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Abstract. The closure F of a k-quasidisk with 0 < k < 1 satisfies the Bernstein inequality

, n1+k
'z < a@”p“E’

where a = 27%e [AGH]. In this paper, we extend the above result to the case of the closure of a
c-John disk with an absolute constant a and a constant k£, 0 < k < 1, which depends only on
a John constant ¢. We also give a characterization of a bounded continuum which satisfies the
Bernstein inequality in terms of a normalized exterior conformal mapping.

1. Introduction

Let B denote the open unit disk in the complex plane C and D a bounded
Jordan domain in C. For the purpose of this paper we say that D is an open k-
quasidisk, 0 < k < 1, if one and hence each conformal mapping g: C\ B — C\ D
can be extended to a K -quasiconformal mapping of the extended complex plane
C where K = (1+k)/(1 —k). A continuum E C C is said to be a closed k-
quasidisk, if E = D where D is as above. Finally a bounded continuum E whose
complement in C is connected is said to be a closed 1-quasidisk.

A bounded simply connected domain D C C is said to be a c-John disk if
there exist a point zp € D and a constant ¢ > 1 such that each point z; € D can
be joined to zp by an arc v in D satisfying

0(v(z1,2)) < cd(z,0D)

for each z € v. We call zg a John center, c a John constant and v a c-John arc.
Thus the closure of a John disk is a closed 1-quasidisk. A quasidisk is a John disk.
But the converse is not true since a John disk need not even be a Jordan domain.

Suppose that E is a closed quasidisk. If g: C\ B — C\ E is conformal with
g(o0) = 00, then

g(w) =a_jw+ Z anw ", lw| > 1,
n=0
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and the number |a_;| is called the transfinite diameter of E, denoted by tr(E).
Let P, denote the class of polynomials p of degree at most n and

Iplle = max{|p(z)| : z € E}.

At first, we establish sufficient conditions for the Bernstein inequality. The
following beautiful inequality is due to Bernstein [C].

Lemma 1.1. Bernstein inequality: If E is the closure of a euclidean disk,
then
n

i le

Il <

for all p € P,.

In [AGH], Anderson, Gehring and Hinkkanen extended the above result to
the case where E is a closed k-quasidisk with 0 < k <1 as follows:

Lemma 1.2. If E is a closed k-quasidisk with 0 < k < 1, then for each
pE P,
195 < & 2o
where ¢; = 27 %e.

Since the closure E of a John disk is a closed 1-quasidisk, by Lemma 1.2 F

satisfies the inequality

n2

Pl < 5z o
p E_Qtr(E) DPlE,
a result originally first proved by Pommerenke [P2].
In this paper, we extend Lemma 1.2 with k£ € [0,1) to the case where E is

the closure of a John disk D, by using the quasidisk property (Theorem 2.1) for
a John disk.

Theorem 1.3. Suppose that D is a c-John disk with a John center zy, that
E is the closure of D and that p is a polynomial in z of degree n. Then

b

’ n
< g
sup Ip'(2)| < ad%,aD) Sup Ip(2)],

where a is an absolute constant and b is a constant in [1,2) which depends only
on c.
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In Theorem 1.3 we see that if E is the closure of a c-John disk with tr(E) =1,
then the Bernstein inequality

(1.4) sup P/ (2)] < an® sup Ip(2)|

holds for each polynomial p in z of degree n, where a and b, 1 < b < 2, depend
only on c.

We see in Remark 2.10 that there exists a set for which (1.4) holds with
a=>b=1, while D = int (F) is not connected and hence not a John disk.

Remark 1.5. Given bounded continuum FE, let G* be the component of
C\ E which contains co. Let = C\ G* and let g: C\ B — G* be a conformal
mapping with g(cc) = oco. Then E C F and from the proof of Lemma 1.2
in [AGH], we see that if 1 <b < 2 and if

(1.6) lg'(w)] = m(1 = Jw|7%)"~
for 1 <|w| <2+ 1, then

sup [p'(2)| < an® sup [p(2)|
F F

for each p € P,, where a depends only on b and tr(F).

Thus (1.6) is a sufficient condition for the Bernstein inequality to hold on a
bounded continuum F in C with connected complement which contains oo.

