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Abstract. The end of a hyperbolic surface is studied in terms of the behavior at infinity of
geodesics on the surface. For a class of surfaces called untwisted flutes it is possible to give a fairly
precise description of the ending geometry. From the point of view of a Fuchsian group representing
such a surface this provides new information about the existence of Dirichlet and Garnett points.

0. Introduction

In the study of surfaces of finite topological type the analytic and geometric
viewpoints have long been inextricably interwoven. This has been less true in the
study of surfaces of infinite type, where even geometrically oriented thinking has
tended to focus primarily on generic behavior. Our goal in this paper is to em-
ploy hyperbolic geometric techniques to investigate an infinite end of a hyperbolic
manifold and especially a hyperbolic surface. We shall be interested in the behav-
ior of specific classes of geodesics which carry information about the geometry of
the end. Such classes of geodesics can have measure zero, or even be finite, and
consequently this type of behavior is invisible to the usual analytic approaches.

Let M be a hyperbolic manifold and let σ: [0,∞) → M be a geodesic
ray, which we assumed to be parameterized by arc length. Define the function
∆σ(t) = t− dM

(
σ(0), σ(t)

)
, where dM denotes distance as defined by the hyper-

bolic metric. The ray σ is then said to be horocyclic, critical, or subcritical if
∆σ(t) is respectively, unbounded, zero, or nonzero but bounded. A critical ray
could be said to travel directly out a non-compact end of M , and a subcritical ray
to travel almost directly out an end.

Critical and subcritical rays are closely related to the more familiar Dirichlet
and Garnett points associated with Fuchsian and Kleinian groups. Viewed as
asymptotic classes of geodesic rays one begins to see exactly how their existence
and their particular travels depend on the geometry of the hyperbolic manifold on
which they reside.

Most of our attention will be focused on the untwisted flute surfaces studied
by Basmajian [1]. A flute is a complete hyperbolic surface which is homeomorphic
to the infinite cylinder K = S1 × (0,∞) with the set of points {(1, n) | n ∈ N}

1991 Mathematics Subject Classification: Primary 30F40; Secondary 53C22.



4 Andrew Haas

deleted. These surfaces are fundamental in that a general infinite type hyperbolic
surface can be built up from flute pieces. These are also the simplest surfaces on
which nontrivial critical and subcritical rays exist. A ray σ on K is infinite if
σ(t) =

(
θ(t), r(t)

)
has limt→∞ r(t) = ∞ . Such a ray is said to go out the infinite

end of K . On an untwisted flute there is an essentially unique class of infinite
critical rays. This is proved in Section 2. In Section 4 we derive necessary and
sufficient conditions for the existence of infinite subcritical rays in terms of certain
length parameters which define the hyperbolic structure of the surface.

The paper is organized as follows. In Section 1 background on surfaces and
their ends is presented and the flute surfaces are introduced. In Section 2 we
derive some elementary properties of critical and subcritical rays on untwisted
flutes. Section 3 contains the main technical results of the paper, which are applied
to derive two important properties of subcritical rays. It is easy to see that a
Dirichet ray is simple. Nicholls and Waterman [15] showed that subcritical rays
are eventually simple. We prove that an infinite subcritical ray on an untwisted
flute is eventually non-backtracking, in the sense that after some point it will
cross each pair of pants exactly once. We also show that an infinite subcritical
ray must eventually be uniformly close to some critical ray. These results together
place severe restrictions on the path of a subcritical ray, and let us introduce a
model for such a ray in Section 4. We then derive sufficient conditions and limited
necessary conditions on the surface geometry for a ray to be subcritical. As a
corollary we get necessary and sufficient conditions for the existence of such rays
and their cardinality. In the final Section 5 a general correspondence is derived
between the notions of critical and subcritical rays on a hyperbolic manifold and
approximation properties of points on the boundary of hyperbolic space under the
action of a discrete group of hyperbolic isometries. This allows for a translation of
some of the earlier results into the language of Fuchsian groups. The motivation
for these studies and the history of the subject is also outlined in the last section.

The background for much of this work arose in conversations with Ara Bas-
majian. Many thanks.

1. Background: ends and flutes

1.1. Ends. Define an end E of a manifold M as follows. Let K1 ⊂ K2 ⊂
· · · ⊂ M be a nested sequence of compact subsets of M so that

⋃
∞

1 Ki = M .
An end E is a sequence of connected components Ei in the complement of Ki so
that Ei+1 ⊂ Ei . This definition can be made independent of the given exhaustion
{Ki} . A geodesic ray σ is said to go out the end E , if for each integer i > 0 all
but a compact segment of σ belongs to Ei .

Lemma 1.1. Let E = {Ei} be an end of the hyperbolic manifold M . Then

for any a ∈M there is a critical ray with initial point a that goes out the end E .

Furthermore, a critical or a subcritical ray always goes out some end of M .
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Proof. Let σi: [0, bi) → M be a geodesic arc in M with σi(0) = a for all
i > 0. The function ∆σi

(t) is defined for all t ∈ [0, bi) . The sequence of geodesics
{σi} has a convergent subsequence (with the same name); which, by definition, has
the property that the sequence of unit vectors tangent to the geodesics at the point
a is convergent. The geodesic σ that is the limit of this sequence has the limiting
unit tangent at a and is defined on the interval [0, b) where limi→∞ bi = b . This
all makes sense if b > 0. If we further suppose that ∆σi

(t) = 0 for all i > 0 and
that b = ∞ , then we have ∆σ(t) = 0. In other words, σ is a critical ray.

Choose points ai ∈ Ei and minimal length geodesic arcs σi: [0, bi) →M with
σ(0) = a and σ(bi) = ai . Then a limiting geodesic ray σ , as defined above, is
Dirichlet and goes out the end E .

1.2. Ends of surfaces. We shall now restrict our attention to two dimen-
sional hyperbolic manifolds, or surfaces.

It is well known that the hyperbolic structure of a surface S uniquely de-
termines S as a Riemann surface. The universal cover of such a surface is the
upper-half plane H2 and the deck transformations form a discrete subgroup G
of the real Möbius transformations, called a Fuchsian group. G also acts on
∂H2 = R ∪ ∞ . The limit set of G , denoted Λ(G) , is the subset of points x
in ∂H2 with the property that for any neighborhood U of x there are infinitely
many g ∈ G with g(U) ∩ U 6= ∅ [12].

An end E of S is called a puncture if there is a subset D of S which is
conformally equivalent to the punctured disc {z | 0 < |z| < 1} and for i large
Ei ⊂ D . Similarly, we call E a hole if there is a subset D of S which is conformally
equivalent to an annulus {z | 1 < |z| < r} for some r > 1 and for i large Ei ⊂ D .
E is a finite end if it is either a puncture or a hole; otherwise it is an infinite end.

We define a critical ray on S to be infinite if it goes out an infinite end;
otherwise it is finite. Sometimes we shall refer to a subsurface S′ , of a given
surface S , as containing an end E = {Ei} . By this we mean that for i large
Ei ⊂ S′ . A simple closed geodesic or piecewise geodesic α is said to isolate a finite
end E if it is the only end contained in one of the components in the complement
of α . Note that a finite end E is isolated by a simple close geodesic α if and
only if E is a hole. Furthermore, such a geodesic α is uniquely determined up to
orientation.

It is important to distinguish those aspects of an infinite end that parallel the
distinction made between a puncture and a hole in the finite case. Toward that
end we shall define infinite ends of the first and second kind, which respectively
exhibit puncture-like and hole-like qualities.

A hyperbolic surface S is of the second kind if there exists an isometric
embedding of a hyperbolic half-plane {z | Re z > 0, Im z > 0} into S . Let P
denote the image of the half-plane. Then we shall say that S contains the half-

plane P . If the surface S is not of the second kind then it is of the first kind.
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This agrees with the usual definition in terms of the limit set, in which a surface
is of the first or second kind if a Fuchsian group G representing the surface has
respectively, Λ(G) = ∂H2 or Λ(G) 6= ∂H2 .

If S contains a half-plane P then P must actually belong to a unique end
of S . Thus we say that an end E = {Ei} is of the second kind if S contains a
half-plane P and for all i > 0, Ei ∩ P 6= ∅ . If an end is not of the second kind
then it is of the first kind.

One easily checks that a puncture is of the first kind and a hole is of the
second kind.

1.3. Flute surfaces. The simplest example of an infinite end occurs on
what Basmajian [1] calls flute surfaces. In order to define this class of surfaces
begin with the infinite cylinder S1 × (0,∞) ,where S1 is the unit circle in C ,
and delete the set of points {(1, n) | n ∈ N} to produce the surface S , called
the model flute. The surface S has one infinite end and a finite end associated
to each of the deleted points (1, n) and to the ideal boundary S1 × {0} . Let F

denote the space of isometry classes of complete metrics of constant curvature −1,
that is hyperbolic metrics, on the surface S . Define an involution r: S → S by
r(eiθ, t) = (e−iθ, t) . Let F0 ⊂ F be the set of isometry classes in F for which
there exists a representative surface on which r is an isometry. Henceforth we
shall treat elements of F and F0 as hyperbolic surfaces and suppose in the latter
case that r is an isometry. A surface in F is called a flute and one in F0 is called
an untwisted flute.

