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Abstract. This paper contains some tentative steps towards describing the structure of
non-discrete subgroups of SL(2,R) . The main idea is that if a one-parameter family of groups Gz

varies analytically with the parameter z , then, using analytic continuation, certain results about
discrete groups can be analytically continued to those groups in the family that are not discrete.
The paper concentrates on families of groups generated by two parabolic transformations and,
as an illustration, contains a proof that, for all but a countable set of exceptional values of the
parameter z , the hyperbolic area of a hyperbolic quadilateral whose sides are paired by some pair
of parabolic generators of Gz is independent of the choice of generators. This is the analogue of
the familiar result that the area of a fundamental region of a discrete group is independent of the
choice of the generators, but it applies here to almost all non-discrete groups in the family. It is
also shown that exceptional groups exist, and explicit examples of these are given. The paper ends
with some unanswered questions.

1. Introduction

While the general structure of discrete subgroups of SL(2,C) is well under-
stood, very little has been written about its non-discrete subgroups. This paper
contains some tentative steps in this direction. Let Gz be a one-parameter family
of subgroups of SL(2,C) (with the parameter z lying in some domain D in the
complex plane), suppose that the groups Gz vary analytically with z , and also
that, for a range of values of z , the Gz are discrete groups. We shall show how
we can then use analytic continuation to transfer certain facts about the discrete
groups to almost all non-discrete groups in the family. This transfer is encapsu-
lated in the uniqueness principle given in Section 2, and the ideas here have been
motivated by the work in [7] and [9].

Most of this paper is about parabolic Möbius transformations. In Section 3 we
apply these ideas to a family of groups generated by two parabolic transformations.
Numerous papers have been written on this family, and here we investigate when
two given parabolic elements in G generate G , and we include a discussion of some
of the exceptional groups in the family. In Section 4, we make some observations
regarding the real groups within this family.

As usual, we shall change freely between matrices in SL(2,C) and their action
as Möbius maps, namely elements PSL(2,C) on the complex sphere, and we use I

1991 Mathematics Subject Classification: Primary 30F35.



70 A. F. Beardon

to denote both the unit matrix and the identity map. We shall assume a knowledge
of the basic theory of discrete Möbius groups for which the reader is referred to,
for example, [1], [3], [4], [6] and [8]. In particular, we recall that PSL(2,C) acts on
the upper-half space H 3 of R3 as the group of conformal isometries of hyperbolic
3-space.

To emphasize the difference between discrete and non-discrete subgroups of
SL(2,C) , we recall that a discrete subgroup G is a closed subset of SL(2,C) con-
taining only isolated points, whereas the generic non-discrete subgroup of SL(2,C)
is dense in SL(2,C) . For a precise statement and proof of this, see [2].

2. The uniqueness principle

We begin with a general principle based on analytic continuation. Let D be a
domain in the complex plane, let R be the ring of functions analytic in D , and let
SL(2, R) be the group of 2× 2 matrices with entries in R and with determinant
1 (throughout D ). For each z in D , and each X in SL(2, R) , we can evaluate
the entries of X at z and so obtain an element Xz of SL(2,C) . For each z , the
evaluation map ez: X 7→ Xz is a homomorphism of SL(2, R) into SL(2,C) .

Now consider a finitely generated (hence countable) subgroup G of SL(2, R) ,
restrict the map ez to G , and let Gz be the image group ez(G ) . The kernel of
ez is {X ∈ G : Xz = I} and, as G is countable and the entries in X are analytic
functions, this is non-trivial for only a countable set of z in D . Thus, apart from
a countable set of z , ez: G → Gz is an isomorphism. We shall say that z in
D is exceptional if ez is not an isomorphism, and we denote the countable set of
exceptional z by E . Of course, E depends on G but we omit this dependence from
our notation. The main result in [9] says that E is dense in some neighbourhood
of any z for which Gz is not discrete, and also in some neighbourhood of any z
in E .

Our basic result is the following simple

Uniqueness principle. Given G , suppose that there is an arc σ in D such

that for each z in σ , Gz is discrete, non-elementary and geometrically finite. If

X and Y are in G , and, if for some w in σ , Xw = Yw then X = Y in SL(2, R) ;
in particular, Xz = Yz for all z in D .

The uniqueness principle can be motivated by the following geometric argu-
ment. First, it suffices to consider the case when Y = I , for we can then apply
the result with X replaced by XY −1 . For each z in σ the group Gz acts discon-
tinuously in H 3 and we can find a fundamental domain Fz for its action in H 3 .
Suppose now that Fz can be chosen to vary continuously with z ; more precisely,
that Fz can be chosen so that for z in some σ -neighbourhood N of w (that is,
N is a relatively open subset of σ that contains w ),

(2.1) interior
(

⋂

z∈N

Fz

)

6= ∅.
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Denote this open set by V , and choose a point ζ in V . The hypothesis Xw = I
implies that Xw(ζ) = ζ ∈ V , and the continuity of z 7→ Xz(ζ) ensures that
Xz(ζ) ∈ V for all z in some σ -neighbourhood N1 of w . This implies that for all
z in N1 , Xz(Fz) ∩ Fz 6= ∅ and hence (because Fz is a fundamental domain for
Gz ) that Xz = I . As Xz = I for all z in N1 , analytic continuation ensures that
Xz = I for all z in D .

In many cases, we can find such fundamental domains Fz explicitly, and
in these cases the uniqueness principle is automatically applicable (because this
geometric argument is sufficient for the proof). It is, however, also possible to give
an analytic proof of the uniqueness principle (leaving the existence of σ unresolved)
based on Jorgensen’s inequality [5]: if A and B are in SL(2,C) , and if 〈A, B〉 is
discrete and non-elementary, then

(2.2) |trace (ABA−1B−1) − 2| + |trace2(A) − 4| ≥ 1.