One of the main purposes of this paper is to show that (1.6) gives also a
necessary condition for the Bernstein inequality on the E (Theorem 1.9).

Lemma 1.7. Suppose that E is a bounded continuum in C for which (1.4)
holds for some constants a and b, 1 < b < 2 and for each polynomial p in z of
degree n. Then (1.4) holds with E replaced by F = C\ D* where D* is the
component of C\ E which contains oc.

Proof. Since D* contains oo, F' is a bounded continuum. Fix zg € F \ E
and let G be a component of F'\ E = (C\ E) \ D* which contains zy. If p is a
polynomial of degree n, then p’ is analytic in G and by the maximum principle

' (20)] < sup [p'(z)| < sup [p'(z)| < an’sup [p(z)| < an® sup |p(2)].
2€0G z2€F zeFE z€F
Therefore
sup [p'(2)| < an®sup |p(2)]. o
F F

Also we may assume without loss of generality that tr(E) = 1 by performing
a preliminary similarity mapping. Thus by Lemma 1.7 we assume F satisfies the
following hypothesis.



422 Kiwon Kim

Hypothesis 1.8. F is a bounded continuum in C with connected comple-
ment D* and tr(EF) = 1, a and b are constants such that 1 < b < 2 and such
that (1.4) holds for each polynomial p in z of degree n, and

o0
g(w) :w—i-Zanw_”, lw| > 1
n=0

maps B* = C \ B conformally onto D* so that g(co) = co.

Theorem 1.9. If FE satisfies Hypothesis 1.8, then for each constant c,
b<ec<2,
lg'(w)| = m(1 — w| %)

for 1 < |w| < v/2+ 1, where m is a constant which depends only on a,b, c.

Therefore, by Remark 1.5 and by Theorem 1.9 we obtain a characterization of
any bounded continuum which satisfies Hypothesis 1.8 in terms of the normalized
exterior mapping ¢.

2. The proof of Theorem 1.3

Gehring and Osgood show in [GO] that a domain D in C is uniform if and
only if it is quasiconformally decomposable, i.e., for each z;, zo € D there exists
a K-quasidisk Gy in D such that z;, 20 € Gy where K = K(D). We give
a geometric characterization of John disks which is the analogue of the above
property of uniform domains.

We say that a domain D in C has the quasidisk property if for some fixed
point zg = 2z9(D) € D and for each z; € D, there exists a K-quasidisk Gy in D
with zp,z1 € G1, where K = K (D).

Theorem 2.1. A bounded Jordan domain D in C is a c-John disk if and
only if it has the quasidisk property.

The proof of Theorem 2.1 depends on three lemmas.

Lemma 2.2 ([GHM, Theorem 4.1]). If D is a c-John disk with a John center
zo and if 7 is a hyperbolic geodesic which joins z; to zy for z; € D, then vy is a
b-John arc for some constant b which depends only on c.

Lemma 2.3 ([GH] and [J]). Suppose that D is a Jordan domain in C. If ~y
is a hyperbolic geodesic in D and if « is any curve which joins the end points of
~ in D, then

() < kl(a),

where k is an absolute constant, 4.5 < k < 17.5.
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Lemma 2.4. Let D be a c-John disk with a John center z, and let v be
a hyperbolic geodesic with zy as one of its endpoints. If z1,zo € v and if z;
separates zy and z5, then

((v(21,22)) < bmin(|z1 — 22|, d(21,0D))

where b is a constant which depends only on c.

Proof of Lemma 2.4. Fix z1, 29 € v. By Lemma 2.2,
(25) E(’y(zl, ZQ)) S b1 d(Zl, 8D)

for some constant b; which depends only on c.
If ‘21 — 22| Z d(Zl, 8D), then by (25)

(26) K(’y(zl,ZQ)) S b1 |21 - ZQ|.

If |21 — 22| < d(21,0D), then the segment [z1, 25| joining z; and zy lies in D
and

(2.7) K(’y(zl,ZQ)) < kl([z1, 22]) = k|21 — 29/,

by Lemma 2.3 for an absolute constant & > 0. Hence (2.5), (2.6) and (2.7)
complete the proof of Lemma 2.4 with b = max(b;, k). o

Proof of Theorem 2.1. Suppose that a bounded Jordan domain D in C is
a c-John disk with a John center zy. Fix z; € D and let v be the hyperbolic
geodesic joining zg and z; in D. Fix wi,wy € v labeled so that w; separates zg
and wsy in . Then by Lemma 2.4,

(y(wr, w2)) < blwy — ws

where b is a constant which depends only on c¢. Next if z € v, then z separates
zp and z; in v and by Lemma 2.4

311:1%)111 0(v(25,2)) < L(v(z,21)) < bd(z,0D).

