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Abstract. A smooth map f : M → N between semi-riemannian manifolds is called a har-
monic morphism if f pulls back harmonic functions (i.e., local solutions of the Laplace–Beltrami
equation) on N into harmonic functions on M . It is shown that a harmonic morphism is the same
as a harmonic map which is moreover horizontally weakly conformal, these two notions being like-
wise carried over from the riemannian case. Additional characterizations of harmonic morphisms
are given. The case where M and N have the same dimension n is studied in detail. When n = 2
and the metrics on M and N are indefinite, the harmonic morphisms are characterized essentially
by preserving characteristics.

Introduction

For maps between riemannian manifolds the notions of harmonic morphism
and horizontally weakly conformal map were introduced and related to each other,
via the well-known notion of harmonic map, in an earlier paper [1], and indepen-
dently in Ishihara [10]. Recently the corresponding notions for semi-riemannian

manifolds have been studied by Parmar [12]. We refer to O’Neill [11] concerning
semi-riemannian manifolds (where the metric tensor may be indefinite, and hence
the Laplace–Beltrami operator may not be elliptic).

The extension of the notion of harmonic map to the semi-riemannian case is
straightforward (cf. the beginning of Section 3). In particular, we have the notion
of a harmonic function on a semi-riemannian manifold, viz. a smooth function
annihilated by the Laplace–Beltrami operator. A harmonic morphism between
semi-riemannian manifolds M , N is defined as a smooth map M → N which
pulls back local harmonic functions on N into local harmonic functions on M . We
show that, like in the riemannian case [1], [10], a harmonic morphism is the same as
a smooth map which is harmonic and horizontally weakly conformal (Theorem 3).
This latter notion is essentially carried over from the riemannian case, except
that the non-negative scalar λ in [10] (denoted by λ2 in [1]) should now just
be real-valued, cf. Section 2 below. Indeed, there exist (in the non-riemannian
case) harmonic morphisms for which λ takes both positive and negative values
(Examples 5.1 and 5.6).
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A major step towards the proof of the stated main result is the characteriza-
tion of the notion of harmonic morphism by an apparently more restrictive pull-
back property involving fully the Laplace–Beltrami operators ∆M ,∆N , rather
than just the functions annihilated by them (Proposition 3.2). This character-
ization depends on the existence of solutions of the Laplace–Beltrami equation
∆Nv = 0 near a given point of N where the partial derivatives of orders 1 and 2
of v in local coordinates are prescribed (Lemma 3.2). This local existence result
was obtained by Ishihara [10] in the case of a riemannian manifold N ; and it
is easily established if N is either analytic or lorentzian. For an arbitrary semi-
riemannian manifold N , Lemma 3.2 is contained in a local existence theorem
due to Lars Hörmander (personal communication), and I am indebted to him for
permission to include his proof of this theorem in the appendix.

Apart from the use of Lemma 3.2 our proof of the characterization of the
notion of harmonic morphism in Theorem 3 is a combination of arguments given
for the riemannian case in [1] and [2], drawing only on the most basic elements of
semi-riemannian geometry. Alternatively, Ishihara’s proof in [10] likewise seems
to extend to the semi-riemannian case in view of Hörmander’s result.

In Section 4 we characterize in detail, and more explicitly, the harmonic mor-
phisms between semi-riemannian manifolds M , N of the same dimension. In
particular, we extend to this setting most of the results obtained by Gehring and
Haahti [4] for the case where M = N = Rn endowed with a constant semi-
riemannian metric and where the maps in question are homeomorphisms.—For
general semi-riemannian manifolds M , N with dimM > dimN further results
and examples are found in [12].

An interesting application of the notion of harmonic morphism in the semi-
riemannian case to the riemannian case has been given quite recently by Gud-
mundsson [5], using the classical representation of hyperbolic m-space as the upper
sheet of a hyperboloid in (m+ 1)-dimensional Minkowski space.

A number of references to the literature concerning harmonic morphisms in
the riemannian case are found in [5].

1. Semi-riemannian manifolds

A semi-riemannian manifold M is a C∞ -manifold endowed with a metric
tensor gM , that is, a symmetric non-degenerate (0, 2) tensor field on M with
constant indices of positivity and negativity ind+M and ind

−
M , respectively.

The non-degeneracy means that ind+M+ind
−
M = dimM (the dimension of M ).

A subspace U of the tangent space Tx(M) , x ∈M , is called non-degenerate

if the restriction of gx
M to U × U is non-degenerate, that is, if 0 is the only

vector X ∈ U such that gx
M (X, Y ) = 0 for every Y ∈ U ; otherwise U is called

degenerate.
Let f : M → N be a C1 -map between semi-riemannian manifolds M and N

of dimensions m and n , respectively. For each x ∈ M we consider the following
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two subspaces Kx(f) = Kx and K⊥
x (f) = K⊥

x of Tx(M) :

Kx = ker df(x) =
{

X ∈ Tx(M) | df(x)(X) = 0
}

,

K⊥
x =

{

X ∈ Tx(M) | gx
M (X, Y ) = 0 for every Y ∈ Kx

}

.

In terms of local coordinates (y1, . . . , yn) in N near f(x) we have

(1) K⊥
x = span

{

∇Mf1(x), . . . ,∇Mfn(x)
}

,

where fk = yk ◦ f denotes the k th component of f , and ∇M is the gradient
operator acting on scalar fields on M .

In the riemannian case we have Kx ⊕K
⊥
x = Tx(M) , and it is customary then

to call Kx the vertical space and K⊥
x the horizontal space at x . In the semi-

riemannian case, although of course dimKx + dimK⊥
x = m , it may occur that

Kx +K⊥
x 6= Tx(M) , or equivalently: Kx ∩K

⊥
x 6= {0} ; this is further equivalent to

Kx (or just as well K⊥
x ) being degenerate.—The following definition is adapted

from [12]:

Definition 1. A C1 -map f : M → N between semi-riemannian manifolds
M,N is called non-degenerate if Kx(f) (or equivalently K⊥

x (f)) is non-degenerate
for every x ∈M ; otherwise f is called degenerate.

