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Abstract. The closure E of a k -quasidisk with 0 ≤ k < 1 satisfies the Bernstein inequality

‖p′‖E ≤ a
n1+k

tr(E)
‖p‖E ,

where a = 2−ke [AGH]. In this paper, we extend the above result to the case of the closure of a
c -John disk with an absolute constant a and a constant k , 0 ≤ k < 1 , which depends only on
a John constant c . We also give a characterization of a bounded continuum which satisfies the
Bernstein inequality in terms of a normalized exterior conformal mapping.

1. Introduction

Let B denote the open unit disk in the complex plane C and D a bounded
Jordan domain in C . For the purpose of this paper we say that D is an open k -

quasidisk, 0 ≤ k < 1, if one and hence each conformal mapping g: C \ B → C \ D
can be extended to a K -quasiconformal mapping of the extended complex plane
C where K = (1 + k)/(1 − k) . A continuum E ⊂ C is said to be a closed k -

quasidisk, if E = D where D is as above. Finally a bounded continuum E whose
complement in C is connected is said to be a closed 1-quasidisk.

A bounded simply connected domain D ⊂ C is said to be a c-John disk if
there exist a point z0 ∈ D and a constant c ≥ 1 such that each point z1 ∈ D can
be joined to z0 by an arc γ in D satisfying

ℓ
(

γ(z1, z)
)

≤ c d(z, ∂D)

for each z ∈ γ . We call z0 a John center, c a John constant and γ a c-John arc.
Thus the closure of a John disk is a closed 1-quasidisk. A quasidisk is a John disk.
But the converse is not true since a John disk need not even be a Jordan domain.

Suppose that E is a closed quasidisk. If g: C \ B → C \ E is conformal with
g(∞) = ∞ , then

g(w) = a−1w +
∞
∑

n=0

anw−n, |w| > 1,
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and the number |a−1| is called the transfinite diameter of E , denoted by tr(E) .

Let Pn denote the class of polynomials p of degree at most n and

‖p‖E = max
{

|p(z)| : z ∈ E
}

.

At first, we establish sufficient conditions for the Bernstein inequality. The
following beautiful inequality is due to Bernstein [C].

Lemma 1.1. Bernstein inequality : If E is the closure of a euclidean disk,

then

‖p′‖E ≤ n

tr(E)
‖p‖E

for all p ∈ Pn .

In [AGH], Anderson, Gehring and Hinkkanen extended the above result to
the case where E is a closed k -quasidisk with 0 ≤ k ≤ 1 as follows:

Lemma 1.2. If E is a closed k -quasidisk with 0 ≤ k ≤ 1 , then for each

p ∈ Pn

‖p′‖E ≤ c1
n1+k

tr(E)
‖p‖E ,

where c1 = 2−ke .

Since the closure E of a John disk is a closed 1-quasidisk, by Lemma 1.2 E
satisfies the inequality

‖p′‖E ≤ e

2

n2

tr(E)
‖p‖E ,

a result originally first proved by Pommerenke [P2].

In this paper, we extend Lemma 1.2 with k ∈ [0, 1) to the case where E is
the closure of a John disk D , by using the quasidisk property (Theorem 2.1) for
a John disk.

Theorem 1.3. Suppose that D is a c-John disk with a John center z0 , that

E is the closure of D and that p is a polynomial in z of degree n . Then

sup
E

|p′(z)| ≤ a
nb

d(z0, ∂D)
sup
E

|p(z)|,

where a is an absolute constant and b is a constant in [1, 2) which depends only

on c .
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In Theorem 1.3 we see that if E is the closure of a c-John disk with tr(E) = 1,
then the Bernstein inequality

(1.4) sup
E

|p′(z)| ≤ anb sup
E

|p(z)|

holds for each polynomial p in z of degree n , where a and b , 1 ≤ b < 2, depend
only on c .

We see in Remark 2.10 that there exists a set for which (1.4) holds with
a = b = 1, while D = int (E) is not connected and hence not a John disk.

