INVARIANT SETS FOR A-HARMONIC MEASURE

Jukka Kurki

University of Helsinki, Department of Mathematics P.O. Box 4, FIN-00014 Helsinki, Finland

Abstract. We prove that the zero capacity is a sufficient condition for invariant sets for the $\mathscr A$ -harmonic measure, i.e., if cap_p $F = 0$ then $\omega(E \cup F, \Omega; \mathscr A) = \omega(E, \Omega; \mathscr A)$ for any closed $E \subset \partial \Omega$.

1. Introduction

The $\mathscr A$ -harmonic measure ω is a function similar to the classical harmonic measure. However, it is associated with a more general, possibly non-linear, elliptic partial differential equation $\nabla \cdot \mathscr{A}(x, \nabla u) = 0$ than the Laplace equation. An invariant set is a set $F \subset \partial\Omega$ such that F does not change the $\mathscr A$ -harmonic measure of the original set E, i.e., $\omega(E \cup F, \Omega; \mathscr{A}) = \omega(E, \Omega; \mathscr{A})$. If $\mathscr{A}(x, \nabla u) = \nabla u$, then invariant sets are, of course, nothing else but sets of harmonic measure zero. The p-harmonic case, i.e., $\mathscr{A}(x,\nabla u) = |\nabla u|^{p-2}\nabla u$, is studied by P. Aviles and J. Manfredi [AM]. They proved that if F is a closed set such that the Hausdorff dimension of F is small enough, then $\omega(E \cup F, \Omega; p) = \omega(E, \Omega; p)$. The linearization method employed by Aviles and Manfredi does not work for arbitrary $\mathscr A$. In this paper we derive the following sufficient condition for invariant sets:

Theorem 1.1. Let $E, F \subset \partial\Omega$ and let E be closed. If $\text{cap}_p F = 0$, then

$$
\omega(E \cup F, \Omega; \mathscr{A}) = \omega(E, \Omega; \mathscr{A}).
$$

For $p < n$ it is known that $\dim_H F < n - p$ implies $\operatorname{cap}_p F = 0$ where $\dim_H F$ refers to the Hausdorff dimension of F. Hence $\dim_H F < n - p$ for a set F yields that F is invariant in the sense of Theorem 1.1. Bounds of this type have been obtained in [AM]. These, however, depend on the set Ω . By the paper of Tukia [T] it is easy to see that the result is the best possible involving a general class of equations and Hausdorff dimensions. In particular, for each $\gamma < p = 2$, there are compact sets K, on the boundary of unit disks $B \subset \mathbb{R}^2$, such that $\dim_H K < 2-\gamma$ and $\omega(K, B, \mathscr{A}) > 0$ for some operator \mathscr{A} .

For $p > n$ no non-empty set is of p-capacity zero and Theorem 1.1 gives nothing in this case.

I would like to thank Professor Olli Martio and Dr Tero Kilpeläinen for helpful discussions. Thanks are also due to the referee, whose suggestion shortened the proof of Theorem 1.1.

¹⁹⁹¹ Mathematics Subject Classification: Primary 31C99.

434 Jukka Kurki

2. Definitions for $\mathscr A$ -harmonic measure

Throughout this paper we assume that Ω is an open, bounded and connected set in \mathbb{R}^n . We also assume that the operator $\mathscr A$ satisfies assumptions 2.1–2.5 below for some $1 < p < \infty$ and $0 < \alpha \leq \beta < \infty$:

(2.1)
$$
x \to \mathscr{A}(x, h)
$$
 is measurable for all $h \in \mathbb{R}^n$ and
\n $h \to \mathscr{A}(x, h)$ is continuous for a.e. $x \in \Omega$,

and for all $h \in \mathbb{R}^n$ and a.e. $x \in \Omega$

$$
(2.2) \t\t \t\t \mathscr{A}(x,h) \cdot h \ge \alpha |h|^p
$$

$$
(2.3) \t\t | \mathscr{A}(x,h)| \le \beta |h|^{p-1}
$$

(2.4)
$$
(\mathscr{A}(x,h_1) - \mathscr{A}(x,h_2)) \cdot (h_1 - h_2) > 0, \text{ whenever } h_1 \neq h_2, \text{ and}
$$