Clearly, if M is riemannian, every C1 -map M → N is non-degenerate. It is
mainly in Section 4, where we treat rather completely the case dimM = dimN ,
that the notion of non-degenerate map comes into play.

2. Horizontally weakly conformal maps

When defining this notion in the semi-riemannian case we do not want to
exclude maps which are degenerate (in the sense of Definition 1 above). We are
led therefore to the following definition, justified by Lemma 2 and Theorem 3
below.

Definition 2. A C1 -map f : M → N between semi-riemannian manifolds
M,N is called horizontally weakly conformal if

1◦ For any x ∈ M at which Kx (or equivalently K⊥
x ) is non-degenerate and

df(x) 6= 0, the restriction of df(x) to K⊥
x is surjective, and conformal in the

sense that there is a (necessarily unique) real number λ(x) 6= 0 such that

g
f(x)
N

(

df(X), df(Y )
)

= λ(x)gx
M(X, Y ) for every X, Y ∈ K⊥

x .

2◦ For any x ∈M at which Kx is degenerate we have K⊥
x ⊂ Kx , that is,

gx
M (X, Y ) = 0 for every X, Y ∈ K⊥

x .
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The dilatation λ of a horizontally weakly conformal map f : M → N is defined
as a scalar on M in accordance with 1◦ , extended to all of M by λ(x) = 0 if
df(x) = 0 or if Kx is degenerate. The term “weakly” refers to the possible
occurrence of points x ∈ M at which λ(x) = 0 according to this extension.
(In [1], [2] a horizontally weakly conformal map between riemannian manifolds
was termed a semiconformal map.)

Clearly dimM > dimN if there exists a horizontally weakly conformal map
f : M → N and a point x ∈ M such that λ(x) 6= 0, that is: df(x) 6= 0 and
Kx is non-degenerate. In fact, at such a point x the rank r(x) of df(x) equals
dimN = n , df(x) being surjective. However, even for a harmonic morphism (cf.
Theorem 3) there may be points x ∈ M at which Kx and K⊥

x are degenerate,
and hence 0 < r(x) < m , noting that r(x) = dimK⊥

x . For arbitrary m > 2
and n > 1 there even exist semi-riemannian manifolds M , N with dimM = m ,
dimN = n and harmonic morphisms f : M → N such that Kx is degenerate for
every point x ∈M (see Examples 5.2 and 5.5).

Also note that, if there exists x ∈ M such that λ(x) > 0, say, then we
have ind+M > ind+N , ind

−
M > ind

−
N , with equality when dimM = dimN .

In fact, any subspace of positivity [negativity] of Tf(x)(N) is the bijective image

under df(x) of a subspace of positivity [negativity] of K⊥
x ⊂ Tx(M) .

If f is non-degenerate (Definition 1) the possibility 2◦ in Definition 2 does
not occur; this simplification therefore always applies when M is riemannian (in
particular when m = 1). For a horizontally weakly conformal map f : M → N
between riemannian manifolds we clearly have λ(x) > 0 for every x ∈ M (and
here we have in [1] defined the dilatation as the square root of the above λ , namely
as the coefficient of conformality of the restriction of df to K⊥ ). (The need for
allowing also negative values of λ in the semi-riemannian case becomes apparent
if one simply multiplies the metric on one of the manifolds by −1, a circumstance
which seems to have been overlooked in [12].) See Remark 3.2 as to the possibility
of a dilatation λ of variable sign in the non-riemannian case.

Lemma 2. A C1 -map f : M → N is horizontally weakly conformal and has

the dilatation λ if and only if

(2) gM

(

∇M (v ◦ f),∇M(w ◦ f)
)

= λ
[

gN (∇Nv,∇Nw) ◦ f
]

for every pair of C1 -functions v , w on N .

Remark 2. By polarization it suffices to consider pairs (v, w) with v = w .
Clearly (2) extends to a local version in which v and w may be defined just in an
open subset of N (with non-empty preimage). Next, it is enough to verify (2) for
v = yk , w = yl , whereby (y1, . . . , yn) are local coordinates in N ; then (2) takes
the form

(3) gM (∇Mfk,∇Mf l) = λ[gkl
N ◦ f ]

for k, l = 1, . . . , n . It follows that the dilatation λ is continuous on M .
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Proof of Lemma 2. 1◦ For any x ∈ M at which Kx is non-degenerate the
proof of [1, Lemma, p. 119] carries over mutatis mutandis.

2◦ For any x ∈ M at which Kx is degenerate it appears from (1) that (3)
holds at x with λ(x) = 0 if and only if gx

M (X, Y ) = 0 for every X, Y ∈ K⊥
x .

Clearly, when n = 1, every C1 -map f : M → N is horizontally weakly confor-
mal. If N = R (with the standard metric) the dilatation of f is λ = gM (∇f,∇f) .

3. Harmonic maps and harmonic morphisms

The Laplace–Beltrami operator ∆M on a semi-riemannian manifold M is
given in local coordinates xi by

(4) ∆M =
1

√

|gM |

m
∑

i=1

Di

(

√

|gM |
m

∑

j=1

gij
MDj

)

,

where Di = ∂/∂xi and gM = | det(gM
ij )| , gij

M and gM
ij being the contravariant

and the covariant components of the metric tensor gM . The operator ∆M is
not elliptic when ind+M > 0 and ind

−
M > 0. Nevertheless we shall keep the

term harmonic functions for C2 -smooth local solutions to the Laplace–Beltrami
equation ∆Mh = 0.

Like in the riemannian case, the tension field τ(f) of a C2 -map f : M →
N between semi-riemannian manifolds is defined as the vector field along f
which to each point x ∈ M assigns the tangent vector, denoted τ(f)(x) (∈
Tf(x)(N)), whose contravariant components τk(f)(x) in terms of local coordi-
nates (y1, . . . , yn) in N are defined by

τk(f) = ∆Mfk +

n
∑

α,β=1

gM

(

∇fα,∇fβ
)(

Γk
αβ ◦ f

)

.

Here the Γk
αβ denote the Christoffel symbols for the target manifold N . If τ(f) =

0, f is called a harmonic map.
For any C2 -function f : M → R we have τ(f) = ∆Mf ; and f is therefore a

harmonic map if and only if f is a harmonic function, or equivalently: a harmonic
morphism (see Definition 3 below). This extends to general target manifolds N
as follows.