Remark 1.5. Given bounded continuum E , let G∗ be the component of
C \E which contains ∞ . Let F = C \G∗ and let g: C \B → G∗ be a conformal
mapping with g(∞) = ∞ . Then E ⊂ F and from the proof of Lemma 1.2
in [AGH], we see that if 1 ≤ b < 2 and if

(1.6) |g′(w)| ≥ m(1 − |w|−2)b−1

for 1 < |w| <
√

2 + 1, then

sup
F

|p′(z)| ≤ anb sup
F

|p(z)|

for each p ∈ Pn where a depends only on b and tr(F ) .

Thus (1.6) is a sufficient condition for the Bernstein inequality to hold on a
bounded continuum E in C with connected complement which contains ∞ .

One of the main purposes of this paper is to show that (1.6) gives also a
necessary condition for the Bernstein inequality on the E (Theorem 1.9).

Lemma 1.7. Suppose that E is a bounded continuum in C for which (1.4)
holds for some constants a and b , 1 ≤ b < 2 and for each polynomial p in z of

degree n . Then (1.4) holds with E replaced by F = C \ D∗ where D∗ is the

component of C \ E which contains ∞ .

Proof. Since D∗ contains ∞ , F is a bounded continuum. Fix z0 ∈ F \ E
and let G be a component of F \ E = (C \ E) \ D∗ which contains z0 . If p is a
polynomial of degree n , then p′ is analytic in G and by the maximum principle

|p′(z0)| ≤ sup
z∈∂G

|p′(z)| ≤ sup
z∈E

|p′(z)| ≤ anb sup
z∈E

|p(z)| ≤ anb sup
z∈F

|p(z)|.

Therefore
sup
F

|p′(z)| ≤ anb sup
F

|p(z)|.

Also we may assume without loss of generality that tr(E) = 1 by performing
a preliminary similarity mapping. Thus by Lemma 1.7 we assume E satisfies the
following hypothesis.
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Hypothesis 1.8. E is a bounded continuum in C with connected comple-
ment D∗ and tr(E) = 1, a and b are constants such that 1 ≤ b < 2 and such
that (1.4) holds for each polynomial p in z of degree n , and

g(w) = w +

∞
∑

n=0

anw−n, |w| > 1

maps B∗ = C \ B conformally onto D∗ so that g(∞) = ∞ .

Theorem 1.9. If E satisfies Hypothesis 1.8 , then for each constant c ,

b < c < 2 ,

|g′(w)| ≥ m(1 − |w|−2)c−1

for 1 < |w| <
√

2 + 1 , where m is a constant which depends only on a, b, c .

Therefore, by Remark 1.5 and by Theorem 1.9 we obtain a characterization of
any bounded continuum which satisfies Hypothesis 1.8 in terms of the normalized
exterior mapping g .

2. The proof of Theorem 1.3

Gehring and Osgood show in [GO] that a domain D in C is uniform if and
only if it is quasiconformally decomposable, i.e., for each z1, z2 ∈ D there exists
a K -quasidisk G0 in D such that z1, z2 ∈ G0 where K = K(D) . We give
a geometric characterization of John disks which is the analogue of the above
property of uniform domains.

We say that a domain D in C has the quasidisk property if for some fixed
point z0 = z0(D) ∈ D and for each z1 ∈ D , there exists a K -quasidisk G1 in D
with z0, z1 ∈ G1 , where K = K(D) .

Theorem 2.1. A bounded Jordan domain D in C is a c-John disk if and

only if it has the quasidisk property.

The proof of Theorem 2.1 depends on three lemmas.

Lemma 2.2 ([GHM, Theorem 4.1]). If D is a c-John disk with a John center

z0 and if γ is a hyperbolic geodesic which joins z1 to z0 for z1 ∈ D , then γ is a

b -John arc for some constant b which depends only on c .