(2.5)
$$
\mathscr{A}(x,\lambda h) = |\lambda|^{p-2} \lambda \mathscr{A}(x,h) \text{ for all } \lambda \in \mathbf{R} \setminus \{0\}.
$$

A function $u \in W^{1,p}_{loc}(\Omega)$ is a solution of the equation

$$
\nabla \cdot \mathscr{A}(x, \nabla u) = 0
$$

if

$$
\int_{\Omega} \mathscr{A}(x, \nabla u) \cdot \nabla \varphi \, dx = 0
$$

for all $\varphi \in C_o^{\infty}(\Omega)$. Any solution of (2.6) can be redefined in a set of measure zero so that it becomes continuous in Ω . This redefined continuous solution of (2.6) is said to be $\mathscr A$ -harmonic in Ω . We denote by $\mathscr H(\Omega)$ the set of all $\mathscr A$ -harmonic functions in Ω . If $v: \Omega \to \mathbf{R} \cup \{\infty\}$ is lower semicontinuous and if v is not identically infinite in Ω , then v is $\mathscr A$ -superharmonic if for each domain $D \subset\subset \Omega$ and for each $u \in \mathcal{H}(D) \cap C(D)$ the condition $u \leq v$ in ∂D implies that $u \leq v$ in D. We let $\mathscr{S}(\Omega)$ denote the family of all \mathscr{A} -superharmonic functions.

Definition 2.1. Let $f: \partial\Omega \to \mathbf{R} \cup {\pm \infty}$ be any function and

$$
\bar{H}_f(x) = \inf \{ v(x) \mid v \in \mathcal{S}(\Omega), \text{ bounded below and}
$$

$$
\liminf_{z \to y} v(z) \ge f(y) \text{ for all } y \in \partial \Omega \}.
$$

The function \bar{H}_f is called the upper Perron solution of f.

Now $\bar{H}_f \in \mathscr{H}(\Omega)$ if it is bounded in Ω . Let $E \subset \partial\Omega$ and let χ_E be the characteristic function of E. The function $\omega(E, \Omega; \mathscr{A}) = \bar{H}_{\chi_E}$ is called the \mathscr{A} harmonic measure of set E with respect to Ω . For these constructions see [HKM].

The next lemma is employed in the proof of Theorem 1.1. The lemma is proved in [HKM, Theorem 9.3].

Lemma 2.2 Let $f_i: \partial\Omega \to \mathbf{R}$ be a decreasing sequence of continuous functions and let $f = \lim f_i$. Then

$$
\bar{H}_f = \lim_{j \to \infty} \bar{H}_{f_j}.
$$

Let $\theta \in W^{1,p}(\Omega)$. We write

$$
\mathcal{K}_{\theta} = \{ v \in W^{1,p}(\Omega) : v \ge \theta \text{ a.e., } v - \theta \in W^{1,p}_o(\Omega) \}.
$$

We call a function v a solution to the obstacle problem with obstacle and boundary values θ if $v \in \mathcal{K}_{\theta}$ and if

$$
\int_{\Omega} \mathscr{A}(x, \nabla v) \cdot \nabla (\varphi - v) \, dx \ge 0
$$

whenever $\varphi \in \mathscr{K}_{\theta}$.

Lemma 2.3. Let $\phi_j \in W^{1,p}(\Omega)$ be a decreasing sequence such that $\phi_j \to \phi$ in $W^{1,p}(\Omega)$. Let $u_j \in W^{1,p}(\Omega)$ be a solution to the obstacle problem with obstacle and boundary values ϕ_i . Then the sequence u_i is decreasing and $u = \lim u_i$ is a solution to the obstacle problem with ϕ as an obstacle and boundary value.