Lemma 3.1. Let f : M → N be a horizontally weakly conformal C2 -map

with dilatation λ . The tension field τ(f) is then given in terms of local coordinates

(yk) in N by

τk(f) = ∆Mfk − λ
[

(∆Ny
k) ◦ f

]

.

In particular, τk(f) = ∆Mfk if the local coordinates yk in N are chosen as

harmonic functions.
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Proof. As in the riemannian case [1, p. 123] the identity map id: N → N is
harmonic:

τk(id) = ∆Ny
k +

n
∑

α,β=1

gαβ
N Γk

αβ = 0

(the former equation being a special case of the definition of τk(f) above). It
remains to compose with f , multiply by λ , and apply (3) in Remark 2.

In connection with the second assertion of Lemma 3.1, note that every semi-

riemannian manifold admits local coordinates which are harmonic functions. This
is an easy consequence of the following lemma.

Lemma 3.2. For any point q ∈ N and any C2 -function v on N satisfying

∆Nv(q) = 0 there exists, for given s > 2 , a harmonic Cs -function h in some open

neighbourhood V of q such that h and v have the same partial derivatives at q
of orders 1 and 2 with respect to local coordinates in N near q .

Equivalently, for any q ∈ N there exists in an open neighbourhood of q a
harmonic Cs -function h which, in terms of local coordinates (y1, . . . , yn) centred
at q , has arbitrarily prescribed values of Dkh(0) and DkDlh(0) (k, l = 1, . . . , n)
compatible with ∆Nh(q) = 0.

For a general semi-riemannian C∞ -manifold Lemma 3.2 is due to Hörmander
(personal communication), and his proof of a more general result is given in the
appendix. According to the remark there one may even take s = ∞ in Lemma 3.2.

For a riemannian manifold, Lemma 3.2 is due to Ishihara [10], who applied it
to prove Theorem 3 below, independently and in a different way from [1] (where in-
stead a general result from potential theory was used to show that every harmonic
morphism has the property c+ in Proposition 3.3 below).

For an analytic semi-riemannian manifold the lemma is easily obtained by use
of the Cauchy–Kovalevsky theorem (see e.g. [8, p. 119]), applied after choosing
local coordinates (y1, . . . , yn) centred at q so that gnn 6= 0 at q = 0. Replacing
v as a function of (y1, . . . , yn) by its Taylor polynomial of degree 6 2 expanded
from 0 we see that v can be taken to be analytic from the outset. There exists
then in a neighbourhood of q = 0 an analytic solution h of ∆Nh = 0 such that

h = v, Dnh = Dnv when yn = 0.

Applying Dk and DkDl with k, l < n we obtain for yn = 0, and in particular at
q = 0,

Dkh = Dkv, DkDnh = DkDnv, DkDlh = DkDlv, (k, l < n).

The remaining equality D2
nh(0) = D2

nv(0) follows now from ∆Nh(0) = 0 =
∆Nv(0).
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There is a similar short proof in the lorentzian case, defined by ind+N = 1
or ind

−
N = 1, using now the local solvability of the Cauchy problem for the

hyperbolic equation ∆Nh = 0 with the above initial data, {y | yn = 0} being
chosen spacelike (see Hadamard [6]).

Definition 3. A C2 -map f : M → N between semi-riemannian manifolds is
called a harmonic morphism if, for any harmonic function v in an open set V ⊂ N
such that f−1(V ) 6= ∅ , the pull-back v ◦ f is harmonic in f−1(V ) .

The notion of harmonic morphism remains the same if solely C∞ -solutions v
of ∆Nv = 0 (in V ) are considered in the above definition. This follows from the
proof of (c) ⇒ (b) in Proposition 3.2 in view of Lemma 3.2 above and a comment
shortly thereafter.

Remark 3.1. Clearly, if f : M → N and g: N → P are harmonic morphisms,
then so is g ◦ f : M → P . As to the inverse of an injective harmonic morphism,
see Theorem 4.3 below.

Theorem 3. A harmonic morphism is the same as a harmonic map which is

horizontally weakly conformal.

This main result is contained in the combined Propositions 3.1 and 3.2 below.
In view of Lemma 3.1 the theorem can also be formulated as follows: a harmonic
morphism is the same as a horizontally weakly conformal map f : M → N whose
components fk = yk ◦ f in terms of harmonic local coordinates yk in N are
harmonic in M (cf. the paragraph just before Lemma 3.2).

Proposition 3.1. A C2 -map f : M → N is harmonic and horizontally

weakly conformal if and only if there exists a scalar λ on M such that

(5) ∆M (v ◦ f) = λ
[

(∆Nv) ◦ f
]

for every C2 -function v on N . For such a map f the scalar λ equals the dilatation

of f , cf. Definition 2 .

Proof. The proof for the riemannian case given in [1, p. 124] carries over in
view of the first part of Lemma 3.1 together with (3) in Remark 2.

We proceed to characterize harmonic morphisms by two apparently stronger
pull-back properties (the former being (5) in Proposition 3.1 above).

Proposition 3.2. For a C2 -map f : M → N the following are equivalent:

(a) There exists a scalar λ on M such that, for any C2 -function v on N ,

∆M (v ◦ f) = λ
(

∆Nv) ◦ f
]

.

(b) For any point p ∈M and any C2 -function v on N we have, writing q = f(p) ,
the implication

∆Nv(q) = 0 ⇒ ∆M (v ◦ f)(p) = 0.

(c) f is a harmonic morphism. Explicitly : for any harmonic function v in an

open set V ⊂ N , v ◦ f is harmonic in f−1(V ) (assumed non-empty).
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Proof. (a) ⇒ (b) ⇒ (c) is obvious because (c) reduces to the case where v
extends to a C2 -function on all of N .