Lemma 2.3 ([GH] and [J]). Suppose that D is a Jordan domain in C . If γ
is a hyperbolic geodesic in D and if α is any curve which joins the end points of

γ in D , then

ℓ(γ) ≤ kℓ(α),

where k is an absolute constant, 4.5 ≤ k ≤ 17.5 .



Necessary and sufficient conditions for the Bernstein inequality 423

Lemma 2.4. Let D be a c-John disk with a John center z0 and let γ be

a hyperbolic geodesic with z0 as one of its endpoints. If z1, z2 ∈ γ and if z1

separates z0 and z2 , then

ℓ
(

γ(z1, z2)
)

≤ b min
(

|z1 − z2|, d(z1, ∂D)
)

where b is a constant which depends only on c .

Proof of Lemma 2.4. Fix z1, z2 ∈ γ . By Lemma 2.2,

(2.5) ℓ
(

γ(z1, z2)
)

≤ b1 d(z1, ∂D)

for some constant b1 which depends only on c .
If |z1 − z2| ≥ d(z1, ∂D) , then by (2.5)

(2.6) ℓ
(

γ(z1, z2)
)

≤ b1 |z1 − z2|.

If |z1 − z2| < d(z1, ∂D) , then the segment [z1, z2] joining z1 and z2 lies in D
and

(2.7) ℓ
(

γ(z1, z2)
)

≤ kℓ([z1, z2]) = k|z1 − z2|,

by Lemma 2.3 for an absolute constant k > 0. Hence (2.5), (2.6) and (2.7)
complete the proof of Lemma 2.4 with b = max(b1, k) .

Proof of Theorem 2.1. Suppose that a bounded Jordan domain D in C is
a c-John disk with a John center z0 . Fix z1 ∈ D and let γ be the hyperbolic
geodesic joining z0 and z1 in D . Fix w1, w2 ∈ γ labeled so that w1 separates z0

and w2 in γ . Then by Lemma 2.4,

ℓ
(

γ(w1, w2)
)

≤ b|w1 − w2|

where b is a constant which depends only on c . Next if z ∈ γ , then z separates
z0 and z1 in γ and by Lemma 2.4

min
j=0,1

ℓ
(

γ(zj, z)
)

≤ ℓ
(

γ(z, z1)
)

≤ bd(z, ∂D).

Thus γ satisfies conditions in (4.1) of [GO] with a1 = b1 = b and the construction
given on [GO, pp. 67–68] yields a K -quasidisk G1 with desired properties, where
K = K(a1, b1) = K(c) .

Conversely, we assume that there exist a point z0 ∈ D and a constant K
such that for each z1 ∈ D , there is a K -quasidisk G1 in D with z0, z1 ∈ G1 .
Fix z1 ∈ D , choose a quasidisk G1 in D corresponding to z1 and let γ be the
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hyperbolic geodesic joining z0 and z1 in G1 . Then for all z ∈ γ we have a
constant a = a(K) ≥ 1 such that

(2.8) ℓ
(

γ(z, z1)
)

≤ a|z − z1|

and

(2.9) min
j=0,1

ℓ
(

γ(zj, z)
)

≤ ad(z, ∂G1) ≤ ad(z, ∂D)

[GO, Corollary 4]. Next let
b = dia (D)

d(z0, ∂D) < ∞
and let c = 2a2b . We will show that

ℓ
(

γ(z, z1)
)

≤ cd(z, ∂D)

for all z ∈ γ and hence that D is a c-John disk. We consider two cases.
Suppose first that

|z − z0| ≤ 1
2
d(z0, ∂D).

Then
d(z, ∂D) ≥ d(z0, ∂D) − |z − z0| ≥ 1

2
rd(z0, ∂D)

and hence by (2.8)

ℓ
(

γ(z, z1)
)

≤ a|z − z1| ≤ a dia (D) = ab d(z0, ∂D)

≤ 2ab d(z, ∂D) ≤ cd(z, ∂D).