Given a flute surface F ∈ F and n ∈ N let αn denote the simple closed
geodesic on F in the free homotopy class of the curve

t→ (eit, n+ 1
2
), 0 ≤ t ≤ 2π.

Note that these are well defined with the possible exception of α0 , which only
exists if the end corresponding to the ideal boundary S1 × {0} is a hole. Let βn

be the geodesic arc of minimal length orthogonal to both αn and αn+1 at its
endpoints. Set an = βn ∩ αn and a′n = βn−1 ∩ αn . See Figure 1.

Proposition 1.1. The flute F is untwisted if and only if an = a′n for all

n > 0 .

Proof. Each of the geodesics αn is mapped onto itself by r . Since the
minimal length geodesic orthogonal to αn and αn+1 is unique it must also be
mapped onto itself, and hence fixed, by r . It is easy to see what the fixed point
set of r looks like. It is a union of the set β∗ = {(−1, t) | t ∈ R} and the sets
γn = {(1, t) | n < t < n + 1} . Also, since r is an isometry, its fixed point set
is geodesic, thus we may take β∗ and γn to be geodesics. Then the arc of β∗

between αn and αn+1 is the only fixed geodesic arc with endpoints on αn and
αn+1 . Consequently it must be the arc βn . Then it is clear that an = a′n for all
n ∈ N .
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Figure 1.

This shows that the definition is in agreement with [1]. For future reference
set

⋃
∞

n=1 γn = γ ; which we shall call the spine of F . Also set R = γ ∪ β∗ .
The complement of R on F consists of two simply connected surfaces which are
interchanged by r .

The end of F corresponding to the point (1, n) is either a puncture or a
hole, depending on the hyperbolic metric. If it is a hole then let µn denote the
unique, up to orientation, simple closed geodesic on F that bounds a topological
disc about the point (1, n) on the infinite cylinder. If the end corresponding to
(1, n) or S1 ×{0} is a puncture then we shall define the length of µn or α0 to be
zero.

Using the pants decomposition it is shown in [1] that a flute F is uniquely
determined by the lengths of αn, βn , and µn , and the oriented distance between
the points an and a′n . Moreover, given a collection of numbers as above, with
obvious restrictions, there is a flute surface having the corresponding lengths and
oriented distances.

Remark 1.1. Using classical results of Koebe or the methods of [8] one can
give the following simple description of an untwisted flute surface from a complex
analytic viewpoint. Let s = {si} be an increasing sequence of real numbers with
s0 = 0, limi→∞ si = s∞ ≤ ∞ , and let r = {ri} be a sequence of non-negative
real numbers with

ri + ri+1 < si+1 − si.

Define D(s, r) to be the subdomain of C complementary to the union of all of
the closed discs {z | |z − si| ≤ ri} for i = 0, 1, 2, . . ., and with |z| < s∞ . Then a
hyperbolic surface is an untwisted flute if and only if it is conformally equivalent
to one of the domains D(s, r) .

2. Critical rays on untwisted flutes

We begin with an elementary but useful result about intersections of critical
rays on an arbitrary hyperbolic surface. The proof is based on a cut and paste
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technique which is central to a number of the other arguments. Simply put, the
idea is to show that a path does not realize the distance between its endpoints by
replacing a geodesic segment of the path by another segment of at most the same
length.

Proposition 2.1. Let σ and λ be two distinct critical rays on M and

suppose that neither one is a subset of the other. Then there exists at most one

pair of numbers t, t′ ∈ [0,∞) so that σ(t) = λ(t′) . Furthermore, if σ(t) = σ(t′)
then t = t′ .

Proof. Suppose that there exists t1 , t′1 , t2 , and t′2 so that σ(t1) = λ(t′1) and
σ(t2) = λ(t′2) . We suppose that t1 < t2 , t′1 < t′2 , and t2 − t1 ≤ t′2 − t′1 . The other
cases follow by shifting subscripts. Define the piecewise geodesic arc

λ̄(t) =

{
λ(t) t ∈ [0, t1],
σ(t− t1 + t′1) t ∈ [t1, t1 + t′2 − t′1].

Since λ̄ is definitely not a smooth geodesic it cannot minimize the distance between
its endpoints. We therefore have

d
(
λ(0), λ(t2)

)
< (t1 + t′2 − t′1) ≤ t2.

It follows that λ cannot be critical.
Here we have replaced a segment of a geodesic by a segment of at most the

same length. The resulting piecewise geodesic can then be shortened. Similarly,
to prove the simplicity of a critical ray, one observes that a ray which is not simple
contains a loop. By removing the loop, as above, one can produce a shorter path.

Through the remainder of this and the following two sections F shall denote
an untwisted flute.

As defined above β∗ is a geodesic which goes out the finite end corresponding
to the ideal boundary S1 × {0} as t → −∞ , and out the infinite end of F as
t → ∞ . Let t1 ∈ R be the value for which β∗(t1) = a1 = α1 ∩ β∗ . It will be
convenient to work with the geodesic ray β which we take to be β∗ restricted to
[t1,∞) and reparameterized so that β: [0,∞) → F . It is not always the case that
β =

⋃
∞

i=1 βi . In fact, the infinite end of an untwisted flute S is of the second
kind if and only if

∑
∞

i=0 l(βi) <∞ . If the sum converges then the geodesic subarc⋃
∞

i=0 βi terminates at the boundary of the maximal half-plane P . For more details
and another twist see [1].

Lemma 2.1. The geodesic ray β on an untwisted flute F is a critical ray.

Proof. Let b 6= a be points on β . To prove the lemma it will suffice to
show that the distance between a and b is the length of the segment of β joining
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them. We argue by contradiction. Suppose that the minimal length geodesic arc
σ: [0, w] → F from a to b is distinct from the arc of β . Since the complement of
R on F is a union of two simply connected subsurfaces, σ must cross R at some
point other than a and b ; that is, for some t0 ∈ (0, w) , σ(t0) ∈ R . Define the
piecewise geodesic

σ̄ =

{
σ(t) t ∈ [0, t0],
r ◦ σ(t) t ∈ [t0, w].

Then σ̄ has the same length as σ . The geodesic that is freely homotopic to σ̄
relative to its endpoints will then be strictly shorter than σ , giving the desired
contradiction.

In the next theorem we characterize the infinite critical rays on an untwisted
flute. The upshot is that β is the paradigmatic infinite critical ray on such a
surface. In order to make this precise we need to distinguish various notions of
how two geodesic rays can have the “same” behavior as t→ ∞ .

Let σ and λ be two distinct geodesic rays on S . Then σ and λ are asymptotic

if there are lifts of the rays to H2 which have the same endpoint on ∂H2 . σ and
λ are asymptotic relative to the half-plane P if S contains a half-plane P and
all but a finite length segment of each ray lies in P . There is a stronger notion
of asymptotic which we shall need. σ and λ are said to be strongly asymptotic

(relative to P ) if σ and λ are asymptotic (relative to P ) and there is a minimal
length geodesic arc ν from σ(0) to λ(0) so that σ∪λ∪ν bounds a simply connected
region on S . Saying that ν is minimal length means that l(ν) = d

(
σ(0), λ(0)

)
.

We do not discount the possibility that σ and λ have the same initial point, in
which case ν is just a point. It is an easy exercise to show that if σ is a critical
(subcritical) ray and σ and λ are asymptotic, perhaps relative to some half-plane,
then λ is either critical or subcritical.

Theorem 2.1. 1 . Let λ be an infinite critical ray on an untwisted flute F .

If the infinite end of F is of the first kind then λ is strongly asymptotic to β .

If the infinite end of F is of the second kind then F contains a unique maximal

half-plane P so that either λ and β are strongly asymptotic relative to P or

λ intersects R = β∗ ∪ γ in a single point and the subray of λ beginning at the

intersection point is strongly asymptotic to β relative to P .

2 . If λ is a geodesic ray on F which is either strongly asymptotic to β or

strongly asymptotic to β relative to some half-plane P , then λ is a critical ray.