(b) ⇒ (a). Adapting the simple argument in [2, p. 129] we consider a C2 -
function v on N , and write q = f(p) for given p ∈ M . Choose a C2 -function
w on N so that ∆Nw(q) 6= 0. (In terms of local coordinates (y1, . . . , yn) in N
centred at q we have for example ∆N (ykyl)(0) = 2gkl

N (0) 6= 0 for some k, l .) Write

t = ∆Nv(q)
/

∆Nw(q),

and apply (b) to v− tw in place of v , noting that ∆N (v− tw)(q) = 0. This gives

∆M (v ◦ f)(p) = t∆M (w ◦ f)(p) = λ(p)∆Nv(q)

with λ(p) = ∆M (w ◦ f)(p)
/

∆Nw(q) .
(c) ⇒ (b) follows by application of Lemma 3.2 in view of the following identity

(in which Dk = ∂/∂yk , etc.):

∆M (v ◦ f) = gM (∇fk,∇f l)
[

(DkDlv) ◦ f
]

+ (∆Mfk)
[

(Dkv) ◦ f
]

,

cf. [1, (17), p. 124], which shows that ∆M (v ◦ f)(p) = ∆M (h ◦ f)(p) = 0.

Having thus completed the proof of Theorem 3 we now bring a result similar
to Proposition 3.2 for the case where λ > 0 in (a), thereby characterizing the
harmonic morphisms with non-negative dilatation.

Proposition 3.3. For a C2 -map f : M → N the following are equivalent:
a+ There exists a scalar λ > 0 on M such that, for any C2 -function v on N ,

∆M (v ◦ f) = λ
[

(∆Nv) ◦ f
]

.

b+ For any point p ∈M and any C2 -function v on N we have, writing q = f(p) ,
the implication

∆Nv(q) > 0 ⇒ ∆M (v ◦ f)(p) > 0.

c+ For any C2 -function v in an open set V ⊂ N such that f−1(V ) 6= ∅ we have

the implication

∆Nv > 0 in V ⇒ ∆M (v ◦ f) > 0 in f−1(V ).

Proof. (Note that Lemma 3.2 is not used here.) a+ ⇒ b+ ⇒ c+ is obvious.
b+ ⇒ a+ is established just like (b) ⇒ (a) in the proof of Proposition 3.2.
c+ ⇒ b+ : Choose a C2 -function w on N so that ∆Nw(q) > 0. For any

ε > 0 we then have ∆N (v + εw) > 0 in some open neighbourhood Vε of q , and
hence, by c+ , ∆M

[

(v + εw) ◦ f
]

> 0 in f−1(Vε) , in particular at p . For ε → 0
this leads to ∆M (v ◦ f)(p) > 0.
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Remark 3.2. A similar characterization of harmonic morphisms with di-
latation λ 6 0 is of course obtained by reversing one of the inequality signs in
b+ and in c+ . For non-riemannian (connected) M , N , however, it can occur
that a harmonic morphism (even a non-degenerate one) has dilatation λ tak-
ing both signs, cf. Examples 5.1 and 5.6. This phenomenon does not occur when
dimM = dimN > 2 (see (b) in Theorem 4.1 below), or when dimM = dimN = 2
and f is non-degenerate (see the final assertion of Theorem 4.2, noting that, in
view of the third paragraph after Definition 2, M and N must either be both
lorentzian or both riemannian, possibly after multiplying both metrics by −1).

4. The case dimM = dimN

In this case we shall use the term weakly conformal as synonymous with hori-
zontally weakly conformal in the sense of Definition 2, noting that df(x): Tx(M) →
Tf(x)(N) is now conformal if surjective (hence bijective); i.e. in the situation 1◦

in Definition 2.
As a preparation to the 2-dimensional case consider a 2-dimensional semi-

riemannian manifold M which is lorentzian: ind
−
M = ind+M = 1. A charac-

teristic, or zero-line, of M is a connected 1-dimensional immersed submanifold L
of M such that the tangent to L at any point x ∈ L is one of the characteristic
subspaces of Tx(M) , i.e. those two 1-dimensional subspaces on which the restric-
tion of gx

M is 0. A characteristic chart, or characteristic coordinate system, in
M is a C∞ -diffeomorphism π of an open subset U of M onto the product of
two non-empty intervals I1, I2 ⊂ R such that π−1({x1}× I2) and π−1(I1 ×{x2})
are characteristics in U for any x1 ∈ I1 , respectively x2 ∈ I2 . (They are then
the only characteristics in U which are maximal w.r.t. inclusion.) Equivalently,
there should be a C∞ -function a on I1 × I2 with values a(x1, x2) 6= 0 such that
π becomes an isometry of U (with the metric inherited from gM ) onto I1 × I2
endowed with the Lorentz metric

(6) hx(X,X) = 2a(x)−1X1X2.

The Laplace–Beltrami operator (4) for I1 × I2 with the metric (6) reduces to

(7) ∆ = 2aD1D2

with Di = ∂/∂xi , cf. the similar case m = 2 in Example 5.5. The harmonic
functions are therefore the C2 -functions of the form

(8) u(x) = ϕ(x1) + ψ(x2), (x1, x2) ∈ I1 × I2.

The domain U of a characterisctic chart π: U → I1 × I2 is called a characteris-

tic patch. Any 2-dimensional Lorentz manifold can be covered by characteristic
patches, cf. e.g. [3, p. 62].
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Theorem 4.1. Let f : M → N be a C2 -map between connected semi-

riemannian manifolds of equal dimension n .

(a) In the case n = 2: f is a harmonic morphism if and only if f is weakly

conformal.

(b) In the case n > 2: if f is a harmonic morphism then f is weakly conformal

with constant dilatation; and as a partial converse: if f is non-degenerate and

weakly conformal with constant dilatation then f is a harmonic morphism.

Proof. Consider first the case where df(x): Tx(M) → Tf(x)(N) is bijective
for every x ∈M . In view of Proposition 3.2 and (3) in Remark 2, the proof of (a)
and (b) in this situation is the same as in the riemannian case, see [1, p. 125 f].

Ad (a) in the general case. If f is a harmonic morphism then f is weakly
conformal by Theorem 3.1. Conversely suppose that f is weakly conformal, with
dilatation λ . We propose to verify (5) in Proposition 3.1. By continuity it is
enough to show that (5) holds in a dense subset of M . Write r(x) = rk df(x) , the
rank of df at x , and

Mr = {x ∈M | r(x) = r}, r = 0, 1, 2.