Thus v satisfies conditions in (4.1) of [GO] with a3 = b3 = b and the construction
given on [GO, pp. 67-68] yields a K -quasidisk G; with desired properties, where
K:K(al,bl) :K(C)

Conversely, we assume that there exist a point zy5 € D and a constant K
such that for each z; € D, there is a K-quasidisk G; in D with 29,21 € G;.
Fix z; € D, choose a quasidisk G; in D corresponding to z; and let v be the
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hyperbolic geodesic joining zy and z; in G;. Then for all z € v we have a
constant a = a(K) > 1 such that

(2.8) ((v(z,21)) < alz — 2]
and
(2.9) anl(i)nl 0(v(25,2)) < ad(z,0G1) < ad(z,0D)

[GO, Corollary 4]. Next let
b= dia (D)
d(zp,0D) < 00

and let ¢ = 2a2b. We will show that

((v(2,21)) < cd(z,0D)

for all z € v and hence that D is a c-John disk. We consider two cases.
Suppose first that
|z — 20| < 3d(20,0D).

Then
d(z,0D) > d(z0,0D) — |z — 29| > 37d(20,0D)

and hence by (2.8)

((v(2,21)) < alz — 21| < adia (D) = abd(z, D)
<2abd(z,0D) < cd(z,0D).

Suppose next that
|z — 20| > 3d(20,0D).

If £(v(20,2)) < £(7(z,21)), then as above and by (2.9)

((v(z,21)) < adia (D) < abd(zy,dD) < 2ab|z — z|
< 2abl(v(z, 20)) < 2a*bd(z,0D) = cd(z,0D).

If £(v(20,2)) = £(7(2,21)), then by (2.9)
((v(2,21)) < ad(z,0D) < cd(z,0D). o

Proof of Theorem 1.3. Let zy be a John center of D and let {z;} be a
sequence in D which converges to a point wg € dD. Then by Theorem 2.1, for
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each j there exists a K-quasidisk G; in D with zg,z2; € G—J Also, since G—] is
connected, o

tr(G;) > 1|z — 2]
By Lemma 1.2

1+k pltk
< < 1 —==sup [p(2)| < de1————sup [p(2)],
G_j tI’(Gj) e |Zj - Zo| D
where k= (K —1)/(K+1) €0,1), K= K(c), and ¢; is in Lemma 1.2. There-
fore

/ . nkt1 nb
|p" (wo)| < lim 4¢y ——— sup |p(z)| < a——  sup |p(2)|
J—00 ‘Zj—ZO D |U)0—Z()| D
ca ™ uplp(z)
> G~ Sup [P(2)],
d(Zo,aD) D

where a is an absolute constant and b is a constant in [1,2) which depends only
on c. Then since [p’(z)]| satisfies the maximum principle, the proof of Theorem 1.3
is complete. o

Remark 2.10. The converse of Theorem 1.3 is false (i.e., a set F for which
such an inequality holds need not be the closure of a John disk). For example, let
E be any bounded continuum of the form

E={ Dj,
j=1

where D;, j = 1,...,n, are mutually disjoint euclidean disks with tr(D;) > 1
and 0D; N 0D;4; is a point for j = 1,2,...,n. Then E is not the closure of a
John disk because its interior is not connected. However, if p is a polynomial of
degree n, then by Lemma 1.1,

n

sup |p'(z)| = supsup |p'(2)| < sup —==sup |p(2)| < nsup [p(z)|.
E i D, i tr(Dj) D, E

Thus F satisfies the inequality.

