.4), we have λ(f0) =
λ(π) ≤ n . If now λ(f0) < n , then f0 must be zero-free by [3, Theorem 3.3]. This
completes the proof of Theorem 5.
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