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Abstract. In the usual definition of the universal Teichmüller space the upper half-plane U is
assumed to be the universal covering surface of Riemann surfaces under consideration. The author
points out that on replacing U by the unit disk D new problems may arise. E.g. there is a one-
to-one correspondence between the equivalence classes generated by the Ahlfors–Bers equivalence
relation and 2π -periodic functions σ vanishing at 2kπ/3 , k ∈ Z , such that x 7→ x + σ(x) is M -
quasisymmetric on the real line R . An estimate n|cn| ≤ 2(M − 1)/(M + 1) for complex Fourier
coefficients cn of σ is established. Moreover, an analytic criterion of the Ahlfors–Bers equivalence
relation is obtained.

0. Introduction. Statement of results

The notion of the universal Teichmüller space (abbreviated: UTS) has its
source in two fundamental papers [1], [13]. Teichmüller’s research on quasicon-
formal mappings of Riemann surfaces disclosed the necessity of distinguishing dif-
ferent homotopy classes of such mappings. While trying to put some Teichmüller
statements on a firm basis Ahlfors used the representation of a compact Riemann
surface W of genus g > 1 as a quotient surface D/G , where the unit disk D is the
universal covering surface of W and G is the Fuchsian group of covering Möbius
transformations of D . As discovered by Ahlfors, two quasiconformal mappings
f1 , f2 of W lifted to D and suitably normalized are identical on T = ∂D if and
only if f1 , f2 are in the same homotopy class. In this way the equivalence relation
between complex dilatations µk of fk compatible with the homotopy equivalence
of fk could be established which justifies the following definition of UTS.

Let B denote the unit ball in the space of measurable, complex-valued and
essentially bounded functions µ: D 7→ Ĉ and tk (k = 0, 1, 2) be fixed points
of T = ∂D . Given µ ∈ B there exists a unique quasiconformal self-mapping
fµ of D with complex dilatation µ whose homeomorphic extension to D keeps
the points tk fixed. We say the Ahlfors–Bers equivalence relation µ ∼ ν holds

between µ, ν ∈ B , if and only if fµ(t) = fν(t) for any t ∈ T . Then UTS is
defined as the unit ball B whose points are subdivided into equivalence classes
[µ] = {ν ∈ B : ν ∼ µ} .
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If fµ is a quasiconformal self-mapping of Ĉ which is conformal in D∗ = Ĉ\D ,
quasiconformal with complex dilatation µ in D and has tk ∈ T as fixed points,
then the identity fµ | D∗ = fν | D∗ sets up the same equivalence relation µ ∼ ν ,
cf. [8; p. 99]. Note that we may take as universal covering surface the upper half-
plane U instead of D and 0, 1,∞ as fixed points on its boundary, as it is done in
the excellent monograph [8], which is our standard book of reference.

We show in Section 1 that the equivalence relation in B can be also defined
without any reference to the boundary values (Theorem 1.1). This implies an an-
alytic criterion of equivalence (Proposition 1.2) and a potential-theoretic interpre-
tation of [µ] (Proposition 1.4). In Section 2 the class S(K) of K -quasiconformal
self-mappings of D with fixed points tk = exp(2kπi/3), k = 0, 1, 2, is introduced
and the location of points f(0), f ∈ S(K) , is investigated (Theorem 2.1). As
an application the quasisymmetry order of f | T for f ∈ S(K) can be estimated
(Theorem 2.2). Proposition 1.5 establishes a mutual correspondence between [µ]
and real-valued functions σ ∈ E0(M) . This means that σ is 2π -periodic, vanishes
at 2kπ/3, k = 0,±1,±2, . . . and x 7→ x + σ(x) is M -quasisymmetric on the real
axis R . Estimates of Fourier coefficients of σ ∈ E0(M) are found (Proposition 3.2,
Theorem 3.4). Moreover, a slight improvement of a result due to M. Nowak (The-
orem 3.5) is obtained.

The author would like to express his sincere thanks to the referee for very
helpful critical remarks and suggestions.

1. Some criteria of equivalence in B

Suppose µ ∈ B and put

(1.1) µ̃(z) =

{
µ(z), z ∈ D

0, z ∈ D∗ := Ĉ \ D.