3. The proof of Theorem 1.9
Let {p,} be the Faber polynomials for g, i.e.,

g/('LU) _ - > w—n—l
g(w) — 2 = nzopn( )

for z € E | (see [P1]).
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Lemma 3.1. If {p,} are the Faber polynomials for g, then

k
>~ pa2)] < Slos(k + 1).

n=1

Proof of Lemma 3.1. By the Cauchy—Schwarz inequality and [P1, p. 85],

o= (35 dmer) "(552)”

n=1 n=1 n=1
k 1 1/2 , k 1 1/2
< <4;ﬁ+1.248) (; 5)
N2k 1\ 1/2 ko
§<625;1 ) <;n) _25;71

Then since

we have
k

3" Hpa2)] < 5log(h+1).0

n=1

Lemma 3.2. If 1 <a < 2, then

> onthr <4l -1

n=1

for 0 <t<1.
Proof of Lemma 3.2. Let

Then
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Thus we have

> 1
(3.3) Z (a + _Tlatn) 4o

(n+1) (1—1t)
for 0 <t < 1. Next for x >0
D(z) = Var 2™ /2w 120
where 0 < 0(x) < 1 by Stirling’s formula on [A, p. 206]. Hence

F(a—l—n) (a+n>a+n—1/2 —(a—‘,—n) 0(a+n)/12(a+n)

F(’I’L 1 (TL + ]_)n—|—1 1/26 (n—|—1)60(n—|—1)/12(n—|—1)
n+1/2 a—1
a—1l+n+1 Zla+n no—1=1/12(n+1) ;—a+1
n +  on+1 n
(3.4) n+1/2 a—1
1 + 1+ a na—le—1-1/24
n+1 n
1 a—3/2
1+a—1 1+a—1 /na—16—25/24
n+1 n+1 ’
Since . ; X ] X
a —
1<1 — d ——<a—-< =
<1+ 71773 an 5 < a 5 <3
we have

1 n+1 1 a—3/2 9
(1 + 4 ) >1  and (1 + 4 ) > /2
n-+1

Thus by (3.4)

whence by (3.3)

for 0<t<l1.o
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Lemma 3.5. If FE satisfies Hypothesis 1.8, then for each constant c, b <
c <2,

otw) == = m(1 - )’

for z € E and 1 < |w| < oo, where m is a constant which depends only on a,b, c.

Proof of Lemma 3.5. Let {p,} be the Faber polynomial for g(w). Then by
[P1, p. 57]

1 =1, .
o) 7] |2 e
(3'6> oo (2Ft1_q 1 00
< PR O BB ACTE
k=0" n=2Fk k=0
where
ok+l_q 1
/ _ i —n
= Y
n=2F

Thus qx(z) is a polynomial of degree at most 28*1 — 1. Hence by Hypothesis 1.8
we get

(3.7) |4,(2)] < a2 = 1) sup [gx ()] < a(2"+)" sup [gx.(€)].
éeE (EE

Next by Lemma 3.1 we have

ok+1_q 1 ok+1_q 1
ax (=] > SPa(QuwT = > P ()] [w]™"
n=2k n=2k
(38) 2k+1_11 k k
S( 2. 5|pn<s>|)|w|—2 < 5log (2! — 14 1|
n=1

= (k+ 1)5log 2|w|™2" < 4(k + 1)|w| 2"
for £ € E. Hence by (3.6), (3.7) and (3.8),

L < S
)=~ 2 < 2l s s (9)
(3.9) < ia(2k+1)b4<k+1)|w|_2k

k=0

=32 2q(k + 1)2"w| .
k=0
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Next let
fl@) = (z+1)209"

for b<c<2and 0 <z <oo. Then f(0)=1, lim, .~ f(z) =0 and
f(z) = 20797 4 (2 +1)20797(h — ¢)log 2
= Q(b_c)x(l + (z 4+ 1)(b— ¢)log2).

Thus
F(0)=1+(b—c)log2>1—1log2 >0,

and f has a maximum at zy with

(o +1)(b—c) = _1022_
Therefore
max f = (zo + 1)2007 %
_ L ey _ 2T 270
(log2)(c —b) % Tog?
Since 2711982 = ¢=1 we have

1 ¢t <1.062
c—belog2 ~c—b’

fz) <

By the above and (3.9) we have

1 - b+2 kel —2" 17“ ke
k=0

On the other hand, by Lemma 3.2,

oo ,2Ftl_1

ng6|w| —2" < Z < nz;k
(3.11) < i(

|w| 1/2) +1)

i ol 7))

2k+1_1
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Therefore by (3.10) and (3.11) we have

1 < 68a(
lg(w) —z] ~ c—b

(3.12) 1 — |w|~1/2)=e.