Suppose next that
|z − z0| ≥ 1

2d(z0, ∂D).

If ℓ
(

γ(z0, z)
)

≤ ℓ
(

γ(z, z1)
)

, then as above and by (2.9)

ℓ
(

γ(z, z1)
)

≤ adia (D) ≤ abd(z0, ∂D) ≤ 2ab|z − z0|
≤ 2abℓ

(

γ(z, z0)
)

≤ 2a2bd(z, ∂D) = cd(z, ∂D).

If ℓ
(

γ(z0, z)
)

≥ ℓ
(

γ(z, z1)
)

, then by (2.9)

ℓ
(

γ(z, z1)
)

≤ ad(z, ∂D) ≤ cd(z, ∂D).

Proof of Theorem 1.3. Let z0 be a John center of D and let {zi} be a
sequence in D which converges to a point w0 ∈ ∂D . Then by Theorem 2.1, for
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each j there exists a K -quasidisk Gj in D with z0, zj ∈ Gj . Also, since Gj is
connected,

tr(Gj) ≥ 1
4 |zj − z0|.

By Lemma 1.2

|p′(zj)| ≤ sup
Gj

|p′(z)| ≤ c1
n1+k

tr(Gj)
sup
Gj

|p(z)| ≤ 4c1
n1+k

|zj − z0|
sup
D

|p(z)|,

where k = (K − 1)/(K + 1) ∈ [0, 1), K = K(c) , and c1 is in Lemma 1.2. There-
fore

|p′(w0)| ≤ lim
j→∞

4c1
nk+1

|zj − z0|
sup
D

|p(z)| ≤ a
nb

|w0 − z0|
sup
D

|p(z)|

≤ a
nb

d(z0, ∂D)
sup
D

|p(z)|,

where a is an absolute constant and b is a constant in [1, 2) which depends only
on c . Then since |p′(z)| satisfies the maximum principle, the proof of Theorem 1.3
is complete.

Remark 2.10. The converse of Theorem 1.3 is false (i.e., a set E for which
such an inequality holds need not be the closure of a John disk). For example, let
E be any bounded continuum of the form

E =
n
⋃

j=1
Dj ,

where Dj , j = 1, . . . , n , are mutually disjoint euclidean disks with tr(Dj) ≥ 1
and ∂Dj ∩ ∂Dj+1 is a point for j = 1, 2, . . . , n . Then E is not the closure of a
John disk because its interior is not connected. However, if p is a polynomial of
degree n , then by Lemma 1.1,

sup
E

|p′(z)| = sup
j

sup
Dj

|p′(z)| ≤ sup
j

n

tr(Dj)
sup
Dj

|p(z)| ≤ n sup
E

|p(z)|.

Thus E satisfies the inequality.

3. The proof of Theorem 1.9

Let {pn} be the Faber polynomials for g , i.e.,

g′(w)

g(w) − z
=

∞
∑

n=0

pn(z)w−n−1

for z ∈ E , (see [P1]).
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Lemma 3.1. If {pn} are the Faber polynomials for g , then

k
∑

n=1

1

n
|pn(z)| ≤ 5 log(k + 1).

Proof of Lemma 3.1. By the Cauchy–Schwarz inequality and [P1, p. 85],

k
∑

n=1

1

n
|pn(z)| ≤

( k
∑

n=1

1

n
|pn(z)|2

)1/2( k
∑

n=1

1

n

)1/2

≤
(

4

k
∑

n=1

1

n
+ 1.248

)1/2( k
∑

n=1

1

n

)1/2

≤
(

6.25

k
∑

n=1

1

n

)1/2( k
∑

n=1

1

n

)1/2

= 2.5

k
∑

n=1

1

n
.

Then since

k
∑

n=1

1

n
=

k
∑

n=1

n + 1

n

∫ n+1

n

1

n + 1
dt ≤

k
∑

n=1

2

∫ n+1

n

1

t
dt

= 2

∫ k+1

1

1

t
dt = 2 log(k + 1),

we have
k

∑

n=1

1

n
|pn(z)| ≤ 5 log(k + 1).