Proof. Since λ is critical it cannot intersect R more than once. Otherwise,
as in the proof of Proposition 2.1, one could reflect the segment lying between the
intersection points, replace the original segment by the reflected one, and smooth
out the edges to produce a shorter path. If λ ∩ R = c then let λ′ denote the
subray of λ beginning at c . Otherwise set λ′ = λ . We shall first show that λ′ is
strongly asymptotic to β (perhaps relative to a half-plane P ).
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Except for its initial point λ′ lies in one of the connected subsurfaces S of
F \R . By symmetry a minimal length arc ν from λ′(0) to β(0) may be chosen to
lie on S . Since S is simply connected and has geodesic boundary it is isometric
to an infinite sided convex polygon in H2 . One easily shows that an end of such
a polygon is a maximal interval on ∂H2 . Since β and λ′ both go out the infinite
end of F , they have their endpoints in the same interval on ∂H2 . It follows that
λ′ ∪ β ∪ ν bounds a simply connected domain on S . If the interval is nontrivial
then it is the ideal boundary of a half-plane P , and thus β and λ′ are strongly
asymptotic (relative P ).

We need to show that if the infinite end of F is of the first kind then λ′ = λ .
We argue by contradiction. If not then there is a geodesic arc µ on r(S) so
the λ = λ′ ∪ µ . The reflected geodesic ray r(λ′) is critical and, by the above,
asymptotic to β and hence also to λ′ . Let d be the distance between λ(0) and
r
(
λ′(1)

)
. Then l(µ) + 1 − d = ε > 0. Since λ′ and r(λ′) are asymptotic we can

choose t > 1 so that d
(
λ′(t), r

(
λ′(t)

))
< 1

2ε . Then

d
(
λ(0), λ(t)

)
≤ t− l(µ) − 1 + d+ 1

2ε < t,

which says that λ is not critical.
Now we turn to the uniqueness of the maximal half-plane. Let P1 be the

maximal half-plane in F containing P . We must show that P1 is the unique max-
imal half-plane in F . Suppose that F also contains the maximal half-plane P2 .
If P2 ∩ P1 6= ∅ then by lifting them to intersecting half-planes in H2 one eas-
ily constructs a larger half-plane containing the two. Therefore we suppose that
P2 ∩ P1 = ∅ .

Choose a lift P̃2 of P2 to H2 and points p ∈ P̃2 and p′ ∈ ∂P̃2 ∩ ∂H2 . The
geodesic ray ˜̺ in H2 with initial point p and endpoint p′ projects to a critical
ray ̺ in F . By the above ̺ and β are strongly asymptotic relative to some half-
plane P . It follows that β intersects P1 and P2 , contradicting the disjointness of
the half-planes. Thus P1 is unique.

The final assertion is argued by observing that there is a geodesic arc ν so
that λ ∪ β ∪ ν bounds a simply connected region. Since β is one boundary curve
of the region it must be contained in the closure of one of the simply connected
components of F \ R . If λ were not a critical ray then the minimal arc between
some pair of points on λ would not be along λ . This shorter path could then not
lie entirely in the same component of F \R as λ , since F \R is simply connected.
Thus the shorter path must cross R . Now, arguing as in Lemma 2.1, such an arc
could not be of minimal length between its endpoints.

2.1. Rigid subcritical rays. Define a subcritical ray σ to be a rigid

subcritical ray if every geodesic ray λ that is asymptotic to σ is a subcritical ray.
In other words, there is no critical ray asymptotic to σ . The following corollary,
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which is a consequence of Theorem 2.1, shows that there are only two types of
subcritical rays: those that are asymptotic to β (perhaps relative to some half-
plane P ) and those that are rigid. Consequently the potential for interesting
behavior lies with the rigid subcritical rays. This will be the subject of Section 4.

Corollary 2.1. Let λ be a subcritical ray on an untwisted flute F . Then λ
is a rigid subcritical ray if and only if λ is neither asymptotic to β nor asymptotic

to β relative to some half-plane P .

3. Properties of subcritical rays on untwisted flutes

In this section we shall derive two important properties of a subcritical ray
out the infinite end on an untwisted flute F . Theorem 3.2 shows that a subcritical
ray will eventually not backtrack on the surface. That is, for n large it crosses
each αn exactly once. In Theorem 3.3 we show that a subcritical ray eventually
lies in an arbitrarily small neighborhood of a critical ray. The technical work is
done in the other subsections. In Section 3.1 we develop techniques which make
it possible to compare lengths of geodesic segments in the proof of Theorem 3.2.
In Section 3.3 we prove a result on the limiting properties of certain piecewise
geodesic rays, which becomes the main tool in the proof of Theorem 3.3.

We begin by recalling an important result due to Nicholls and Waterman.
The translation of their theorem, which is given below, is a direct consequence of
Theorem 5.1 and Corollary 5.1.

Theorem 3.1 [15]. Let σ be a subcritical ray on a hyperbolic surface S .

There is a value T so that for t > T , σ(t) = σ(t′) for some t′ ∈ [0,∞) implies

t = t′ .

In other words a subcritical ray on a surface has only finitely many self-
intersections. It seems unlikely that this is true for hyperbolic manifolds M of
dimension greater than two.

3.1. Cutting, pasting, and comparing lengths. Let I denote the imag-
inary axis in the upper-half plane H2 . I is a hyperbolic geodesic. We define
Ñw = {reit | θ < t < π − θ} which is the set of points in H2 of distance less than
w = − log(csc θ − cot θ) from I . Length in H2 is computed with the Poincaré
metric y−1 |dz| .

If S is a hyperbolic surface and α is a closed geodesic on S then the covering
group Γ can be chosen so that I covers α . Then Ñw projects to a width w
neighborhood Nw of α .

For a real number x define w(x) = log coth 1
4
x . If α is a closed geodesic set

wα = w
(
l(α)

)
.

Lemma 3.1. If σ: [a, b] → S is a closed curve on S which is freely homotopic

to α and σ ∩Nwα
= ∅ then l(σ) > 2 .



12 Andrew Haas

Proof. Let g(z) = cz, where log c = l(α) , generate the stabilizer of I in Γ.
Since σ is freely homotopic to α , there is a geodesic σ̃ covering σ which is
also stabilized by g . Reparameterize a fundamental segment σ̃([a, b]) of σ̃ as
t→ r(t)eiθ(t) for u < t < v . Then

l(σ) =

∫ v

u

√
dr2 + r2 dθ2

r sin θ
≥

∫ v

u

|dr|
r sin θ0

where θo = sin−1 tanh 1
2 l(α) . The right hand side of the inequality is the length

of the orthogonal projection of σ̃([a, b]) onto the boundary of Nwα
. Then cr(u) =

r(v) and the orthogonal projection of σ̃([a, b]) contains an arc of ∂Nwα
of the

form t→ teiθ0 , r(u) < t < cr(u) . Such a segment has length

∫ cr(u)

r(u)

dt

t sin θ0
= csc θ0 log c = l(α) coth 1

2 l(α) > 2.

Thus l(σ) > 2.

If S is a hyperbolic surface with a puncture p then the covering group Γ can
be chosen so that g(z) = z +1 generates the stabilizer of ∞ in Γ and the region
Im z > 1

2
projects to a horocyclic neighborhood N of p .

Lemma 3.2. If σ is a closed curve on S which is freely homotopic to a

simple loop about the puncture p and σ ∩N = ∅ , then l(σ) > 2 .

The proof of Lemma 3.2 is similar to the proof of the previous lemma, but
simpler. We leave it to the reader.

Remark 3.1. We shall refer to the neighborhood Nwα
of α in Lemma 3.1

and the neighborhood N of a puncture in Lemma 3.2 as a fundamental collar

about α or p . In this way every finite end of a hyperbolic surface has associated
to it a fundamental collar.

Lemma 3.3. 1 . Let α be a simple closed geodesic on a hyperbolic surface

S and let Nwα
be a neighborhood of α of width wα = w

(
l(α)

)
. Suppose λ is a

geodesic on S and that for numbers a < b , λ
(
(a, b)

)
⊂ N and λ(a), λ(b) ∈ ∂N .

If λ ∩ α = ∅ then λ has self-intersections.

2 . Let µ: [u, v] → S be a geodesic arc distinct from α with µ(u) , µ(v) ∈ α .

Then l(µ) ≥ w
(
l(α)

)
.

More sophisticated results of this sort and references to the literature on collar
lemmas can be found in [2] and [3].

Proof. We begin with the proof of (1). The strategy is to suppose that λ is
simple and derive a contradiction.
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Let the covering group Γ of S be as in the beginning of the section. There is
a minimal length arc ν from α to λ in Nwα

, which is their common orthogonal.
Lift ν to an arc ν̃ with initial point on I and then lift λ to a geodesic λ̃ which
is orthogonal to ν̃ at its endpoint. Note that λ̃([a, b]) must lie within Ñwα

.
Since I and λ̃ have a common perpendicular they have disjoint closures.