The singular integral equation

(1.2) ϕ = µ̃ + µ̃S(ϕ),

where S denotes the Hilbert–Beurling transform, has a unique L2(C)-solution ϕµ

whose support is contained in D . Moreover,

(1.3) f̃µ(z) := z − 1

π
P.V.

∫∫

D

ϕµ(ζ) dξ dη

ζ − z
, ζ = ξ + iη,

is the unique quasiconformal self-mapping of Ĉ with complex dilatation µ̃(z) a.e.,
cf. [4], [9; p. 218].

With this notation we have the following
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Theorem 1.1. If µ, ν ∈ B then µ ∼ ν holds if and only if

(1.4) f̃µ | D∗ = f̃ν | D∗.

Proof. Suppose

(1.5) tk = exp(2kπi/3), k = 0, 1, 2,

are distinguished points on T = ∂D and fµ is the unique generalized homeomor-

phic solution of the Beltrami equation ∂f = µ̃∂f in Ĉ such that fµ(tk) = tk
(k = 0, 1, 2). As pointed out earlier, the equivalence relation µ ∼ ν holds if and
only if fµ | D∗ = fν | D∗ . Given µ ∈ B consider the class of all ν ∈ B such that

f̃ν | D∗ = f̃µ | D∗ . Then, for tk as in (1.5), the points

(1.6) wk = f̃ν(tk), k = 0, 1, 2,

are all different and do not depend on a particular choice of ν . Consider the
mapping f̃ν ◦ f−1

ν . It is obviously conformal in fν(D∗) . It is also conformal
in fν(D) since both fν , f̃ν are generalized homeomorphic solutions of the same
Beltrami equation in D . Now, fν(T) is a quasicircle, i.e. a removable set, cf. [9],
and therefore f̃ν ◦f−1

ν = h , where h is the Möbius transformation sending tk into
wk . Hence f̃ν | D∗ = h◦fν | D∗ for all ν ∼ µ and consequently, fν | D∗ = fµ | D∗

(i.e. ν ∼ µ) implies f̃ν | D∗ = f̃µ | D∗ . The converse statement follows from the

identity fν | D∗ = h−1 ◦ f̃ν | D∗ and this ends the proof.

As an immediate consequence we obtain

Proposition 1.2. If µ, ν ∈ B and ϕµ, ϕν are the L2 -solutions of (1.2) then

µ ∼ ν if and only if

(1.7)

∫∫

D

ϕµ(z)zk dx dy =

∫∫

D

ϕν(z)zk dx dy, z = x + iy, k = 0, 1, 2, . . . .

Proof. It follows from (1.3) that for µ ∈ B and z ∈ D∗

(1.8)

f̃µ(z) = z +
1

πz

∫∫

D

[1 + ζ/z + (ζ/z)2 + · · ·]ϕµ(ζ) dξ dη

= z +
∞∑

n=1

bnz−n, where ζ = ξ + iη and

bk+1 =
1

π

∫∫

D

ϕµ(ζ)ζk dξ dη, k = 0, 1, 2, . . . .

However, by Theorem 1.1 the coefficients bk are the same for any ν ∈ [µ] which
implies (1.7).
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While proving Theorem 1.1 we have seen that fµ | D∗ = h−1 ◦ f̃µ | D∗ .

Suppose now that Γ = f̃µ(T) and g is the conformal mapping of the inside of Γ

onto D sending wk ∈ Γ into tk as given by (1.5). With this notation we obtain

Corollary 1.3. The functions fµ , fµ defined in the Introduction can be

expressed by f̃µ as follows:

(1.9) fµ = g ◦ f̃µ | D, fµ | D∗ = h−1 ◦ f̃µ | D∗.

If Γ is a Jordan curve in the finite plane then the conformal mapping f of
D∗ onto the unbounded component of Ĉ \ Γ satisfying f(∞) = ∞ has the form

f(z) = az +
∞∑

n=0

bnz−n, z ∈ D∗.