Lemma 2.3 is proved in [HKM, Theorem 3.79]. For further details see [HKM, Chapter 3].

3. Proof of Theorem 1.1

Let I be the set of all irregular points, for the p-Dirichlet problem, in the boundary of Ω . We may assume that $I \subset F$ because I is also a set of p-capacity zero [HKM, Theorem 9.11].

Let $\varphi_i \in C_o^{\infty}(\mathbf{R}^n)$ be a decreasing sequence of non-negative functions such that $\varphi_i \searrow \chi_E$. Let the function \bar{H}_{φ_i} be as in Definition 2.1.

Let $B \subset \mathbb{R}^n$ be a ball such that $\Omega \subset \mathbb{R}^n$. Because $\text{cap}_p F = 0$, there exists a sequence of open sets U_j such that $F \subset U_j$ and $\text{cap}_p(U_j, B) < 1/j$. Let $\psi_j =$ $\hat{R}_{U_j}^1(B)$, where $\hat{R}_{U_j}^1(B)$ is the $\mathscr A$ -potential of U_j in B (see [HKM, Chapter 8]). By using the estimates in [HKM] we get that $\psi_j = 1$ in U_j , $\psi_j \in W_o^{1,p}(B)$ and $\int_B |\nabla \psi_j|^p dx < c/j$ where the constant c depends only on α , β and p . Let $v_{ij} \in \mathscr{S}(\Omega)$ be the solution to the obstacle problem with the function $\bar{H}_{\varphi_i} + \psi_j$ as an obstacle and boundary value. Now the continuity of \bar{H}_{φ_i} yields $v_{ij} \geq \bar{H}_{\varphi_i}$ in Ω and $\psi_j \equiv 1$ in U_j gives $v_{ij} \geq 1$ in $U_j \cap \Omega$. It follows that

$$
\liminf_{x \to y} v_{ij}(x) \ge \chi_{E \cup F}(y)
$$

for all $y \in \partial \Omega$ and for all i and j. Thus $v_{ij} \geq \omega(E \cup F, \Omega; \mathscr{A})$ for all i and j. The solution to the obstacle problem with obstacle and boundary values φ_i is clearly \bar{H}_{φ_i} . By Lemma 2.3 the limit function of the sequence v_{ij} is \bar{H}_{φ_i} as $j \to \infty$. Hence $\tilde{H}_{\varphi_i} \ge \omega(E \cup F, \Omega; \mathscr{A})$ for all i. Lemma 2.2 says that $\tilde{H}_{\varphi_i} \searrow \omega(E, \Omega; \mathscr{A})$ as $i \to \infty$. So $\omega(E, \Omega; \mathscr{A}) > \omega(E \cup F, \Omega; \mathscr{A})$ and the theorem follows since the opposite inequality is obvious. \Box

436 Jukka Kurki

References

- [AM] AVILES, P., and J.J. MANFREDI: On null sets of p-harmonic measures. In: Partial Differential Equations with Minimal Smoothness and Applications, Springer-Verlag, Berlin, 1992.
- [HK] HEINONEN, J., and T. KILPELÄINEN: $\mathscr A$ -superharmonic functions and supersolutions of degenerate elliptic equations. - Ark. Mat. 26, 1988, 87–105.
- [HKM] HEINONEN, J., T. KILPELÄINEN, and O. MARTIO: Nonlinear Potential Theory of Degenerate Elliptic Equations. - Clarendon Press, 1993.
- [M] Martio, O.: Sets of zero elliptic harmonic measures. Ann. Acad. Sci. Fenn. Ser. A I Math. 14, 1989, 47–55.
- [T] Tukia, P.: Hausdorff dimension and quasisymmetric mappings. Math. Scand. 65, 1989, 152–160.

Received 18 August 1994