Without loss of generality we may suppose that λ̃ has endpoints 1 and b ≥ 1.
Since λ̃ ∩ g(λ̃) = ∅ , we must have b ≤ c . The geodesic with endpoints 1 and c

lies above λ̃ and it is tangent to the boundary of the neighborhood Ñw1
, where

w1 = sin−1
(
(c− 1)/(c+ 1)

)
. Since log c = l(α) , wα = w1 . Thus λ̃ ∩ Ñwα

= ∅
contrary to an earlier statement. That completes the proof of (1).

A lift µ̃ of µ beginning at I terminates on another lift α̃ of α with α̃ = h(α)

for some h ∈ Γ. By (1) it is clear that α̃ ∩ Ñwα
= ∅ and therefore

Ñwα/2 ∩ h(Ñwα/2) = ∅.

We conclude that l(µ) ≥ wα .

Lemma 3.4. Let p be a puncture on a hyperbolic surface S and let N be

the fundamental collar about p . If λ is a simple geodesic on S and λ does not

go out the end p , then λ ∩N = ∅ .

Proof. As earlier we suppose that the puncture corresponds to the point at
∞ in ∂H2 and that the transformation g(z) = z +1 generates the stabilizer of ∞
in the covering group Γ of S . The hypothesis implies that no lift of λ terminates
at ∞ ∈ ∂H2 . Let λ̃ be a lift of λ . Since λ is simple and neither of its endpoints
are at ∞ , λ̃ ∩ g(λ̃) = ∅ , and thus λ̃ lies beneath the line Im z = 1

2 . The result
follows.

3.2. Subcritical rays eventually do not backtrack. Recall that αn is
the geodesic on F in the free homotopy class of the closed curve S1×{n+ 1

2} . The
next result says that an infinite subcritical ray must eventually cross the loops αn

without backtracking.

Theorem 3.2. Let λ: [0,∞] → F be an infinite subcritical ray. Then there

is an N > 0 so that for n > N , λ ∩ αn contains exactly one point.

Proof. To prove this we shall show that for each instance of a double inter-
section it is possible to replace a segment of λ by a geodesic arc which is shorter
than the original by a fixed amount, which in our case will turn out to be 0.9. If
infinitely many such backtrackings were to occur then ∆λ(t) would necessarily be
unbounded: an untenable situation for a subcritical ray.

Suppose that λ meets infinitely many of the αn in two or more points. By
Theorem 3.1 λ is eventually simple, and so by deleting an initial segment and
reparameterizing we may assume that λ is itself simple. There is an integer N > 0
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so that λ(0) lies in the region of F bounded by αN−1 and αN . Certainly, λ∩αn

is always a finite set. Suppose that n > N and the intersection contains two or
more elements. Let 0 < t0 < t1 be the smallest two numbers with λ(ti) ∈ αn .
There must also be a point t2 > t1 so that λ(t2) ∩ αn 6= ∅ , and λ(t) ∩ α = ∅ for
all t > t2 .

The arc λ([t1, t2]) must cross the spine γ of F . This is because otherwise
it would bound a simply connected region on F along with an arc of αn , which
cannot be. Thus there is a positive number a ∈ (t1, t2) so that λ(a) ∈ γ and for
all t ∈ (a, t2) , λ(t) /∈ γ . Let k be the largest integer for which λ([t0, t1])∩αk 6= ∅ .
Choose b′ > t2 to be the smallest value for which λ(b′)∩αk+1 6= ∅ , and let b > b′

be the smallest value for which λ(b) ∩ γ 6= ∅ .

The closed curve λ([a, b])∪ r
(
λ([a, b])

)
bounds a region (not necessarily con-

nected) containing all of the finite ends that lie on the subsurface of F between
αn−1 and αk+1 . As a consequence r

(
λ([a, b])

)
must intersect the curve λ([t0, t1]) .

Let c ∈ (a, b) be the smallest value with r ◦ λ(c) = λ(t∗) for some t∗ ∈ [t0, t1] .

Define the new piecewise geodesic

λ̄ =






λ(t) t ∈ [0, t∗),
r ◦ λ(t− t∗ + c) if t ∈ [t∗, b− c+ t∗],
λ(t− t∗ + c) t ∈ [b− c+ t∗,∞).

This is constructed from λ by removing the curve λ([t∗, b]) and inserting the
reflected arc r ◦ λ([c, b]) . Consequently, the length of λ̄ between λ(0) and λ(b)
is l

(
λ([0, b])

)
− l

(
λ([t∗, c])

)
= b − c + t∗ . For the remainder of the argument we

shall focus on the curve λ([t∗, c]) . In all but one case, which requires extra effort,
c− t∗ = l

(
λ([t∗, c])

)
> 0.9.

Consider the geodesic arcs λ([t∗, a]) and r ◦ λ([a, c]) . Since λ(a) ∈ γ , the
spine of F , r◦λ(a) = λ(a) . Furthermore, since λ(t∗) = r◦λ(c) , the two arcs meet
at their endpoints. As c is the smallest value for which such an intersection takes
place, the arcs will be disjoint except for their endpoints. The arcs themselves
are, by hypothesis, simple. We conclude that the set λ([t∗, a])∪r

(
λ([a, c])

)
can be

parameterized as a simple closed piecewise geodesic, which we denote by σ . Since
reflection is length preserving l(σ) = c− t∗ .

σ divides the planar surface F into two disjoint regions neither of which is
simply connected. One possibility is that σ isolates a finite end of F . The pieces
of σ lie on the simple geodesics λ and r ◦ λ which do not go out a finite end. We
can infer from Lemmas 3.3 and 3.4 that σ ∩N = ∅ , where N is the fundamental
collar associated with the finite end isolated by σ . It follows from Lemmas 3.1
and 3.2 that l(σ) = c− t∗ > 2.

The second possibility for how σ divides F is that σ is freely homotopic to
a simple closed geodesic α not associated to an end of F . If σ ∩N = ∅ , where N
is the fundamental collar about α , then again by Lemma 3.1 l(σ) = c − t∗ > 2.
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We shall save the case σ ∩ N 6= ∅ , which is exceptional, for later and show how
the proof is completed if either σ isolates a finite end or σ ∩N = ∅ .

Recall that the strategy is to show that for each instance of a double inter-
section a path which is shorter by a definite amount can be found. Computing
lengths we get

b = l(λ([0, b]) = b− c+ t∗ + c− t∗ ≥ l
(
λ̄([0, b− c+ t∗])

)
+ 2.

Since λ̄(b − c + t∗) = λ(b) we have that b ≥ d
(
λ(0), λ(b)

)
+ 2, as we set out to

show.
Now we turn to the case where σ is freely homotopic to a simple closed

geodesic α and σ ∩N 6= ∅ . If l(α) ≥ 1 then since α minimizes length in its free
homotopy class l(σ) > 1 and the previous argument can be applied to show that
l([0, b]) ≥ d

(
λ(0), λ(b)

)
+ 1.

In the remaining case, l(α) < 1, we shall have to resort to a different technique
for shortening λ . Since the arcs of σ lie on simple geodesics, Lemma 3.3 says that
both λ and r◦λ cross α . The way things are set up, λ must then cross α two and,
in fact, three times. We can choose values 0 < u < v < b so that λ(u), λ(v) ∈ α
and λ(t) /∈ α for u < t < v . By Lemma 3.3 l

(
λ([u, v])

)
≥ w(1) > 1.4. As in the

construction of λ̄ we can construct a piecewise geodesic arc from λ(0) to λ(b) by
replacing the arc λ([u, v]) with the shorter arc of α between λ(u) and λ(v) . The
arc has length at most .5. This shows that l([0, b]) ≥ d

(
λ(0), λ(b)

)
+ 1.4 − 0.5.

That completes the proof.

3.3. Limiting geodesic rays. In this section we prove a technical proposi-
tion which gives sufficient conditions for concluding that a piecewise geodesic ray
gets uniformly close to a geodesic ray. We shall make use of the proposition in the
next section to show that a subcritical ray gets uniformly close to a critical ray.

Let λ: [0,∞) → S be a piecewise geodesic ray. Then there is a sequence
0 = t0 < t1 < · · · <∞ so that λ restricted to each interval [ti, ti+1] is a maximal
geodesic subarc λi of λ . Let φi be the (unsigned) angle between the vector
tangent to λi−1 at the point λ(ti) and the vector tangent to λi at λ(ti) .

Proposition 3.1. Let λ be a piecewise geodesic ray on the hyperbolic sur-

face S . Suppose that there is a number C0 > 0 so that for each i ≥ 0 , l(λi) > C0 .

Further suppose that limi→∞ φi = 0 . Then there is a geodesic ray σ in S so that

given ε > 0 there is a number Tε > 0 so that λ([Tε,∞)) lies in an ε-neighborhood

of σ .

This proposition bears a likeness to results appearing in [7] and [6]. Our proof
is largely inspired by the latter.