The transfinite diameter d(Γ) of Γ is equal to |a| , whereas

b0 = b0(Γ) =
1

2πi

∫

|z|=R>1

f(z)z−1 dz =

∫

Γ

w
dθ

2π

is the conformal centre of gravity of Γ , cf. [12; Chapter IV, Problem 138]. Note
that for any subarc α of Γ the angular measure of f−1(α) generates a probability
measure

∫
α

dθ/2π on Γ .
A quasicircle Γ in the finite plane such that d(Γ) = 1, b0(Γ) = 0, is said to

be normalized. We have following

Proposition 1.4. There is a one-to-one correspondence between normalized

quasicircles Γ and the classes [µ] of the UTS.

Proof. If µ ∈ B then f̃µ(T) is a normalized quasicircle according to the
formula (1.3) and the class [µ] of the UTS is defined by the equivalence relation

(1.4). If Γ is a normalized quasicircle then the unbounded component of Ĉ \ Γ ,
due to the Riemann mapping theorem, is the image domain of D∗ under some f in
the familiar class

∑
with constant term b0 = 0. Since Γ is a quasicircle, it admits

a quasiconformal reflection J (cf. [9; p. 99]) which may serve in the construction
of a quasiconformal extension of f to D . If S: z 7→ 1/z then ϕ = J ◦ f ◦S maps
D quasiconformally onto the inside of Γ . Putting µ = ϕz/ϕz we easily verify
that

f̃µ =

{
ϕ(z), z ∈ D,
f(z), z ∈ D∗

defines the class [µ] of the UTS.

In what follows we need a counterpart of the classical Beurling–Ahlfors theo-
rem (cf. [3], or [9; pp. 81, 83]) for the unit disk which we quote as
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Lemma A [6; p. 21, 22]. An automorphism (= a sense preserving homeo-

morphic self-mapping) h of the unit circle T admits a quasiconformal extension

to the unit disk D if and only if there exists M such that the inequality

(1.10) |h(α1)|/|h(α2)| ≤ M

holds for all pairs α1, α2 of disjoint adjacent open subarcs α1, α2 of T with equal

length |α1| = |α2| .
An automorphism h of T satisfying (1.10) is said to be an M -quasisymmetric

function on T and then we write h ∈ Q(M) . If h(eiθ) = exp
(
iϕ(θ)

)
then ϕ(θ) =

θ + σ(θ) is an M -quasisymmetric function on R with the same M as in (1.10),
cf. [6; p. 21], i.e. ϕ satisfies the M -condition

(1.11) M−1 ≤ ϕ(θ + d) − ϕ(θ)

ϕ(θ) − ϕ(θ − d)
≤ M, 0 6= d, θ ∈ R.

The difference σ(θ) := ϕ(θ) − θ is a continuous, 2π -periodic function of bounded
variation which is represented by its Fourier series. It measures the deviation of
ϕ(θ) from the identity. Given ϕ(θ) satisfying (1.11) the Beurling–Ahlfors con-
struction leads to a quasiconformal extension of ϕ to the upper half-plane and
subsequent exponentiation yields a quasiconformal automorphism h of D which
satisfies h(0) = 0, cf. [6; p. 22].

The class of all 2π -periodic functions σ such that ϕ(θ) = θ + σ(θ) is M -

quasisymmetric on R , i.e. satisfies (1.11), is denoted by E(M) , whereas Q̃(M)
will stand for the class of ϕ(θ) = θ + σ(θ) with σ ∈ E(M) .

We shall also consider the subclass E0(M) = {σ ∈ E(M) : σ(2kπ/3) =
0, k = 0, 1, 2} and the corresponding subclasses Q0(M) ⊂ Q(M) , Q̃0(M) ⊂
Q̃(M) consisting of functions with tk and 2kπ/3, respectively, as fixed points.

Suppose Γ is a normalized quasicircle and µ ∈ B is associated with Γ as
in Proposition 1.4. Then F := f̃−1

µ is the conformal mapping of the outside

of Γ onto D∗ sending wk = f̃µ(tk) into tk , whereas the conformal mapping of
the inside of Γ onto D sending wk into tk may be denoted by f . Since Γ is
a quasicircle, there exists a quasiconformal reflection J in Γ and consequently
h := f ◦ J ◦ F−1 ◦ S , S: z 7→ 1/z , is a quasiconformal self-mapping of D . This
implies that h | T = f ◦ F−1 ∈ Q0(M) .