Lemma 3.2. If 1 ≤ a < 2 , then

∞
∑

n=1

na−1tn ≤ 4(1 − t)−a

for 0 ≤ t < 1 .

Proof of Lemma 3.2. Let

f(t) =
1

(1 − t)a
.

Then
f (n)(0)

n!
=

a(a + 1) · · · (a + n − 1)

n!
=

Γ(a + n)

Γ(a)Γ(n + 1)
.
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Thus we have

(3.3)
∞
∑

n=1

Γ(a + n)

Γ(a)Γ(n + 1)
tn <

1

(1 − t)a

for 0 ≤ t < 1. Next for x > 0

Γ(x) =
√

2π xx−1/2e−xeθ(x)/12x,

where 0 < θ(x) < 1 by Stirling’s formula on [A, p. 206]. Hence

(3.4)

Γ(a + n)

Γ(n + 1)
=

(a + n)a+n−1/2e−(a+n)eθ(a+n)/12(a+n)

(n + 1)n+1−1/2e−(n+1)eθ(n+1)/12(n+1)

≥
(

a − 1 + n + 1

n + 1

)n+1/2(
a + n

n

)a−1

na−1e−1/12(n+1)e−a+1

≥
(

1 +
a − 1

n + 1

)n+1/2(

1 +
a

n

)a−1

na−1e−1−1/24

≥
(

1 +
a − 1

n + 1

)n+1(

1 +
a − 1

n + 1

)a−3/2

na−1e−25/24.

Since

1 ≤ 1 +
a − 1

n + 1
<

3

2
and −1

2
≤ a − 3

2
<

1

2
,

we have

(

1 +
a − 1

n + 1

)n+1

≥ 1 and

(

1 +
a − 1

n + 1

)a−3/2

≥
√

2

3
.

Thus by (3.4)

na−1 ≤
√

3

2
e25/24 Γ(a + n)

Γ(n + 1)
≤ 4

Γ(a + n)

Γ(a)Γ(n + 1)
,

whence by (3.3)

∞
∑

n=1

na−1tn ≤ 4

∞
∑

n=1

Γ(a + n)

Γ(a)Γ(n + 1)
tn ≤ 4(1 − t)−a

for 0 ≤ t < 1.
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Lemma 3.5. If E satisfies Hypothesis 1.8 , then for each constant c , b <
c < 2 ,

|g(w) − z| ≥ m
(

1 − 1

|w|
)c

for z ∈ E and 1 < |w| < ∞ , where m is a constant which depends only on a, b, c .

Proof of Lemma 3.5. Let {pn} be the Faber polynomial for g(w) . Then by
[P1, p. 57]

(3.6)

1

|g(w)− z| =

∣

∣

∣

∣

∞
∑

n=1

1

n
p′n(z)w−n

∣

∣

∣

∣

≤
∞
∑

k=0

∣

∣

∣

∣

2k+1
−1

∑

n=2k

1

n
p′n(z)w−n

∣

∣

∣

∣

=

∞
∑

k=0

|q′k(z)|,

where

q′k(z) =
2k+1

−1
∑

n=2k

1

n
p′n(z)w−n.

Thus qk(z) is a polynomial of degree at most 2k+1 − 1. Hence by Hypothesis 1.8
we get

(3.7) |q′k(z)| ≤ a(2k+1 − 1)b sup
ξ∈E

|qk(ξ)| ≤ a(2k+1)b sup
ξ∈E

|qk(ξ)|.