Lemma 3.5. Consider the hyperbolic right triangle △ABC of Figure 2 ,

where B and C are fixed and A may vary along a fixed geodesic. Then

dθ

dt
= − cosh t tan θ

sinh t sec2 θ
< −sin 2θ

2
.
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Figure 2.

Proof. For a right triangle we have tanhBC = sinh t tan θ [4]. Differentiating
implicitly with respect to t gives

0 = cosh t tan θ + θ′(t) sinh t sec2 θ or θ′(t) = − cosh t tan θ

sinh t sec2 θ
.

Set C = 1
4
C0 . By going to the universal cover we may take S = H2 . Without

loss of generality suppose that for all i > 0, φi < Cπ/4(1+C) . Let st denote the
geodesic arc from λ(s) to λ(t) . For t 6= ti define θ(t) to be the angle between the
vector tangent to 0t at λ(t) and the vector tangent to λ at λ(t) . At the points
ti we get two angles: θ(t+i ) by considering the tangent to λi at λ(ti) , and θ(t−i )
by considering the tangent to λi−1 at λ(ti) . Then |θ(t+i ) ± θ(t−i )| = φi . By the
previous lemma θ is smooth on each interval (ti, ti+1) and is strictly decreasing
there if θ(t+i ) < 1

2π .

Lemma 3.6. For all integers i > 0

(1) θ(t+i ) ≤
i−1∑

j=0

( 1

1 + C

)j

φi−j .

Proof. We shall argue by induction. Certainly θ(t+1 ) = φ1 , taking care of the
case i = 1. Suppose that the formula holds for i = n . Then since

θ(t+n) ≤
n−1∑

j=0

( 1

1 + C

)j

φn−j ≤ π

4

( C

C + 1

) n−1∑

j=0

( 1

1 + C

)j

<
π

4
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θ is strictly decreasing on (tn, tn+1) and θ′(t) < −1
2 sin 2θ(t) . This gives

θ(t−n+1) =

∫ tn+1

tn

θ′(t) dt+ θ(t+n) < −1
2C0 sin 2θ(t−n+1) + θ(t+n).

Consequently,

(1 + C)θ(t−n+1) < θ(t−n+1) + C sin 2θ(t−n+1) < θ(t+n).

From this we conclude that

θ(t+n+1) ≤ θ(t−n+1) + φn+1 <
1

1 + C
θ(t+n) + φn+1

<
1

1 + C

n−1∑

j=0

( 1

1 + C

)j

φn−j + φn+1 =

n∑

j=0

( 1

1 + C

)j

φn−j+1.

That completes the proof of the lemma.

Remark 3.2. 1. There are two consequences of the formula that we will
make use of. Their proofs are immediate. First, given ε > 0 there exists N > 0
so that for t > N , θ(t) < ε . The second is that given ε > 0 there is a δ > 0 so
that if φi < δ for all i ∈ N , then for all t > 0, θ(t) < ε .

2 . In the proof of Proposition 3.1 we will also need the following simple
observation. Let two geodesic rays α , β in H2 have a common initial point x
at which they make an angle θ . Let αβ be the geodesic from the endpoint of
α to the endpoint of β in H2 , and set d(θ) = d(αβ, x) = distance from x to
the arc αβ . Given points a ∈ α , b ∈ β , let ab be the geodesic arc joining a
and b . Then by elementary hyperbolic trigonometry d(ab, x) < d(αβ, x) = d(θ) ,
and limθ→π d(θ) = 0.

Proof of Proposition 3.1. Choose positive numbers φ∗ , θ∗ , and φ so that
d(θ) < ε for θ > π − φ∗ − 2θ∗ and if φi < φ for all i > 0, then θ(t) < θ∗ for all
t > 0. Then for N large we can be assured that:

1. for t > N , θ(t) < θ∗ and
2. for ti > N , φi < min(φ, φ∗) .

Figure 3.
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Let ψ denote the angle at λ(ti) formed by the arcs 0ti and titj where j > i ,
and let ϕ denote the angle formed by the arcs titj and titi+1 . One possible
configuration for the relevant angles is illustrated in Figure 3. Then π − φi ≤
θ(t−i ) + ψ + ϕ . If i > N , as above, then π − φ∗ − θ∗ − ϕ ≤ ψ . Furthermore,
Remark 3.2.1 can be applied to the arc of λ oriented backwards from λ(tj) to
λ(0) to conclude that ϕ < θ∗ . Thus π − φ∗ − 2θ∗ ≤ ψ .

It follows from the above and Remark 3.2.2 that given ε > 0 we can choose
N so that the distance from λ(ti) to the geodesic arc 0tj is less than 1

2
ε whenever

i > N and j > i . The geodesic arcs 0tj converge as j → ∞ to a geodesic ray σ
beginning at λ(0), and d

(
σ, λ(ti)

)
< ε for all i > N . Since the distance between

a geodesic arc and a geodesic ray will attain its maximum at an endpoint of the
arc, we conclude that d

(
σ, λ(t)

)
< ε for t > tN .

3.4. A subcritical ray gets close to a critical ray. The main result of
this section is

Theorem 3.3. Let λ be an infinite subcritical ray on an untwisted flute F .

Then there is a critical ray σ on F so that for any ε > 0 there is a Tε > 0 so

that for all t > Tε , λ(t) lies in the ε-neighborhood of σ .

The proof will build on the earlier work of this section and the following
lemma, which is an easy consequence of the triangle inequality.

Lemma 3.7. Let λ be a piecewise geodesic arc, made up of two geodesic

pieces between points a, b ∈ H2 . Suppose that there are numbers l > 0 and

0 < θ < π so that the length of each maximal geodesic subarc of λ is greater than

l and that the angles between the arcs is less than θ . Then there is a number

C(l, θ) > 0 , so that l(λ) − d(a, b) > C(l, θ) .

Proof of Theorem 3.3. Let Fr denote the quotient of the untwisted flute F
by the action of the reflection r . Fr is an orbifold; in this case an ideal hyperbolic
polygon with mirror-like boundary. If we ignore the mirror aspect of the boundary,
Fr is simply an infinite sided convex hyperbolic polygon in H2 , which is isometric
to the closure of a connected component of F \ R . The geodesic ray λ projects

to a piecewise geodesic λ̂ in Fr . Two geodesic arcs of λ̂ meeting at a point on
∂Fr will make equal angles with the boundary arc. Thus λ̂ will look like the path
of a billiard ball on a hyperbolic billiard table. Since any geodesic ray in Fr lifts
to a geodesic ray in F , ∆λ̂(t) will be a bounded function. Call a ray of this sort

a piecewise geodesic subcritical ray. λ̂ can also be viewed as a piecewise geodesic
ray on F lying in the closure of one of the regions in the complement of F \R .

By Theorem 3.1 there is no loss of generality in assuming that λ is simple.
Furthermore, as a consequence of Theorem 3.2, λ̂ is eventually simple. Thus there
is no loss of generality in supposing that λ̂ is a simple piecewise geodesic ray.
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Let γ and β denote the projections from F to Fr of the sets with the same
names. One should note that, except perhaps for the projection of the first geodesic
segment of λ , a maximimal geodesic subarc of λ̂ will have one endpoint on γ and
the other endpoint on either β or on a geodesic arc in γ which is distinct from
the first one.

To prove the theorem it will suffice to show that there is a critical ray σ on
Fr so that given any ε > 0, λ̂ is eventually within the ε-neighborhood of σ . We
shall make use of the notation for piecewise geodesic rays developed in Section 3.3.

By Lemma 3.7 it is not possible for λ̂ to be a piecewise geodesic subcritical
ray if it contains infinitely many pairs of consecutive geodesic arcs λ̂i, λ̂i+1 so that
l(λ̂i) , l(λ̂i+1) > l and φ̂i > θ for some numbers l, θ > 0, where φ̂i denotes the

angle between the tangents to consequtive segments of λ̂ . This is because each
such pair of arcs can be replaced by a geodesic arc which is shorter by the fixed
amount C(l, θ) .

There are two possibilities for the geometry of λ̂ . The first is lim infi→∞ l(λ̂i) =

l > 0. Then by the above limi→∞ φ̂i = 0. This is precisely the case dealt with in
Proposition 3.1. The geodesic ray σ of Proposition 3.1, being a limit of geodesic
arcs on Fr , will lie in Fr and will go out the infinite end of F . It follows eas-
ily that σ is strongly asymptotic, perhaps relative to some half-plane, to β . By
Theorem 2.1 σ is a critical ray, proving the theorem in this case.

The remaining possibility is that lim infi→∞ l(λ̂i) = 0. One immediate con-
sequence of this is that lim infi→∞ l(αi) = 0, and therefore the infinite end of
surface F is of the first kind [1]. To complete the proof we shall perform several

surgical modifications to λ̂ in order to produce a piecewise geodesic ray λ̄ with
lim infi→∞ l(λ̄i) = l > 0. Then the above considerations will again be applicable.