Conversely, given h ∈ Q0(M) , there exist a quasicircle γ and conformal

mappings f , F of components of Ĉ \ γ onto D and D∗ , respectively, such that
f ◦ F−1 ∈ Q0(M) . This is a consequence of the sewing theorem (cf. [11], or
[9; p. 92], where complementary half-planes instead of D , D∗ are considered).
After a suitable Möbius transformation γ becomes a normalized quasicircle Γ ,
while f ◦ F−1 remains unchanged. Note that f and F are conformal mappings
between Jordan domains and hence both mappings have homeomorphic extensions
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to the closures of relevant domains. This implies that f ◦ F−1 is a well-defined
automorphism of T coinciding with the given h . In this way, taking into account
Proposition 1.4, we obtain

Proposition 1.5. There is a one-to-one correspondence between the qua-

sisymmetric functions h ∈ Q0(M) on T and the classes [µ] of the UTS.

2. The classes S(K) and Q0(M)

As stated in Proposition 1.5, there is a one-to-one correspondence between the
classes [µ] of the UTS and the M -quasisymmetric functions h ∈ Q0(M) . Since
any h ∈ Q0(M) admits a K -quasiconformal extension on D with some K ≥ 1
and fixed points tk , the problem arises to establish a relation between M and K .
To this end we introduce the family S(K) of K -quasiconformal self-mappings f
of D with fixed points tk , where tk are defined by (1.5). In what follows we are
going to determine a majorant set N(K) for {z = f(0) : f ∈ S(K)} .

Suppose

K (r) =

∫ 1

0

[(1 − t2)(1 − r2t2)]−1/2 dt, 0 < r < 1,

is the Legendre normal integral, cf. [9; p. 60]. The functions

µ(r) =
π

2

K (
√

1 − r2 )

K (r)
, ϕK(r) = µ−1

(
µ(r)/K

)
, K > 0,

appear in many extremal problems concerning quasiconformal mappings, cf. [9;
pp. 60–68], including the solution of the problem just announced. The latter
problem can be stated as

Theorem 2.1. Suppose that K > 1 and x1 , x2 (−1 < x1 < 0 < x2 < 1)
are unique solutions of the equations

(2.1) u(x) = ϕ1/K(
√

3/2), u(x) = ϕK(
√

3/2),

where

u(x) = cos
(

arccot
1 + 2x√

3
− π

6

)
, x ∈ [−1, 1].

Then the set N0(K) := {z = f(0) : f ∈ S(K)} is contained in the compact subset

N(K) of D described as follows.

Denote by γx a circular arc with end-points t1 = exp(2πi/3) , t2 = t1 , which

intersects the real axis at x ∈ (−1, 1) and let A0 ⊂ D be the closed circular wedge

whose boundary ∂A0 is γx1
∪ γx2

. If A1 = exp(2πi/3)A0 , A2 = exp(4πi/3)A0

then N0(K) ⊂ N(K) := A0 ∩ A1 ∩ A2 .
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Proof. Let α0 be the smaller arc of T with end-points t1 , t2 . For any z ∈ γx

the harmonic measure ω(z, α0) satisfies

(2.3) ω(z, α0) = ω(x, α0) =
2

π
arccot

1 + 2x√
3

− 1

3
, x ∈ (−1, 1).

Since u(x) = cos 1
2πω(x, α0) , u(x) strictly increases from 0 to 1 for x ∈ (−1, 1).

For K > 1 and 0 < x < 1 we have ϕ1/K(x) < x < ϕK(x) , hence ϕ1/K(
√

3/2) <√
3/2 = u(0) < ϕK(

√
3/2). This implies the existence of unique solutions x1 , x2

of the equations (2.1).
If Γ is the family of arcs in D\{z} with end-points on α0 separating z from

T \ α0 then its module satisfies (cf. [5])

(2.4) M(Γ) =
1

π
µ
[
cos

(
1
2πω(z, α0)

)]
.

By (2.2)–(2.4) we arrive at

(2.5) M(Γ) =
1

π
µ
(
u(x)

)
.