Then M = M0 ∪M1 ∪M2 , M0 is closed, M2 is open, and M1 is open relatively
to M \M2 . It follows that the union of M2 and the interiors of M0 and M1

is dense in M . It suffices therefore to verify (5) in each of these 3 open subsets
of M . In M2 this is just the particular case of (a) considered in the beginning of
the proof. In intM0 , the interior of M0 , f is locally constant, and so (5) holds
there with λ = 0. It remains to consider f in any component of intM1 , and we
may therefore assume that

(9) r(x) = 1 for every x ∈M.

(This situation can actually occur, cf. Example 5.2.) It follows in view of Defini-
tion 2 that Kx and K⊥

x are degenerate and therefore equal:

(10) Kx = K⊥
x

because dimM = 2. Hence gx
M must be indefinite: ind+M = ind

−
M = 1.

Given p ∈ M choose local coordinates (y1, y2) in an open neighbourhood V
of f(p) in N and characteristic local coordinates (x1, x2) in some characteristic
patch U = π−1(I1 × I2) ⊂M such that p ∈ U ⊂ f−1(V ) . In terms of these local
coordinates the jacobian Df is of rank

(11) rk

(

D1f
1, D2f

1

D1f
2, D2f

2

)

= 1
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according to (9). We may also assume that e.g. D1f
1(p) 6= 0, and further that

(12) D1f
1(x) 6= 0

for all x ∈ U . It follows that

Kx =
{

(X1, X2) | D1f
1(x)X1 +D2f

1(x)X2 = 0
}

because this relation between X1 and X2 implies D1f
2(x)X1 +D2f

2(x)X2 = 0
in view of (11), (12). Hence the contravariant vector X :=

(

−D2f
1(x), D1f

1(x)
)

spans Kx = K⊥
x , cf. (10), and so −2D2f

1(x)D1f
1(x) = a(x)hx(X,X) = 0 in

view of (6). Using (12), (11), we infer that

D2f
1 = D2f

2 = 0

in U , that is, f1(x) and f2(x) depend only on x1 . So does therefore v ◦ f for
any C2 -function v on N , and we conclude that indeed ∆M (v ◦f) = 0 on account
of (7).

Ad (b) in the general case. If f is a harmonic morphism then f is weakly
conformal by Theorem 3. In proving that the dilatation λ of f is locally constant
and hence constant, we note that M is second countable. According to the be-
ginning of the present proof, λ is constant and 6= 0 in every component of the
open set M ′ of all points of M at which df(x) is bijective. Moreover, λ = 0 in
M \M ′ . The range of the continuous function λ is therefore a non-empty count-
able connected subset of R , i.e. a singleton, and so λ is constant.—As to the
converse statement in the remaining case where λ = 0 and f is non-degenerate
(Definition 1), we infer from 1◦ in Definition 2 that df(x) = 0 for every x ∈ M ,
and so f is constant, in particular a harmonic morphism.

Remark 4.1. The requirement in the second assertion in (b) of Theorem 4.1
that f be non-degenerate is automatically fulfilled if λ 6= 0, but cannot be dropped
in the case λ = 0, cf. Example 5.5 with m = n > 3.—Gehring and Haahti [4]
obtained Theorem 4.1 for non-degenerate homeomorphisms of Rn endowed with
a constant semi-riemannian metric, cf. Example 5.3 below.

It is well known that a harmonic morphism between Riemann surfaces is the
same as a holomorphic or antiholomorphic map, cf. e.g. [1, p. 127]. We shall
now give an analogous explicit characterization of the harmonic morphisms, or
weakly conformal C2 -maps, between 2-dimensional Lorentz manifolds M , N . In
place of ±holomorphy enters primarily a property of carrying characteristics into
characteristics (see the second paragraph of the present section).

Theorem 4.2. Let f : M → N be a C2 -map between connected 2 -dimen-

sional Lorentz manifolds M , N . Then f is a harmonic morphism if and only if M
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can be covered by characteristic patches U , each having one of the following three

properties labelled according to the value of r(U) := max
{

rk
(

df(x)
)

| x ∈ U
}

:

0◦ r(U) = 0 , that is, f is constant in U .

1◦ r(U) = 1 and f is constant along every characteristic of U from one of the

two families.

2◦ r(U) = 2 and f maps U into some characteristic patch V of N in such a

way that every characteristic of U is mapped into some characteristic of V .

If f is a non-degenerate, non-constant harmonic morphism then only Prop-

erty 2◦ occurs, and f is conformal because rk
(

df(x)
)

= 2 for every x ∈M , that

is, the dilatation λ of f has constant sign: λ ≶ 0 .

It is understood in this theorem that different patches U from the stated cov-
ering of M may not have the same property 0◦ , 1◦ , or 2◦ . In 2◦ it is understood
that two characteristics of U from the same family, respectively from different
families, are mapped onto subsets of two characteristics of V , likewise from the
same family, respectively from different families.

Proof. Let U denote any covering of M by characteristic patches U such
that f(U) is contained in some characteristic patch V of N . Using characteristic
coordinates (x1, x2) in U and (y1, y2) in V we may assume that

U = I1 × I2, V = J1 × J2,

where I1 , I2 , J1 , J2 are open intervals of R , and that the metric tensors on U
and V have the following matrices (contravariant components)

(13) (gij
U ) =

(

0 a
a 0

)

, (gkl
V ) =

(

0 b
b 0

)

for certain C∞ -functions a on U and b on V (not taking the value 0), cf. (6).
According to (7),

(14) ∆U = 2a
∂2

∂x1∂x2
, ∆V = 2b

∂2

∂y1∂y2
.

Suppose first that f : M → N is a harmonic morphism. Since ∆V y
k = 0,

k = 1, 2, we have from Definition 3: ∆Uf
k = 0, and so, as in (8),

fk(x1, x2) = ϕk(x1) + ψk(x2), k = 1, 2,(15)

det(Df) = ϕ′
1(x

1)ψ′
2(x

2) − ϕ′
2(x

1)ψ′
1(x

2),(16)

where ϕk ∈ C2(I1) , ψk ∈ C2(I2) . From ∆V [(yk)2] = 0 we obtain ∆U [(fk)2] = 0,
which easily leads to ∆U [ϕk(x1)ψk(x2)] = 0, that is, by (14),

(17) ϕ′
k(x1)ψ′

k(x2) = 0, k = 1, 2.
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If r(U) > 1 we may assume for example that ϕ′
1 6≡ 0 and so, by (17), ψ1 is

constant.
In case r(U) = 1, we have det(Df) ≡ 0 and hence ψ2 is constant, by (16).