Given 0 < ε < 1 let I ⊂ N be an infinite subset so that l(λ̂i) <
1
4ε if and

only if i ∈ I . Note that if both endpoints of λ̂i lie on γ then λi ∪ r(λi) is a
simple closed curve on F . Arguing as in the proof of Theorem 3.2 we can infer
that l(λ̂i) ≥ 1, and thus i /∈ I . We construct a sequence of piecewise geodesic

rays {Λi}∞i=2 as follows. Set Λ2 = λ̂ . Suppose that Λi has been defined for
1 < i ≤ n . Rather than going through the exact definition for Λn+1 in terms of
parameterization etc., we shall indicate the pieces of Λn that are to be replaced
and their replacements.

– If n /∈ I then Λn+1 = Λn .
– If n ∈ I and λ̂(tn) ∈ γ let p denote the initial point of the geodesic subarc

of Λn with terminal point λ̂(tn) . Then replace the two arcs of Λn from

p to λ̂(tn+1) by the minimal length geodesic arc between those points to
produce Λn+1 .

– If n ∈ I and λ̂(tn) ∈ β then replace the arc of Λn from λ̂(tn) to λ̂(tn+2) by
the geodesic arc between those endpoints to produce Λn+1 and set Λn+2 =
Λn+1 .
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Note that the third replacement followed by the second could modify the same
arc twice, and that this is the only way an arc could experience two modifications.
It follows that the piecewise geodesics Λi eventually stabilize in the following
sense: for any T > 0 there is an N > 0 so that for i, j < N , Λi(t) = Λj(t) for all
t < T . Therefore the sequence of piecewise geodesic rays converges to a piecewise
geodesic ray λ∗ .

We note some properties of λ∗ , which are easy consequences of the construc-
tion. First, any maximal geodesic subarc of λ∗ not lying along β will have length
greater than or equal to 1

4ε . Second, at any stage in the construction a pair of
geodesics is replaced by the geodesic arc that forms a triangle with them. Since
one of the original pair has length less than 1

4
ε , each point on the pair is within

1
4ε of the side replacing them. Thus every point of λ̂ is within 1

2ε of λ∗ . Lastly,

the path along λ∗ from λ̂(0) = λ∗(0) to a point in the intersection of λ̂ and λ∗

is shorter than the path along λ̂ .
A further modification of the piecewise geodesic λ∗ is necessary before the

earlier results can be brought into play. Suppose that λ∗ 6= β , for otherwise we
are done. Let λ∗i−1λ

∗

i be a pair of maximal geodesic subarcs of λ∗ where λ∗i is

a subarc of β and l(λ∗i ) <
1
4ε . The initial point of λ∗i must be λ̂(tj) for some

j > 0. As observed earlier, λ̂(tj−1) and λ̂(tj) make equal angles θ with β .
After the modifications, λ∗i−1 will make an angle with β less than or equal to θ .
Since λ∗i lies along β we can infer that the angle between λ∗i−1 and λ∗i is greater
than 1

2π . Therefore the geodesic joining the initial point of λ∗i−1 to the endpoint

of λ∗i will have length greater than 1
4ε , and will lie within 3

4ε of λ̂ . Since any
two pairs λ∗i−1λ

∗

i as above will be disjoint, each such pair in λ∗ can be replaced
independently by the above geodesic arc joining the endpoints of the pair. The
result is a piecewise geodesic λ̄ lying in a 3

4
ε neighborhood of λ̂ , realizing shorter

paths to intersections with λ̂ , as above, and satisfying l(λ̄i) ≥ 1
4
ε on each maximal

geodesic subarc λ̄i . In particular, λ̄ is a piecewise subcritical ray.
We are now in a good position to complete the argument. Let φ̄i denote

the angle between the tangents to consequtive segments of λ̄ , as in Section 3.3.
If lim infi→∞ l(φ̄i) > 0 then by Lemma 3.7 λ̄ cannot be subcritical. But λ̂ is
subcritical, and so it must be that limi→∞ φ̄i = 0. Then by Proposition 3.1
there exists a geodesic ray σ on Fr so that all but a finite length arc of λ̄ lies
within the 1

4ε-neighborhood of σ . Moreover, since σ goes out the infinite end it
is strongly asymptotic to β . From Theorem 2.1 we infer that σ is a critical ray,
and finally we may conclude that all but a finite length segment of λ lies within
the ε-neighborhood of the critical ray σ .

4. The existence of subcritical and rigid subcritical rays

on untwisted flutes

The results of the previous sections can be applied to give sufficient conditions
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and, in restricted cases, necessary conditions for a geodesic ray on an untwisted
flute to be subcritical. From this we can draw some general conclusions about
when an untwisted flute will contain nontrivial infinite subcritical rays. These are
expressed in terms of the sequence of lengths of the geodesics αi .

The ray β and the geodesics αi are naturally oriented in the direction of
increasing parameter values. Each αi has intersection number 1 with β , written
i(αi, β) = 1. Similarly, orient each of the geodesics γi which comprise γ so that
i(γi, αi) = 1.

Lemma 4.1. Given a sequence of integers n , with ni 6= 0 for infinitely many

i ∈ N , there is a unique geodesic ray λ(n) which is simple, non-backtracking, has

initial point λ(0) , and has precisely the intersection numbers

i(λ, γi) = (−1)sini, where si =

{
0 if ni ≥ 0,

1 if ni < 0.

Proof. To prove that λ(n) exists define a piecewise geodesic ray beginning at
λ(0) as follows: let Λ1 be the geodesic α1 traversed |n1| times with orientation s1 .
Given Λi construct Λi+1 by adding on the arc of β from ai to ai+1 followed by
the geodesic αi+1 traversed |ni+1| times with orientation si+1 . Clearly the arcs
Λi converge to a geodesic Λ. Let λi(n) be the geodesic freely homotopic to
Λi relative to its endpoints. Note that each λi(n) is simple and has the desired
intersection number with γj for j ≤ i . A lift of Λ to H2 has a unique endpoint at
infinity. One concludes that the geodesic arcs λi(n) converge to a geodesic λ(n) ,
which is easily seen to have the asserted properties.

By Theorems 3.1 and 3.2 a subcritical ray λ is eventually simple and eventu-
ally non-backtracking. Therefore, by altering λ on a finite segment, a subcritical
ray λ′ can be produced which is simple, never backtracks, and is asymptotic to λ .
Moreover any geodesic ray that is asymptotic to λ′ will be a subcritical ray. Thus
one approach to understanding the subcritical rays is by characterizing the simple,
non-backtracking subcritical rays.

For the remainder of this section λ will denote a simple, non-backtracking
geodesic ray with λ(0) = β(0). Since λ is non-backtracking i(λ, αi) = 1 for i ≥ 1.
Since λ is simple each of its intersections with γi for a fixed i will have the same
orientation, and thus no cancellation occurs in the calculation of the intersection
number. It follows that λ determines a sequence n = {ni} , ni ∈ Z so that

i(λ, γi) = (−1)sini, where si =

{
0 if ni ≥ 0,
1 if ni < 0.

We have proved the following

Theorem 4.1. If λ is a rigid subcritical ray then there exists a sequence of

integers n with ni 6= 0 for infinitely many i ∈ N so that λ is asymptotic to λ(n) .
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4.1. Necessary and sufficient conditions for existence. The theorem
proved in this section gives sufficient conditions for certain λ(n) to be subcriti-
cal. As a corollary we get necessary and sufficient conditions for the existence of
subcritical rays in terms of the geometry of the flute.

There are some technical considerations which complicate matters when the
infinite end of F is of the second kind. Given a point u on the closed geodesic α1 ,
let λu be the geodesic ray perpendicular to α1 with λu(0) = u and with a positive
orientation relative to α1 at u . For example, λa1

⊇ β . If the flute surface F has
an infinite end of the second kind then it contains a unique maximal half-plane P .

Lemma 4.2. If the infinite end of F is of the second kind then there is an

r -symmetric open subarc µ of α1 centered at a1 = β(0) and a number Tu > 0
so that for u ∈ µ , λu is a critical ray and for t > Tu , λu(t) ∈ P . Furthermore, if

u is an endpoint of µ then λu is a critical ray but λu ∩ P = ∅ .

Proof. Lift αi to a geodesic α̃i and lift β to a geodesic β̃ with initial point
on α̃1 . β̃ has its endpoint in a lift P̃ of P . Let µ̃ be the set of points on α̃1 so
that for u ∈ µ̃ the geodesic λ̃u perpendicular to α̃1 at u satisfies λ̃u∩P̃ 6= ∅ . One
easily checks that the projection of µ̃ to F has all the properties of the lemma.