Next by Lemma 3.1 we have

(3.8)

|qk(ξ)| =

∣

∣

∣

∣

2k+1
−1

∑

n=2k

1

n
pn(ξ)w−n

∣

∣

∣

∣

≤
2k+1

−1
∑

n=2k

1

n
|pn(ξ)| |w|−n

≤
(2k+1

−1
∑

n=1

1

n
|pn(ξ)|

)

|w|−2k ≤ 5 log (2k+1 − 1 + 1)|w|−2k

= (k + 1)5 log 2|w|−2k ≤ 4(k + 1)|w|−2k

for ξ ∈ E . Hence by (3.6), (3.7) and (3.8),

(3.9)

1

|g(w)− z| =

∞
∑

k=0

|q′k(z)| ≤
∞
∑

k=0

a(2k+1)b sup
ξ∈E

|qk(ξ)|

≤
∞
∑

k=0

a(2k+1)b4(k + 1)|w|−2k

=
∞
∑

k=0

2b+2a(k + 1)2kb|w|−2k

.
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Next let
f(x) = (x + 1)2(b−c)x

for b < c < 2 and 0 ≤ x < ∞ . Then f(0) = 1, limx→∞ f(x) = 0 and

f ′(x) = 2(b−c)x + (x + 1)2(b−c)x(b − c)log 2

= 2(b−c)x
(

1 + (x + 1)(b − c)log 2
)

.

Thus
f ′(0) = 1 + (b − c)log 2 > 1 − log 2 > 0,

and f has a maximum at x0 with

(x0 + 1)(b − c) = − 1

log 2
.

Therefore

max f = (x0 + 1)2(b−c)x0

=
1

(log 2)(c − b)
2(b−c)(x0+1)2(c−b) =

2(c−b)

c − b

2−1/log 2

log 2
.

Since 2−1/log 2 = e−1 , we have

f(x) ≤ 1

c − b

2c−b

e log 2
<

1.062

c − b
.

By the above and (3.9) we have

(3.10)
1

|g(w)− z| ≤
∞
∑

k=0

2b+2af(k)2kc|w|−2k

<
17a

c − b

∞
∑

k=0

2kc|w|−2k

.

On the other hand, by Lemma 3.2,

(3.11)

∞
∑

k=0

2kc|w|−2k ≤
∞
∑

k=0

(2k+1
−1

∑

n=2k

nc−1
(

|w|−1/2
)2k+1

)

≤
∞
∑

k=0

(2k+1
−1

∑

n=2k

nc−1
(

|w|−1/2
)n

)

=

∞
∑

n=1

nc−1(|w|−1/2)n < 4(1 − |w|−1/2)−c.
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Therefore by (3.10) and (3.11) we have

(3.12)
1

|g(w) − z| ≤
68a

c − b
(1 − |w|−1/2)−c.

Since

1 − |w|−1/2 =
1 − |w|−1

1 + |w|−1/2
≥ 1 − |w|−1

2
=

1

2

( |w| − 1

|w|
)

,

by (3.12) we have

|g(w) − z| ≥ m
(

1 − 1

|w|
)c

for all z ∈ E and 1 < |w| < ∞ , where m = (c − b)/272a.

Lemma 3.13. Suppose that g maps B∗ conformally onto D∗ with g(∞) =
∞ . Then

(3.14)
1

4

d(g(w), ∂D∗)

|w| − 1
≤ |g′(w)| ≤ 4

d
(

g(w), ∂D∗
)

|w| − 1

for 1 < |w| < ∞ .

Proof of Lemma 3.13. For the first half of (3.14), fix w0 ∈ B∗ and let

G′ =
{

z ∈ D∗ : |z − g(w0)| < d(g(w0), ∂D∗)
}

and G = g−1(G′).

Then G and G′ are proper subdomains of C . Let

h(ζ) = d
(

g(w0), ∂D∗
)

ζ + g(w0)

for |ζ| < 1. Then h is a conformal mapping of B onto G′ with h(0) = g(w0) .
Since g−1 ◦ h is an analytic and univalent function of B onto G , by applying the
Koebe distortion theorem [P1, p. 22] to g−1 ◦ h we have

(3.15) 1
4 |(g

−1 ◦ h)′(0)| ≤ d
(

g−1 ◦ h(0), ∂G
)

.