If f ∈ S(K) then also f−1 ∈ S(K) ; here f−1 sends z into 0 and Γ into Γ′

separating 0 from T\α0 . From the equality M(Γ′) = 1
π
µ
(
cos(π/6)

)
= 1

π
µ(
√

3/2)
and the quasi-invariance of the module, we have for any z = f(0) ∈ γx

K−1µ(
√

3/2) ≤ µ
(
u(x)

)
≤ Kµ(

√
3/2).

Since µ(x) is strictly decreasing for x ∈ (0, 1), we obtain

(2.6) ϕ1/K(
√

3/2) ≤ u(x) ≤ ϕK(
√

3/2), x1 ≤ x ≤ x2.

It follows from the definition of A0 , together with (2.1), (2.2) and (2.4), that
f(z) = 0 is impossible for z ∈ D \ A0 . Similar reasoning can be applied to A1

and A2 so that ultimately f(z) = 0 implies z ∈ N(K) = A0 ∩ A1 ∩ A2 .

Remarks. 2.1.1. There exist fj ∈ S(K) such that fj(0) = xj , j = 1, 2. If
D+ is the upper half of D then fj are extremal quasiconformal mappings of the
quadrilateral D+(−1, 0, 1, t1) onto D+(−1, xj , 1, t1) extended by reflection to D .

2.1.2. The region N(K) is a circular hexagon whose boundary consists of
three “major” arcs, one being a subarc of γx2

bisected by x2 ∈ N0(K) , two others
arising under its rotations by the angles 2π/3, 4π/3. Three remaining “minor”
arcs are a subarc of γx1

bisected by x1 and its rotations. The vertices wk of
N(K) where the “major” and “minor” arcs meet are equidistant from the origin,
and the disk {z : |z| ≤ |wj |} , |wj | = r(K) , contains all the points z = f(0),
f ∈ S(K) .

We now prove
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Theorem 2.2. If f ∈ S(K) then f | T ∈ Q0(M) with M ≤ λ(KK0) , where

λ is the distortion function defined by the formula

(2.7) λ(K) = [µ−1(πK/2)]−2 − 1, cf. [9; p. 81],

and K0 = (1 + |z0|)(1 − |z0|)−1 , z0 = f(0) ∈ N0(K) . In particular, we may take

K0 =
(
1 + r(K)

)(
1 − r(K)

)−1
, r(K) being defined in Remark 2.1.2.

Proof. With w = g(z) = i(1 + z)(1 − z)−1 and z0 ∈ D define

F (z) = (1 − |z0|2)−1[(1 − z0)w + z0(1 − z0)w].

It is easily verified that the function

(2.8) z 7→ L(z, z0) = [F (z) − i][F (z) + i]−1 = g−1 ◦ F (z)

maps D quasiconformally onto itself so that L(z0, z0) = 0 and L(t, z0) = t for
any t ∈ T . Thus complex dilatations of L and F are identical and so

∂L

∂L
=

z0(1 − z0)

1 − z0

g′(z)

g′(z)
,

hence |∂L/∂L| = |z0| . Consequently, L is K0 -quasiconformal with

K0 = (1 + |z0|)(1 − |z0|)−1.

Given a K1 -quasiconformal self-mapping h of D satisfying h(0) = 0 the
inequality (1.10) takes the form |h(α1)|/|h(α2)| ≤ λ(K1) , where λ is defined by
(2.7), cf. [6; p. 21]. Hence h | T ∈ Q(M) with M ≤ λ(K1) .

Suppose now that f ∈ S(K) and f(0) = z0 so that |z0| ≤ r(K) < 1 by
Remark 2.1.2. The composite mapping h = L ◦ f has the same boundary values
as f , is KK0 -quasiconformal and satisfies h(0) = 0. Hence h | T ∈ Q(M) with
M ≤ λ(KK0) . On the other hand, h | T = f | T ∈ Q0(M) and consequently
f | T ∈ Q0(M) with M ≤ λ(KK0) , so we are done.