To better deal with the infinite ends of the second kind we define geodesics
α̂i , i ∈ N , on F by removing part of the αi . If the infinite end of F is of the
first kind then set α̂i = αi . If the infinite end of F is of the second kind then let
α̂i be the arc of αi which is disjoint from λu for each u ∈ µ .

Theorem 4.2. Suppose that n is a sequence of integers with ni 6= 0 for

infinitely many i ∈ N .

1 . If
∑

∞

i=1 |ni|l(αi) converges then λ(n) is a rigid subcritical ray.

2 . Suppose ni ∈ {−1, 0, 1} and that if |ni| = |nj | = 1 and nk = 0 for

i < k < j then si + sj = 0 . If lim infi→∞(α̂i) = 0 then λ(n) is a rigid subcritical

ray.

Proof. Suppose that
∑

∞

i=1 |ni|l(αi) converges. We first argue that the piece-
wise geodesic Λ introduced in the proof ot Lemma 4.1 is subcritical. Let x ∈ β
lie between aj and aj+1 . Then

d
(
β(0), x

)
= (length of Λ between β(0) and x) −

j∑

i=1

|ni|l(αi).

Then ∆Λ(t) <
∑

∞

i=1 |ni|l(αi) and consequently Λ is subcritical.
λ meets each αi in a single point bi . The geodesic arc of λ from λ(0) = β(0)

to bi is freely homotopic relative endpoints to the piecewise geodesic arc of Λi

between the same endpoints. The arc of λ will then be the shorter of the two. It
follows that since Λ is a piecewise geodesic subcritical ray, λ is a subcritical ray.
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As ni 6= 0 for infinitely many i , λ is not asymptotic to β and therefore λ is in
fact a rigid subcritical ray. That completes the proof of (1).

Now assume the hypothesis of (2). Observe that λ(n) intersects β only once,
in its initial point. λ(n) weaves between the holes of F , never spiraling around
the body of the flute. Consequently λ(n) will intersect each ray λu for u ∈ µ
exactly once.

Define a new flute surface F ′ as follows: first remove from F the annular
region in the complement of α1 . Then remove the set of points lying on the
geodesic rays λu for u ∈ µ . The remaining subsurface is bounded by α1 , λv ,
and λw where v , w are the endpoints of µ . Since λv and λw are orthogonal to
α1 we can identify the points λv(t) and λw(t) for t ∈ [0,∞) to produce a new
hyperbolic surface F ′ . One easily sees that F ′ is a subsurface of an untwisted
flute, that on F ′ the geodesics αi are just the α̂i with their endpoints identified,
and that the infinite end of F ′ is of the first kind. Now from the first part it
follows that λ(n)∩F ′ is a subcritical ray on F ′ , which is then easily transplanted
back to a subcritical ray on F .

Corollary 4.1. An untwisted flute F contains one rigid subcritical ray, and

hence uncountably many asymptotically distinct ones, if and only if

lim inf
i→∞

l(α̂i) = 0.

Proof. First we consider a surface F on which the infinite end is of the first
kind. Suppose that lim infi→∞ l(αi) = k > 0. We show that if λ is a geodesic
ray on F which is non-backtracking and not asymptotic to β then λ is not a
subcritical ray. It then follows by Corollary 2.1 that there are no rigid subcritical
rays on F .

Since λ is not asymptotic to β there must exist distinct points ti ∈ [0,∞)
with limi→∞ ti = ∞ so that λ(ti) ∈ γ for all i ∈ N . Then there are corresponding
integers ji so that λ(ti) ∈ γji

. Since the arc of αji
is the minimal length common

orthogonal of β and γji
we have

d
(
λ(ti), β

)
≥ 1

2 l(αji
) > 1

2k.

As any critical ray on F is asymptotic to β , it is a consequence of Theorem 3.3
that λ cannot be a subcritical ray.

The converse is an immediate consequence of the previous theorem. In fact,
given any sequence n as above, if the sum

∑
∞

i=1 |ni|l(αi) converges and ni 6= 0 for
infinitely many i ∈ N then λ(n) is a rigid subcritical ray. Thus if lim infi→∞ l(αi)
= 0 there will be uncountably many distinct non-asymptotic subcritical rays on F .

Now suppose that the infinite end of F is of the second kind. If lim infi→∞(α̂i)
= k > 0 then there exist ti as above, with λ(ti) ∈ γ . By Theorem 2.1 a critical
ray on F must be asymptotic to one of the critical rays λu for some u ∈ µ . Then

inf
{
d
(
λ(ti), λu

)
| i ∈ N

}
≥ 1

2
l(α̂i) ≥ 1

2
k,
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and again, by Theorem 3.3 λ cannot be subcritical.
As above, the converse and the existence of uncountably many distinct non-

asymptotic subcritical rays follows from Theorem 4.2.

Lemma 4.3. Consider the hyperbolic right triangle with sides lengths a , b ,
c where c > a, b . With a fixed let f(b) = c− b . Then f is a decreasing function

and limb→∞ f(b) = log(cosh a) .

Proof. In general a , b , and c satisfy cosh c = cosh a cosh b [4]. Then

1 =
cosh

(
b+ f(b)

)

cosh a cosh b
=
ef(b) + e−2b−f(b)

cosh a(1 + e−2b)
.

Taking limits gives limb→∞ ef(b) = cosh a from which the above limit follows.
Writing f(b) = arc cosh(cosh a cosh b) − b and differentiating reveals that f ′(b) <
0.

The next result gives a necessary condition for a ray to be subcritical in a
somewhat restrictive situation.

Theorem 4.3. Suppose that λ(n) is a rigid subcritical ray on a surface F ,

and that for some I > 0 and for all i > I , si is identically 1 or 0 . Then

∞∑

i−0

|ni|l(αi)
2 converges.

Proof. As in the proof of Corollary 4.1, for each i ∈ N there exist distinct
points ti , t

′

i with λ(ti) ∈ β and, λ(t′i) ∈ γji
so that the open arcs λ

(
(ti, t

′

i)
)

and

λ
(
(t′i, ti+1)

)
are all disjoint from β ∪ γ . The distance between the points λ(ti)

and λ(ti+1) is realized along the arc of β joining them and has the value di .
As earlier, l

(
λ
(
(ti, t

′)
))

≤ 1
2
l(αji

) and l
(
λ
(
(t′i, ti+1)

))
≤ 1

2
l(αji

) . Then by the
previous lemma

l
(
λ
(
(ti, ti+1)

))
− di ≥ 2 log

(
cosh( 1

2
l(αji

)
))
.

Furthermore, since λ is subcritical, there is a value M > 0 so that for all i > 0

M > ∆λ(ti+1) =

i∑

k=0

l
(
λ
(
(tk, tk+1)

))
− d

(
λ(0), λ(ti+1)

)

=

i∑

k=0

[
l
(
λ
(
(tk, tk+1)

))
− dk

]
> 2

i∑

k=0

log
(
cosh 1

2 l(αjk
)
)
.

Consequently,
∞∑

k=0

log
(
cosh 1

2
l(αjk

)
)

=
∞∑

k=0

|nk| log
(
cosh 1

2
l(αk)

)

is convergent. The result follows.
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Remark 5.2. Keeping Lemma 4.3 in mind, one can easily construct an
untwisted flute on which

1. there is a rigid subcritical ray λ(n) , where s satisfies the hypothesis of The-
orem 4.3 and the sum

∑
∞

i=0 |ni|l(αi) diverges, and
2. there is a geodesic ray λ(n) , where s satisfies the hypothesis of Theorem 4.3

and the sum
∑

∞

i=0 |ni|l(αi)
2 converges but λ(n) is not subcritical.

Thus the truth is somewhere in between.

5. Dirichlet and Garnett points for untwisted flute groups

There is a a more familiar, but less geometric way to view questions about
critical and subcritical rays in terms of the universal cover of a hyperbolic man-
ifold M . The n -dimensional hyperbolic space is denoted by Hn , and we write
Isom(Hn) for the group of isometries. Hn can be realized as the upper half-space
in Rn endowed with the Poincaré metric. In this model Hn has a natural bound-
ary ∂Hn , and the action of Isom(Hn) extends to the boundary. A horocycle is
either the interior of an n−1-sphere in the upper half-space Hn which is tangent
to ∂Hn or an upper half-space in Hn .

Let Γ be a discrete subgroup of Isom(Hn) . The limit set Λ(Γ) is defined as
in Section 1.2. One then defines a point on the boundary of Hn to be horocyclic,
Dirichlet, or Garnett in terms of how the point is approximated by the orbit of
a given point under the action of the group Γ. More precisely, a limit point
x ∈ Λ(Γ) is called horocyclic if for some a ∈ Hn the orbit Γa enters every
horocycle based at x . If some orbit enters every such horocycle then all orbits
will. Among points x ∈ ∂Hn that are not horocyclic two sorts are generally
distinguished. Fix a ∈ Hn . If x ∈ ∂Hn is not a horocyclic limit point then there
is a unique horocycle Hx based at x which is disjoint from Γa and such that any
larger horocycle intersects Γa . Hx is called the a-critical horocycle for x . If a
lies on the boundary of Hx then we say that the point x is critical with respect

to a . Otherwise x is called subcritical with respect to a .