In view of (15), f therefore has the form

(18) f(x1, x2) =
(

ϕ(x1), ψ(x1)
)

with ϕ or ψ (or both) non-constant. This amounts to f being constant along
every characteristic in U of the form x1 = constant, without f being constant
in all of U . It follows that f is degenerate because df has rank 1 at points
x = (x1, x2) with ϕ′(x1) 6= 0 or ψ′(x1) 6= 0.

In the principal case r(U) = 2 we have det(Df) 6≡ 0, hence from (16) ψ′
2 6≡ 0

(because ψ′
1 ≡ 0). In view of (17) and (15) this shows that ϕ2 is constant and

that f takes the form

(19) f(x1, x2) =
(

ϕ(x1), ψ(x2)
)

with ϕ and ψ non-constant. This amounts to f carrying every characteristic of U
of the form xj = constant onto an arc (not necessarily open) of some characteristic
of V of the form yj = constant, j = 1, 2.

Conversely, it is immediately seen that every C2 -map f : I1 × I2 → J1 × J2

of the form (18) or (19) is a non-constant harmonic morphism with r(U) = 1 or
2, respectively, in view of (8).

Suppose finally that f : M → N is a non-degenerate (Definition 1) and non-
constant harmonic morphism, and consider any patch U ∈ U (see above) such
that r(U) = 2. Then

(20) rk
(

df(x)
)

= 2 for every x = (x1, x2) ∈ U.

For suppose e.g. that, in (19), ϕ′(x1) = 0 for some x1 ∈ I1 . Choosing x2 ∈ I2
so that ψ′(x2) 6= 0 we find that rk(df) = 1 at x = (x1, x2) , and this contradicts
f being non-degenerate and weakly conformal, so that 1◦ in Definition 2 applies.
In view of (20) a patch U ∈ U with r(U) = 2 cannot meet a patch U0 ∈ U with
r(U0) = 0, that is, rk(df) ≡ 0 in U0 . Because f is non-degenerate there are no
patches U1 ∈ U with r(U1) = 1. Since M is connected we therefore conclude
that all patches U ∈ U have r(U) = 2, the alternative being that f should be
constant on every patch from U and hence in all of M , against hypothesis.

The dilatation λ of the harmonic morphism f : U → V from (19) is easily
found from (3) (with (k, l) = (1, 2)) or from (5) to be

(21) λ(x) =
a(x)

b
(

f(x)
)ϕ′(x1)ψ′(x2),

while of course λ ≡ 0 in U in the cases r(U) = 0 or 1.
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If a connected 2-dimensional Lorentz manifold M is orientable (and only in
that case) it is possible to distinguish globally between the two characteristic 1-
dimensional subspaces Z1

x , Z2
x of the tangent space Tx(M) . Indeed, after fixing

an orientation of M and hence of each Tx(M) , we may require that Z1
x , when

turned around 0 in Tx(M) in the positive sense, becomes a subspace of positivity

for the quadratic form gx
M before it reaches Z2

x . Each characteristic on M extends
uniquely to a characteristic which is maximal w.r.t. inclusion. We have then two
families of maximal characteristics, and either family covers M disjointly. From
Theorems 4.1 and 4.2 we therefore obtain the following corollary, in which (c) is
understood in accordance with the explanation concerning 2◦ in Theorem 4.2.

Corollary. The following are equivalent for a non-degenerate, non-constant

C2 -map f : M → N between connected orientable 2 -dimensional Lorentz mani-

folds M , N :

(a) f is a harmonic morphism.

(b) f is weakly conformal (necessarily conformal, i.e. with dilatation λ ≶ 0).

(c) f maps every characteristic of M into some characteristic of N (necessarily

onto an open arc of this characteristic of N ).

Remark 4.2. The assumption of non-degeneracy in the last assertion of
Theorem 4.2 and in the above corollary is essential in order to exclude for example a
harmonic morphism like (18) above, where λ ≡ 0 and f maps every characteristic
x1 = constant onto a single point, cf. also Examples 5.2 and 5.4.

As a further application of the preceding results we finally consider injective

harmonic morphisms, allowing a priori that dimM 6= dimN .

Theorem 4.3. Let f : M → N be an injective harmonic morphism between

semi-riemannian manifolds. Then dimM = dimN and f is an open map. More-

over, f−1: f(M) →M is a harmonic morphism if and only if f is non-degenerate.

If dimM > 2 , f is always non-degenerate.

Proof. We may assume that M and N are connected. As usual write
dimM = m , dimN = n . With r := max

{

rk
(

df(x)
)

| x ∈ M
}

, the non-empty

set Mr =
{

x ∈ M | rk
(

df(x)
)

= r
}

is open, and every point x in Mr has an
open neighbourhood U ⊂Mr such that the restriction of f to U is a submersion
of U onto an r -dimensional submanifold of N . When f is injective this requires
r = m (> 0), and consequently r = n by Definition 2, noting that Kx = {0} is
non-degenerate for every x ∈Mr . Thus m = n = r .

If n = 2 we may assume that M and N are either both riemannian or both
lorentzian, cf. Remark 3.2. In the riemannian case the assertions (for n = 2) are
known from [1, Corollary, p. 127], according to which a harmonic morphism is the
same as a ±holomorphic function. In the lorentzian case it follows from the proof
of Theorem 4.2 above, in the case of a characteristic patch U ∈ U with r(U) = 2,
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that ϕ: I1 → J1 and ψ: I2 → J2 in (19) are injective, hence strictly monotone,
because f : I1 × I2 → J1 × J2 is injective. This shows that f is open, and that

f−1(y1, y2) =
(

ϕ−1(y1), ψ−1(y2)
)

for (y1, y2) ∈ f(I1 × I2) = ϕ(I1) × ψ(I2) . If f is non-degenerate then ϕ′ and ψ′

do not take the value 0, hence df(x) is bijective for every x ∈ M , and it follows
then that f−1 is a C2 -map and a harmonic morphism. Conversely, if f−1 is a
harmonic morphism, or just a C1 -map, then df(x) is bijective for every x ∈ M ,
and hence f is non-degenerate.

