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INVARIANT SETS FOR A-HARMONIC MEASURE
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Abstract. We prove that the zero capacity is a sufficient condition for invariant sets for
the A -harmonic measure, i.e., if capp F = 0 then ω(E ∪ F,Ω; A ) = ω(E,Ω; A ) for any closed
E ⊂ ∂Ω.

1. Introduction

The A -harmonic measure ω is a function similar to the classical harmonic
measure. However, it is associated with a more general, possibly non-linear, ellip-
tic partial differential equation ∇ · A (x,∇u) = 0 than the Laplace equation. An
invariant set is a set F ⊂ ∂Ω such that F does not change the A -harmonic mea-
sure of the original set E , i.e., ω(E ∪F,Ω; A ) = ω(E,Ω; A ) . If A (x,∇u) = ∇u ,
then invariant sets are, of course, nothing else but sets of harmonic measure zero.
The p-harmonic case, i.e., A (x,∇u) = |∇u|p−2∇u , is studied by P. Aviles and
J. Manfredi [AM]. They proved that if F is a closed set such that the Hausdorff
dimension of F is small enough, then ω(E ∪ F,Ω; p) = ω(E,Ω; p) . The lineariza-
tion method employed by Aviles and Manfredi does not work for arbitrary A . In
this paper we derive the following sufficient condition for invariant sets:

Theorem 1.1. Let E, F ⊂ ∂Ω and let E be closed. If capp F = 0 , then

ω(E ∪ F,Ω; A ) = ω(E,Ω; A ).

For p < n it is known that dimH F < n − p implies capp F = 0 where
dimH F refers to the Hausdorff dimension of F . Hence dimH F < n − p for a
set F yields that F is invariant in the sense of Theorem 1.1. Bounds of this type
have been obtained in [AM]. These, however, depend on the set Ω. By the paper
of Tukia [T] it is easy to see that the result is the best possible involving a general
class of equations and Hausdorff dimensions. In particular, for each γ < p = 2,
there are compact sets K , on the boundary of unit disks B ⊂ R

2 , such that
dimH K < 2 − γ and ω(K,B,A ) > 0 for some operator A .

For p > n no non-empty set is of p-capacity zero and Theorem 1.1 gives
nothing in this case.
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2. Definitions for A -harmonic measure

Throughout this paper we assume that Ω is an open, bounded and connected
set in R

n . We also assume that the operator A satisfies assumptions 2.1–2.5
below for some 1 < p <∞ and 0 < α ≤ β <∞ :

x→ A (x, h) is measurable for all h ∈ R
n and(2.1)

h→ A (x, h) is continuous for a.e. x ∈ Ω,

and for all h ∈ R
n and a.e. x ∈ Ω

A (x, h) · h ≥ α|h|p(2.2)

|A (x, h)| ≤ β|h|p−1(2.3)
(

A (x, h1) − A (x, h2)
)

· (h1 − h2) > 0, whenever h1 6= h2, and(2.4)

A (x, λh) = |λ|p−2λA (x, h) for all λ ∈ R \ {0}.(2.5)

A function u ∈W 1,p
loc

(Ω) is a solution of the equation

(2.6) ∇ · A (x,∇u) = 0

if
∫

Ω

A (x,∇u) · ∇ϕdx = 0

for all ϕ ∈ C∞

o (Ω). Any solution of (2.6) can be redefined in a set of measure zero
so that it becomes continuous in Ω. This redefined continuous solution of (2.6)
is said to be A -harmonic in Ω. We denote by H (Ω) the set of all A -harmonic
functions in Ω. If v: Ω → R ∪ {∞} is lower semicontinuous and if v is not
identically infinite in Ω, then v is A -superharmonic if for each domain D ⊂⊂ Ω
and for each u ∈ H (D) ∩ C(D̄) the condition u ≤ v in ∂D implies that u ≤ v
in D . We let S (Ω) denote the family of all A -superharmonic functions.