The following theorem gives the correspondence between the two viewpoints.

Theorem 5.1. Let σ: [0,∞) → M be a geodesic ray with initial point

σ(0) = a . Lift σ to a geodesic ray σ̃ with initial point ã ∈ Hn and endpoint

x ∈ ∂Hn . Then the ray σ is horocyclic, critical, or subcritical if and only if the

point x is respectively horocyclic, critical with respect to ã , or subcritical with

respect to ã .

We will make use of the following lemma, which is a simple exercise in hyper-
bolic geometry.

Lemma 5.1. Let h , h′ be two points on the boundary of a horosphere H
based at x ∈ ∂Hn . Let σ̃ be the geodesic ray in Hn with initial point h and

end-point x . Then
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1 . all t ∈ [0,∞) , d
(
h, σ̃(t)

)
< d

(
h′, σ̃(t)

)
,

2 . limt→∞

[
d
(
h, σ̃(t)

)
− d

(
h′, σ̃(t)

)]
= 0 .

Proof of Theorem 5.1. First suppose that the point x ∈ ∂Hn is critical or
subcritical with respect to ã ∈ Hn and let Hx denote the ã-critical horosphere
based at x . The geodesic ray σ̃: [0,∞) → Hn from ã to x meets Hx orthogonally
at a point h . Set d = d(ã, h) , and let σ denote the projection of σ̃ to M . Let
γt be a minimal length geodesic arc on M joining a to σ(t) . Take the lift γ̃t of
γt which ends at σ̃(t) . The initial point of this arc, denoted ãt , belongs to the
Γ-orbit of ã . Let ht = γt ∩Hx . Then we have

[
t− dM

(
a, σ(t)

)]
= [t− l(γt)] =

[
d
(
ã, σ̃(t)

)
− d

(
ãt, σ̃(t)

)]

=
[
d(ã, h) − d(ãt, ht) + d

(
h, σ̃(t)

)
− d

(
ht, σ̃(t)

)]
< d(ã, h) ≤ d,

where we have applied Lemma 5.1 to deduce the inequality. Thus the ray σ is
either critical of subcritical.

If the point x is critical with respect to ã then ã = h . It follows that
d = 0 and σ is a critical ray. If x is rather subcritical with respect to ã then
ã /∈ Hx and d = d(ã, h) > 0. Consequently, there is a point ã′ ∈ Γã and
h′ ∈ ∂Hx so that d′ = d(ã′, h′) < d . Choose t′ large enough so that in Lemma 5.1
d
(
h′, σ̃(t′)

)
− d

(
h, σ̃(t′)

)
< d− d′ . Then

d
(
ã′, σ̃(t′)

)
= d(ã′, h′) + d

(
h′, σ̃(t′)

)
< d′ +

[
d− d′ + d

(
h, σ̃(t′)

)]
= d

(
ã, σ̃(t′)

)
.

It follows that σ does not minimize the distance between two points along the ray
and hence σ is subcritical.

Conversely, suppose that the geodesic ray σ is critical or subcritical. Let σ̃
be a lift to Hn beginning at ã and ending at x . We show that x is either critical
with respect to ã or subcritical with respect to ã . To this end we demonstrate the
existence of a critical horosphere Hx . If there does not exist such a horosphere
then for each integer n > 0 there is a horosphere Hn based at x so that for some
gn ∈ Γ, gn(ã) = ãn ∈ ∂Hn , and the points hn = σ ∪ ∂Hn satisfy d(ã, hn) > n .
For each n apply Lemma 1.1 to choose tn so that

d
(
ãn, σ̃(tn)

)
− d

(
hn, σ̃(tn)

)
< 1.

Then we have

tn − d
(
a, σ(tn)

)
≤ d

(
ã, σ̃(tn)

)
− d

(
ãn, σ̃(tn)

)

= d(ã, hn) + d
(
hn, σ̃(tn)

)
− d

(
ãn, σ̃(tn)

)
> n− 1

for any integer n > 0. This implies that σ is horocyclic, contrary to the initial
assumption. The point x is therefore either critical with respect to ã or subcritical
with respect to ã . The theorem follows.
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A point x ∈ ∂Hn is a Dirichlet point of Γ if for any a ∈ Hn there is a group
element γ ∈ Γ so that γ(x) is critical with respect to a . Those points of ∂Hn

which are neither horocyclic nor Dirichlet are called Garnett points. Following
Nicholls and Waterman, a point x ∈ ∂Hn is a rigid Garnett point if for all
a ∈ Hn , x is subcritical with respect to a . It follows from the definitions that
if x is subcritical with respect to a ∈ Hn but not a rigid Garnett point then for
some a′ ∈ Hn , x is Dirchlet with respect to a′ .

The following corollary is an immediate consequence of the theorem.

Corollary 5.1. Let x be a point on the boundary of Hn , and let σ be a

geodesic ray in M that has a lift ending at x . Then

1. x is a Dirichlet point of Γ if and only if for each point a ∈ M there is a

critical ray with initial point a which is asymptotic to σ .

2. x is a Garnett point of Γ if and only if for some a ∈ M any geodesic ray

with initial point a which is asymptotic to σ is subcritical.

3. x is a rigid Garnett point of Γ if and only if for all a ∈ M a geodesic ray

with initial point a which is asymptotic to σ is subcritical.

A point is Dirichlet if and only if it lies on the boundary of some Dirichlet
fundamental polyhedron for Γ. Consequently, the Dirichlet points of Γ are as-
sociated with the non-compactness of the quotient orbifold Hn/Γ. In dimension
n = 2, unless the group is infinitely generated, a Dirichlet point is either a regular
point of the group or a fixed point of a parabolic [12]. In dimensions n ≥ 3 there
are finitely generated groups which have a Dirichlet point that is neither a regular
point nor the fixed point of a parabolic [11].

The need for delineating the class of Garnett points seems to have arisen in
the work of Sullivan [16], where it was shown that the set of Garnett points for a
discrete set Γ has measure zero. The existence of a group with a Garnett point
was first demonstrated by Nicholls [13] (see also [14]). In [15] it is shown that
there exist groups containing rigid and non-rigid Garnett points.

5.1. Untwisted flute groups. We shall end by translating some of the
earlier results into the language of Fuchsian groups. It should be clear that many
of the results on subcritical rays have no simple translation into the group setting.
This is the reason that the intrinsic geometric viewpoint has been adhered to
through most of the paper.

Define an untwisted flute group to be a Fuchsian group representing an un-
twisted flute surface. Such groups can be constructed from the defining parameters
described in Section 1 (see [1]). What follows are some consequences of the results
of the preceeding sections.

Proposition 5.1. Let G be an untwisted flute group and let F = H2/G . A

point x ∈ ∂H2 is a Garnett point of G if and only if it is a rigid Garnett point of

G if and only if it is the endpoint of a lift of a rigid subcritical ray in F .
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Proof. If x is a Garnett point of G then by Corollary 5.1 there is a point
a ∈ F and a geodesic ray σ in F with σ(0) = a so that some lift of σ ends
at x , and so that any geodesic ray λ in F asymptotic to σ with λ(0) = a is
also a subcritical ray. As a consequence of Lemma 2.1 and the definition of rigid
subcritical ray, for any a′ ∈ F every ray λ asymptotic to σ with λ(0) = a′ is
a subcritical ray. Thus from Corollary 5.1 we conclude that x is a rigid Garnett
point.

The situation for Dirichlet points is described in the next proposition. The
proof is an easy consequence of Corollary 5.1 and Theorem 2.1. A set X in ∂H2

is precisely invariant under the identity in the Fuchsian group G if g(X)∩X = ∅
for all g ∈ G with g 6= identity (see [12]).

Proposition 5.2. Let G be an untwisted flute group. One of the following

holds:

1. there exists a point a ∈ ∂H2 so that every Dirichlet point of Γ belongs to

the orbit Γa of a , or

2. there exists a maximal closed interval I ⊂ ∂H2 which is precisely invariant

under the identitity in G so that a point x is Dirichlet if and only if it is

G-equivalent to a point in I .

Note that the two cases in the proposition correspond to the cases where
the infinite end of F is, respectively of the first kind and of the second kind.
Translating Corollary 4.1 in terms of Fuchsian groups we have

Corollary 5.2. Let G be an untwisted flute group. Then there is one Garnett

point for G if and only if there are uncountably many Garnett points for G .

One could as well translate a number of the other results from Section 4, but
we shall leave this to the interested reader.
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