3. UTS and Fourier series

According to Proposition 1.5 there exists a one-to-one correspondence between
the classes [µ] of UTS and quasisymmetric functions h ∈ Q0(M) . On the other
hand, any h ∈ Q0(M) is determined by an M -quasisymmetric function ϕ(θ) = θ+

σ(θ) ∈ Q̃0(M) , or, equivalently, by σ ∈ E0(M) . Thus any continuous, 2π -periodic
function σ vanishing at 2kπ/3, k ∈ Z , such that x+σ(x) is M -quasisymmetric on
R may be considered as a class of UTS. A more general class E(M) , without the
normalization σ(2kπ/3) = 0, has been studied in [7]. We shall use two estimates
proved there and quoted here as
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Lemma B. If h is M -quasisymmetric on R and h(x) − x vanishes at the

end-points of an interval I then

(3.1) |h(x) − x| ≤ |I| M − 1

M + 1
for any x ∈ I,

and

(3.2)

∫

I

|h(x) − x| dx ≤ 1

2
|I|2 M − 1

M + 1
,

cf. [7; (2.7), (2.13)].

As an immediate consequence of (3.1) we obtain

Proposition 3.1. If σ ∈ E0(M) then for any x ∈ R

(3.3) |σ(x)| ≤ 2π

3

M − 1

M + 1
.

Any σ ∈ E(M) is the sum of its Fourier series:

σ(x) = a0/2 +

∞∑

n=1

(an cos nx + bn sin nx).

If we introduce complex Fourier coefficients cn = bn +ian then σ has the following
representation

(3.4) σ(x) = c0 +
1

2i

∞∑

n=1

(cneinx − cne−inx).

The inequality (3.2) implies at once

Proposition 3.2. If σ ∈ E0(M) then

(3.5) |c0| ≤
π

3

M − 1

M + 1
.

Proof. Since σ vanishes at the end-points of three adjacent intervals of length
2π/3, we obtain by (3.2)

|c0| =
∣∣∣

1

2π

∫ 2π

0

σ(x) dx
∣∣∣ ≤ 1

2π

∫ 2π

0

|σ(x)| dx ≤ 1

2π
·3 · 1

2

(2π

3

)2 M − 1

M + 1
=

π

3

M − 1

M + 1
.

In order to derive a bound for |cn| , n ∈ N , we need the following
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Lemma 3.3. If σ ∈ E(M) has the representation (3.4) then there exists

h ∈ Q̃(M) = id +E(M) such that h(0) = 0 , h(2π) = 2π and

(3.6) πn|cn| =

∫ 2π

0

h(x) cos x dx.

The proof will be done in three steps.
I. There exists h1 ∈ Q̃(M) such that

(3.7) πncn =

∫ 2π

0

e−inx dh1(x).

Proof. Multiplying both sides of (3.4) by e−inx and integrating over [0, 2π]
we obtain

(3.8) πncn = −
∫ 2π

0

σ(x) d(e−inx).

Integrating by parts we get

∫ 2π

0

[e−inx dσ(x) + σ(x) d(e−inx)] = [σ(x)e−inx]2π
0 = 0.

Since
∫ 2π

0
e−inx dx = 0, we obtain (3.7) by taking h1(x) = x + σ(x) and using

(3.8).

II. There exists h0 ∈ Q̃(M) such that

(3.9) πncn =

∫ 2π

0

e−it dh0(t).

Proof. We have by (3.7) for k ∈ N

πncn =

∫ 2π

0

e−inx dh1(x) =

∫ 2π+2kπ/n

2kπ/n

e−inx dh1(x)

=

∫ 2π

0

exp
[
−in

(
x +

2kπ

n

)]
dh1

(
x +

2kπ

n

)
=

∫ 2π

0

e−inx dh1

(
x +

2kπ

n

)
.

Hence, by taking k = 0, 1, . . . , n−1 and adding, we obtain πncn =
∫ 2π

0
e−inx dh2(x) ,

where

(3.10) h2(x) =
1

n

[
h1(x) + h1

(
x +

2π

n

)
+ · · · + h1

(
x +

2(n − 1)π

n

)]
.
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Since h1 ∈ Q̃(M) , it follows from (3.10) that

(3.11) h2(x + 2π/n) = h2(x) + 2π/n

and hence

∫ 2π

0

e−inx dh2(x) = n

∫ 2π/n

0

e−inx dh2(x) = n

∫ 2π

0

e−it dh2(t/n)

where 0 ≤ nx = t ≤ 2π . Note that by (3.11) the integrand does not change if x

increases by 2π/n . It is easily verified that h0(t) := nh2(t/n) ∈ Q̃(M) . Obviously
h0 is M -quasisymmetric on R , cf. [7; p. 227]. Moreover

h0(t + 2π) − h0(t) = n
[
h2(t/n + 2π/n) − h2(t/n)

]
= 2π

by (3.11). Thus h0 ∈ Q̃(M) and (3.9) follows.