Definition 2.1. Let f : ∂Ω → R ∪ {±∞} be any function and

H̄f (x) = inf{v(x) |v ∈ S (Ω), bounded below and

lim inf
z→y

v(z) ≥ f(y) for all y ∈ ∂Ω}.

The function H̄f is called the upper Perron solution of f .

Now H̄f ∈ H (Ω) if it is bounded in Ω. Let E ⊂ ∂Ω and let χE be the
characteristic function of E . The function ω(E,Ω; A ) = H̄χE

is called the A -
harmonic measure of set E with respect to Ω. For these constructions see [HKM].

The next lemma is employed in the proof of Theorem 1.1. The lemma is
proved in [HKM, Theorem 9.3].
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Lemma 2.2 Let fj : ∂Ω → R be a decreasing sequence of continuous func-

tions and let f = lim fj . Then

H̄f = lim
j→∞

H̄fj
.

Let θ ∈W 1,p(Ω). We write

Kθ = {v ∈ W 1,p(Ω) : v ≥ θ a.e., v − θ ∈W 1,p
o (Ω)}.

We call a function v a solution to the obstacle problem with obstacle and boundary
values θ if v ∈ Kθ and if

∫

Ω

A (x,∇v) · ∇(ϕ− v) dx ≥ 0

whenever ϕ ∈ Kθ .

Lemma 2.3. Let φj ∈ W 1,p(Ω) be a decreasing sequence such that φj → φ
in W 1,p(Ω) . Let uj ∈ W 1,p(Ω) be a solution to the obstacle problem with obstacle

and boundary values φj . Then the sequence uj is decreasing and u = limuj is a

solution to the obstacle problem with φ as an obstacle and boundary value.

Lemma 2.3 is proved in [HKM, Theorem 3.79]. For further details see [HKM,
Chapter 3].

3. Proof of Theorem 1.1

Let I be the set of all irregular points, for the p-Dirichlet problem, in the
boundary of Ω. We may assume that I ⊂ F because I is also a set of p-capacity
zero [HKM, Theorem 9.11].

Let ϕi ∈ C∞

o (Rn) be a decreasing sequence of non-negative functions such
that ϕi ց χE . Let the function H̄ϕi

be as in Definition 2.1.
Let B ⊂ R

n be a ball such that Ω ⊂⊂ 1

2
B . Because capp F = 0, there exists

a sequence of open sets Uj such that F ⊂ Uj and capp(Uj , B) < 1/j . Let ψj =

R̂1

Uj
(B) , where R̂1

Uj
(B) is the A -potential of Uj in B (see [HKM, Chapter 8]).

By using the estimates in [HKM] we get that ψj = 1 in Uj , ψj ∈ W 1,p
o (B) and

∫

B
|∇ψj |

p dx < c/j where the constant c depends only on α , β and p . Let
vij ∈ S (Ω) be the solution to the obstacle problem with the function H̄ϕi

+ ψj

as an obstacle and boundary value. Now the continuity of H̄ϕi
yields vij ≥ H̄ϕi

in Ω and ψj ≡ 1 in Uj gives vij ≥ 1 in Uj ∩ Ω. It follows that

lim inf
x→y

vij(x) ≥ χE∪F (y)

for all y ∈ ∂Ω and for all i and j . Thus vij ≥ ω(E∪F,Ω; A ) for all i and j . The
solution to the obstacle problem with obstacle and boundary values ϕi is clearly
H̄ϕi

. By Lemma 2.3 the limit function of the sequence vij is H̄ϕi
as j → ∞ .

Hence H̄ϕi
≥ ω(E ∪ F,Ω; A ) for all i . Lemma 2.2 says that H̄ϕi

ց ω(E,Ω; A )
as i → ∞ . So ω(E,Ω; A ) ≥ ω(E ∪ F,Ω; A ) and the theorem follows since the
opposite inequality is obvious.
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