If n > 2 we apply (b) of Theorem 4.1. The constant dilatation λ of f is
6= 0, being non-zero at the points of the non-empty set Mr (= Mn ). Hence f is
conformal, and df(x) is bijective for every x ∈M . This implies that f is a non-
degenerate open map. It follows that f−1 is a conformal C2 -map with constant
dilatation 1/λ 6= 0, hence f−1 is non-degenerate and a harmonic morphism.

Remark 4.3. An injective harmonic morphism between 2-dimensional
Lorentz manifolds may well be degenerate, see Example 5.3.—For the case where
M = N = Rn with a constant semi-riemannian metric, part of Theorem 4.3 is
stated at the end of [4].

Remark 4.4. Every non-constant harmonic morphism between connected
riemannian manifolds is an open map, [1, Theorem, p. 136], [2]. This does not
extend to the semi-riemannian situation, cf. Example 5.4 and the second case in
Example 5.6.

5. Examples

We shall use subscripts rather than superscripts for coordinates of points or
contravariant vectors. In Examples 5.1 through 5.4 below the manifold M will be
the plane R2 endowed with the constant indefinite metric gx

M (X,X) = 4X1X2 ,
hence

gx
M (X, Y ) = 2(X1Y2 +X2Y1),

where X = (X1, X2) and Y = (Y1, Y2) range over R2 = Tx(M) , x ∈ M . Given
two C2 -functions ϕ, ψ: R → R we then consider the C2 -maps

f : M →M given by f(x1, x2) = (ϕ(x1), ψ(x2)),(22)

h: M → R given by h(x1, x2) = ϕ(x1) + ψ(x2),(23)

where R is endowed with the standard metric, and so the harmonic functions in
(intervals of) R are the affine-linear functions. Clearly f and h are harmonic

morphisms, both with dilatation

(24) λ(x) = ϕ′(x1)ψ
′(x2),

cf. also (19), (21) as to f . In all the examples below except Example 5.6 the maps
are degenerate (Definition 1).
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Example 5.1. With ϕ(x1) = x2
1 , ψ(x2) = x2 , the dilatation of f and h in

(22), (23) is, by (24), λ(x) = 2x1 which has variable sign. Note that f and h are
degenerate maps because Kx(f) and Kx(h) are degenerate subspaces of Tx(M)
for x = (0, x2) . Cf. Remark 3.2.

Example 5.2. With ϕ(x1) = x1 , ψ(x2) = 0, Kx(f) becomes degenerate
at every point x ∈ M because the rank of df(x) equals 1. An extension of this
example to arbitrary dimensions m > 2 and n is given in Example 5.5 below with
a = 1.

Example 5.3. With ϕ(x1) = x3
1 , ψ(x2) = x2 , f becomes a homeomorphism

of R2 . The inverse map is not smooth and hence not a harmonic morphism. This
is because f is degenerate, cf. Theorem 4.3. Indeed, at the points x = (0, x2) we
have λ(x) = 0, by (24), but df(x) 6= 0. (The fact that this latter phenomenon
can occur seems to have been overlooked in [4].)

Example 5.4. With ϕ(x1) = x3
1 for x1 > 0, ϕ(x1) = 0 for x1 6 0, and

ψ(x2) = 0 for all x2 ∈ R , the harmonic morphisms f and h are non-constant,
degenerate, and non-open maps, being constant in the open half-plane x1 < 0.
Cf. Remark 4.4.

Example 5.5. For m > 2 and a given C∞ -function a: Rm → R+ we take
M = Rm endowed with the following Lorentz metric:

gx
M (X, Y ) =

1

a(x)

(

−X1Y1 +
m

∑

j=2

XjYj

)

, X, Y ∈ Rm,

and we take N = Rn , n > 1, with any constant semi-riemannian metric. Then
(4) leads to

(25) ∆M = a

(

−D2
1 +

m
∑

j=2

D2
j

)

−
m− 2

2

(

−(D1a)D1 +
m

∑

j=2

(Dja)Dj

)

.

Define f : M → N by

f(x) = (x1 + x2, 0, . . . , 0) (∈ Rn) for x ∈M.

The covariant components of ∇Mf1 are (1, 1, 0, . . . , 0) (∈ Rm ), and we therefore
have gx

M (∇Mf1,∇Mf1) = 0. In view of (1) in Section 1 this shows that K⊥
x =

span{∇Mf1(x)} is degenerate for every x ∈ M , and gx
M (X, Y ) = 0 for every

X, Y ∈ K⊥
x . Consequently, f is degenerate and horizontally weakly conformal

with the constant dilatation λ = 0 (Case 2◦ in Definition 2 for every x ∈M ).
If m = 2 or if a is constant then f is a harmonic morphism since ∆M (v◦f) =

0 for any C2 -function v on N , v◦f depending only on x1+x2 . A similar example
is given in [12].

If m > 3 and e.g. a(x) = expx1 then f is not a harmonic morphism because
∆Ny1 = 0 while ∆Mf1 = ∆M (x1 + x2) = 1

2(m− 2) expx1 6= 0.
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Example 5.6. Let M denote R3 endowed with a Lorentz metric of the form

(gij
M) =





0 a 0
a 0 0
0 0 a−2



 .

If a(x) = expx2 the function f(x) = (x1)
2 exp(−1

2x2) of x = (x1, x2, x3) is
harmonic on M :

∆Mf ≡ (2aD1D2 +D2a ·D1 +D1a ·D2 + a−2D2
3)f = 0.