Since g′(w0)(g
−1 ◦ h)′(0) = d

(

g(w0), ∂D∗
)

, by (3.15) we have

(3.16)
1

4

d
(

g(w0), ∂D∗
)

|g′(w0)|
≤ d(w0, ∂G).

Thus since d(w0, ∂G) ≤ |w0| − 1, by (3.16) we obtain

(3.17)
1

4

d
(

g(w0), ∂D∗
)

|w0| − 1
≤ |g′(w0)|.
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Next for the second half of (3.14), fix w0 ∈ B∗ and let

G1 =
{

w ∈ B∗ : |w − w0| < |w0| − 1
}

and G′

1 = g(G1).

Then G1 and G′

1 are proper subdomains of C . Let

h1(ζ) = (|w0| − 1)ζ + w0

for |ζ| < 1. Then h1 is a conformal mapping of B onto G1 with h1(0) = w0 .
Since g◦h1 is an analytic and univalent function of B onto G1

′ , again by applying
the Koebe distortion theorem [P1, p. 22] to g ◦ h1 , we have

(3.18) 1
4 |(g ◦ h1)

′(0)| ≤ d
(

g ◦ h1(0), ∂G′

1

)

.

Since (g ◦ h1)
′(0) = g′(w0)(|w0| − 1), by (3.18) we have

(3.19) 1
4
|g′(w0)|(|w0| − 1) ≤ d

(

g(w0), ∂G′

1

)

.

Thus since d
(

g(w0), ∂G′

1

)

≤ d
(

g(w0), ∂D∗
)

, by (3.19) we obtain

(3.20) |g′(w0)| ≤ 4
d
(

g(w0), ∂D∗
)

|w0| − 1
.

Therefore we obtain (3.14) from (3.17) and (3.20).

Proof of Theorem 1.9. For a fixed w ∈ B∗ , we choose z ∈ E such that

|g(w)− z| = d
(

g(w), ∂D∗
)

.

Then by Lemma 3.13 and Lemma 3.5 we have

|g′(w)| ≥ 1

4

d
(

g(w), ∂D∗
)

|w| − 1
=

1

4

|g(w)− z|
|w| − 1

≥ m

4
(1 − |w|−1)c 1

|w| − 1
=

m

4

(1 − |w|−1)c

(1 − |w|−2)

1 + |w|−1

|w|

=
m

4
(1 − |w|−2)c−1 1 + |w|−1

(1 + |w|−1)c

1

|w|
≥ mm1(1 − |w|−2)c−1

for 1 < |w| <
√

2 + 1, where m is a constant in Lemma 3.5 and m1 = 10−1 .
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Remark 3.21. With Lemma 1.2, Theorem 1.3, Remark 1.5 and Theorem 1.9
we can summarize the following facts:

Suppose that E is a bounded continuum in C with tr(E) = 1 such that
D∗ = C \ E is connected. Then

(1) (1.4) always holds with b = 2.
(2) (1.4) holds with 1 ≤ b < 2 if E is the closure of a John disk.
(3) (1.4) holds with 1 ≤ b < 2 if

|g′(w)| ≥ m(1 − |w|−2)b−1

for 1 < |w| <
√

2 + 1.
(4) (1.4) holds with 1 ≤ b < 2 only if for each constant c , b < c < 2,

|g′(w)| ≥ m(1 − |w|−2)c−1

for 1 < |w| <
√

2 + 1.

Therefore, by Remark 3.21 (3) and (4), we have the following characterization
of a bounded continuum which satisfies Hypothesis 1.8 in terms of the normalized
exterior conformal mapping condition.

Corollary 3.22. (1.4) holds for some 1 ≤ b < 2 if and only if there exists a

constant c , 1 ≤ c < 2 ,

|g′(w)| ≥ m(1 − |w|−2)c−1

for 1 < |w| <
√

2 + 1 . Here b and c depend on each other.
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