III. We now prove (3.6). Putting cn = i|cn|eiα , α ∈ R , and using (3.9) we
obtain

πn|cn| = −ie−iαπncn = −i

∫ 2π

0

e−i(t+α) dh0(t)

= −i

∫ 2π+α

α

e−ix dh(x) = −i

∫ 2π

0

e−ix dh(x),

where x = t + α , h(x) = h0(t) . Thus

(3.12) πn|cn| =

∫ 2π

0

(− sin x) dh(x).

Integration by parts yields

∫ 2π

0

[
− sin x dh(x) + h(x) d(− sin x)

]
=

[
−h(x) sin x

]2π

0
= 0

and hence, because of (3.12), (3.6) follows. Since adding a constant to h(x) does
not change the right side in (3.6), we may assume that h(0) = 0, h(2π) = 2π .

We now prove the main result of this section, i.e.

Theorem 3.4. If x + σ(x) is M -quasisymmetric on R and σ has the

expansion (3.4) then

(3.13) n|cn| ≤ 2
M − 1

M + 1
.
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Proof. By (3.6) it is sufficient to show that for any h ∈ Q̃(M) satisfying
h(0) = 0 we have

(3.14)

∫ 2π

0

h(x) cos x dx ≤ 2π
M − 1

M + 1
.

Suppose x ∈ (0, π/2) and cos x = y . Then also cos(2π − x) = y , whereas
cos(π ± x) = −y . Thus putting

H(x) = h(x) − h(π − x) − h(π + x) + h(2π − x)

we obtain

(3.15)

∫ 2π

0

h(x) cos x dx =

∫ π/2

0

H(x) cos x dx.

Since h ∈ Q̃(M) , we have

(3.16) H(x) = π − [h(x + π) − h(x)] + π − [h(−x + π) − h(−x)].

The lower estimate of h(t + π) − h(t) for h ∈ Q̃(M) , t ∈ R , is the same as the
lower estimate of h(π) for h normalized by the conditions h(0) = 0, h(2π) = 2π .
Hence (cf. [2; p. 65]

(3.17)
2π

M + 1
≤ h(t + π) − h(t), t ∈ R.

It follows from (3.16) and (3.17) that

H(x) ≤ 2
[
π − 2π

M + 1

]
= 2π

M − 1

M + 1
.

Using this and (3.15) we obtain

∫ 2π

0

h(x) cos x dx ≤ 2π
M − 1

M + 1

∫ π/2

0

cos x dx = 2π
M − 1

M + 1

and (3.14) follows which ends the proof.

The inequality (3.13) enables us to improve slightly an estimate of the sum∑
|cn| as obtained by M. Nowak, cf. [10, (3.2)]. We have
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Theorem 3.5. If x + σ(x) is M -quasisymmetric on R and σ has the

expansion (3.4) then

(3.18)
∞∑

n=1

|cn| < π
√

2
∞∑

n=1

[( M

M + 1

)n

− 2−n
]1/2

.

Proof. As shown in [10, p. 98], we have an estimate

∞∑

n=2

|cn| ≤ π
√

2

∞∑

n=2

[( M

M + 1

)n

− 2−n
]1/2

.

From (3.13) we have

|c1| ≤ 2
M − 1

M + 1
< π

(M − 1

M + 1

)1/2

= π
√

2
( M

M + 1
− 1

2

)1/2

,

and (3.18) readily follows.
Note that (3.18) holds without the normalization σ(2kπ/3) = 0, k ∈ N .

It is plausible that one could improve the estimates (3.13), (3.18) by taking the
condition σ(2kπ/3) = 0 (k = 0, 1, 2) into account.
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[6] Krzyż, J. G.: Quasicircles and harmonic measure. - Ann. Acad. Sci. Fenn. Ser. A I Math.
12, 1987, 19–24.
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