The dilatation of f is

λ ≡ 2aD1f ·D2f + a−2(D3f)2 = −2(x1)
3,

which takes values > 0 and < 0; and f is non-degenerate because λ(x) = 0 only
occurs when

(

D1f(x), D2f(x), D3f(x)
)

= (0, 0, 0).
If instead a(x) = exp(−x1x2) , the analytic function

f(x) =
1

(x2)2
(

exp(x1x2) − 1 − x1x2

)

= (x1)
2

∞
∑

n=2

1

n!
(x1x2)

n−2

is harmonic on M with the dilatation

λ =
4

(x2)4
(

x1x2 sinh(x1x2) + 2 − 2 cosh(x1x2)
)

= 8(x1)
4

∞
∑

n=2

n− 1

(2n)!
(x1x2)

2n−4

taking the value 0 and values > 0, but not values < 0. Again, f is non-degenerate
because λ(x) = 0 only occurs for x1 = 0, where

(

D1f(x), D2f(x), D3f(x)
)

=
(0, 0, 0). The map f : M → R is not open because f(x) > 0 with equality when
x1 = 0.

Putting a minus sign in front of a in the definition of g12
M = g21

M causes
in either case λ to be replaced by −λ (6 0 in the second case). Replacing
g33

M = a−2 by g33
M = −a−2 makes ind

−
M change from 1 to 2. Similar examples

with dimM > 3 and prescribed ind
−
M ( 6= 0, dimM ) are obtained by replacing

the various (gij
M ) described above with their direct sums with a suitable diagonal

matrix with entries ±1.
There is no 2-dimensional example serving the above purposes. In fact, for

any 2-dimensional Lorentz manifold M the dilatation λ of any non-constant non-
degenerate harmonic morphism of M into any semi-riemannian manifold N omits
the value 0. (See Remark 3.2 for the case dimN = 2; and use (8), Section 4, in
the remaining case dimN = 1, e.g. N = R , cf. Example 5.1 above.)
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Appendix

This appendix is written by Lars Hörmander. His theorem below implies
Lemma 3.2 when applied to the Laplace–Beltrami operator on N in local coordi-
nates.

Theorem. Let P be a second order differential operator in a neighborhood

Ω of 0 ∈ Rn

P =
n

∑

i,j=1

aij(x)∂i∂j +
n

∑

i=1

bi(x)∂i + c(x), ∂i = ∂/∂xi,

with C∞ coefficients, aij = aji real valued and det aij(0) 6= 0 . Let m be an

integer > 2 . If u ∈ C∞(Ω) and Pu(x) = O(|x|m−1) as x → 0 , then one can for

any s > m find U ∈ Cs(Ω) such that U(x) − u(x) = O(|x|m+1) as x → 0 , and

PU = 0 in a neighborhood of 0 .

Proof. It is no restriction to assume that u is in the space P(m,n) of
polynomials in Rn of degree 6 m for we can replace u by its Taylor polynomial
of degree m at the origin. Assuming as we may that ann(0) 6= 0, the polynomial
u is then uniquely determined by the Cauchy data

u0(x
′) = u(x′, 0), u1(x

′) = ∂nu(x
′, 0), x′ = (x1, . . . , xn−1),

which are in P(m,n−1) and P(m−1, n−1) respectively. In fact, the equations

(∂j
nPu)(x

′, 0) = O(|x′|m−1−j) as x→ 0, 0 6 j 6 m− 2

are uniquely solvable for the derivatives of u at the origin of order 6 m . (This is
the formal part of the Cauchy–Kovalevsky theorem.) Hence the dimension dm,n

of the space of polynomials u ∈ P(m,n) such that Pu(x) = O(|x|m−1) is equal
to dimP(m,n− 1) + dimP(m− 1, n− 1) which is independent of P .

To prove the theorem we consider the equivalent operator

Pε =
n

∑

i,j=1

aij(εx)∂i∂j + ε
n

∑

i=1

bi(εx)∂i + ε2c(εx), −1 6 ε 6 1,

obtained by a dilation when ε > 0. The statement of the theorem is trivial for
the constant coefficient operator P0 =

∑

aij(0)∂i∂j since P0h(x) = O(|x|m−1)
implies P0h = 0 if h ∈ P(m,n) . Hence the space H(m) of all h ∈ P(m,n) such
that P0h = 0 has dimension dm,n .

It suffices to prove the theorem for Pε when ε > 0 is small. We may assume
that Ω is a ball centered at the origin. Choose χ ∈ C∞

0 (Ω) equal to 1 in a
neighborhood ω of 0. If h ∈ H(m) then (x, ε) 7→ Pεh(x)/ε is a C∞ function
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since P0h(x) = 0. Set fh
ε (x) = χPεh(x)/ε , which is bounded in C∞

0 (Ω) as ε→ 0
for fixed h . For any positive integer s one can find δs > 0 and a constant Cs

such that for every f in the Sobolev space H(s)(R
n) and every ε ∈ (0, δs) one

can find u ∈ H(s+1)(R
n) with Pεu = f in Ω depending linearly on f such that

‖u‖(s+1) 6 Cs‖f‖(s) . If s > 1
2n+m it follows that

∑

|α|6m+1

sup
Ω

|∂αu| 6 C′
s‖f‖(s).

In particular, we can find uh
ε ∈ Cs+1− 1

2
n such that Pεu

h
ε (x) = fh

ε (x) in Ω, uh
ε

depends linearly on h ∈ H(m) , and |∂αuh
ε (0)| 6 C|h| , |α| 6 m , where | · | denotes

a norm in the finite dimensional vector space H(m) . Hence Uh
ε (x) = h(x)−εuh

ε (x)
satisfies the equation PεU

h
ε = 0 in ω , and the Taylor polynomial of Uh

ε of order m
is h − εTεh where Tε: H(m) → P(m,n) is linear and has a bound independent
of ε as ε → 0. The rank of the map H(m) ∋ h 7→ h − εTεh ∈ P(m,n) is
therefore equal to dimH(m) = dm,n for small ε . The range is contained in the
space Hε(m) of polynomials u ∈ P(m,n) such that Pεu(x) = O(|x|m−1) . Since
dimHε(m) = dm,n it follows that the range is equal to Hε(m) , which proves the
theorem.

Remark. In the proof we have only used a very simple existence theorem
for operators of real principal type, which can be found already in Hörmander [7].
The argument above based on this reference is valid with no essential change for
operators of higher order. For the second order case one could also derive the
required existence theorem from the Hadamard parametrix construction. Using
more sophisticated existence theorems which can be found in [9, Chap. XXVI],
one can obtain U ∈ C∞ in the theorem.
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