Since

by (3.12) we have

for all z€ F and 1 < |w| < oo, where m = (¢ —b)/272a. o

Lemma 3.13. Suppose that g maps B* conformally onto D* with g(co) =
oo. Then

(319 LD ¢ ) < 42100

for 1 < |w| < 0.
Proof of Lemma 3.13. For the first half of (3.14), fix wy € B* and let

G' ={z€ D*:|z— g(wo)| < d(g(wo),0D*)} and G=g'G").
Then G and G’ are proper subdomains of C. Let

h(¢) = d(g(wo),dD*) ¢ + g(wo)

for |(| < 1. Then h is a conformal mapping of B onto G’ with h(0) = g(wo).
Since g~! o h is an analytic and univalent function of B onto G, by applying the
Koebe distortion theorem [P1, p. 22] to g~! o h we have

(3.15) g™ o h)(0)] < d(g" o h(0),9G).
Since g'(wo)(g~" 0 h)'(0) = d(g(wo), dD*), by (3.15) we have

(3.16) id(g f;f?i)’gf)*) < d(wy, 0G).

Thus since d(wg, 0G) < |wg| — 1, by (3.16) we obtain

wp), 0D*
(3.17) 1O <,




Necessary and sufficient conditions for the Bernstein inequality 431
Next for the second half of (3.14), fix wy € B* and let
Gi={weB*:|w—wy| < |wp| —1} and G| = g(Gy).
Then G; and G are proper subdomains of C. Let
h1(¢) = (lwo| — 1)¢ + wo
for |(| < 1. Then hy is a conformal mapping of B onto G; with hy(0) = wg.
Since goh, is an analytic and univalent function of B onto G;’, again by applying
the Koebe distortion theorem [P1, p. 22] to g o hy, we have
(3.18) L(gohi)(0)] < d(go hi(0),0G}).
Since (g o h1)'(0) = g'(wo)(|we| — 1), by (3.18) we have
(3.19) 119" (wo)|(Jwo| — 1) < d(g(wo), dGY).

Thus since d(g(wp), dG}) < d(g(wo), D*), by (3.19) we obtain

d(g(wo),(?D*)
lwol — 1

(3.20) 19/ (wo)| < 4

Therefore we obtain (3.14) from (3.17) and (3.20). o
Proof of Theorem 1.9. For a fixed w € B*, we choose z € E such that
l9(w) — z| = d(g(w),dD").

Then by Lemma 3.13 and Lemma 3.5 we have

i w) > 1d(g(w),0D*) 1 |g(w) — 2|

— 4 Jwl -1 4 |w|l—-1
m _ 1 m (1 —|w|=He 1+ |w| ™!

> (1— Lye =

S e Sy o T
m ooy 1A |w|Tt 1

e e C e et B
4 (1 + fw|=1)e |w]

> mmy (1= Jw|~2)*

for 1 < |w| < v/2+ 1, where m is a constant in Lemma 3.5 and m; = 107!, o
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Remark 3.21. With Lemma 1.2, Theorem 1.3, Remark 1.5 and Theorem 1.9
we can summarize the following facts:

Suppose that E is a bounded continuum in C with tr(E) = 1 such that
D* = C\ E is connected. Then
(1) (1.4) always holds with b = 2.
(2) (1.4) holds with 1 <b < 2 if F is the closure of a John disk.
(3) (1.4) holds with 1 < b < 2 if

9" (w)| = m(1 — |w| )"~

for 1 < |w| < V2 +1.
(4) (1.4) holds with 1 < b < 2 only if for each constant ¢, b < ¢ < 2,

|g/(w)| >m(l— |w|—2>c—1

for 1 < |w| < V2 +1.

Therefore, by Remark 3.21 (3) and (4), we have the following characterization
of a bounded continuum which satisfies Hypothesis 1.8 in terms of the normalized
exterior conformal mapping condition.

Corollary 3.22. (1.4) holds for some 1 < b < 2 if and only if there exists a
constant ¢, 1 <c < 2,
g (w)] = m(1 = w| =)

for 1 < |w| < v/2+1. Here b and ¢ depend on each other.
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