The proof of the uniqueness principle. We suppose that Xw = I , but that
X 6= I (in G ); then w is an isolated point of {z ∈ D : Xz = I} . Now select Y
and W in G such that Yw and Ww are loxodromic with no common fixed points.
Then there are open neighbourhoods N1 , N2 and N3 of w , all lying in D , such
that
(1) z ∈ N1 and z 6= w implies Xz 6= I ;
(2) z ∈ N2 implies Yz and Wz are loxodromic with no common fixed point;
(3) z ∈ N3 implies (by continuity)

|trace2(Xz) − 4| < 1
2 , |trace (XzYzX

−1
z Y −1

z ) − 2| < 1
2 ,

|trace (XzWzX
−1
z W−1

z ) − 2| < 1
2 .

Now take z in σ ∩ N1 ∩ N2 ∩ N3 with z 6= w . Then 〈Xz, Yz〉 is discrete
and, from (3) and (2.2), it is elementary. With (1), this means that Xz and
Yz have the same fixed point set (or Xz is elliptic of order 2, but this implies
that trace (Xz) = 0 and this happens only countably often). Exactly the same
argument holds for Wz instead of Yz ; thus Yz and Wz have the same fixed point
set, contrary to (2). This shows that w is a non-isolated point of {z ∈ D : Xz = I}
and the proof is complete.

We end this section with a few simple illustrations of the use of the uniqueness
principle. First, as a trivial application, we take z in σ , X in the kernel of ez ,
and Y = I . As Xz = I = Yz we have X = I throughout D ; thus for all z in σ ,
ez is an isomorphism; we deduce that E ∩ σ = ∅ .

An element X of SL(2, R) is said to be parabolic if its trace is constant in D
with value ±2; then, for each z , Xz is a parabolic element of SL(2,C) . Of course,
there may be spurious parabolic elements in G , namely elements Y for which Yz
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is parabolic for some, but not all, z . Suppose now that Xz is parabolic. Then
either X has constant trace (so that X is parabolic) or z lies in the countable
set of solutions of trace2(Xz) = 4. As G is countable, we thus see that there is a
countable subset P of D such that these spurious parabolic elements exist in Gz

only when z ∈ P ; equivalently, if z /∈ P then Xz is parabolic if and only if X
is. The relationship between E and P is not clear and seems worth exploring.

Now let us now consider the stabiliser of a parabolic fixed point. First, take
z outside of the countable set E ∪ P , and take w in σ but outside of E ∪ P .
Now suppose that ζ is fixed by some parabolic element of Gz , and let Γz be the
subgroup of all parabolic elements of Gz that fix ζ . Then each element of Γz

is the evaluation of some parabolic element in G and so, under the isomorphism
e−1
w ez , Γz corresponds to an abelian subgroup, say Γw , of parabolic elements

of Gw . As Γw is a free abelian group on one or two generators, so too is Γz , and
this means that Γz is discrete. Thus for all but a countable set of points in D , the

stabiliser of a parabolic fixed point of Gz is discrete even though Gz itself may not
be. Clearly, a similiar statement can be made about the subgroup of loxodromic
elements in Gz with a common pair of fixed points.

Finally, it is a direct consequence of the Uniqueness Principle that if a discrete
group Gw , where w is in σ but not in E ∪P , has only a finite number of conjugacy
classes of purely parabolic subgroups (a familiar situation in the theory of discrete
groups) then this property is transmitted to G , and then on to Gz for all z outside
the countable set E ∪ P regardless of whether Gz is discrete or not.

3. An example

We shall now apply these ideas to the example in which D is the complex
plane, R is the ring Z[τ ] of complex polynomials with integer coefficients and
indeterminate τ , σ is the real interval (2, +∞) , and G is the subgroup of SL(2, R)
generated by the two parabolic matrices

(3.1) A =

(

1 τ
0 1

)

, B =

(

1 0
τ 1

)

.

The Uniqueness Principle is applicable to this family; indeed, by considering the
isometric circles of Bt and B−1

t (of radius 1/|t|), it is clear that, by choosing Ft

to be the obvious Ford fundamental region, namely

Ft = {z : |Re(z)| < 1
2 t, |tz + 1| > 1, |tz − 1| > 1},

the condition (2.1) holds when t > 2. For these t (as is evident from other
considerations), et: G → Gt is an isomorphism.

We consider the problem of when two parabolic elements Ut and Vt gener-
ate Gt . Of course, this is so if Ut and Vt are jointly conjugate to At and Bt
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(that is, if there is some Xt in Gt with Ut = XtAtX
−1
t and Vt = XtBtX

−1
t ), but

the question is whether or not there are pairs of parabolic generators not of this
form. We shall show that there can be other pairs, but only for a countable set of
exceptional t . Our proof is based on the following result.

Theorem 3.1. Suppose that U and V are non-commuting parabolic ele-

ments of G . Then the following are equivalent:
(a) U and V generate G ;
(b) trace [U, V ] = 2 + τ4 , where [U, V ] is the commutator UV U−1V −1 ;
(c) U and V are jointly conjugate in G to A and B .

For all but a countable set of t , et is an isomorphism of G onto Gt which
preserves parabolicity (in both directions) so that Theorem 3.1 enables us to derive
the following information about the generic non-discrete subgroup Gt of SL(2,C) .

Theorem 3.2. For all but a countable set of t , the non-commuting parabolic

elements Ut and Vt generate Gt if and only if trace [Ut, Vt] = 2 + t4 .

Before proving Theorem 3.1, we show that the conclusion of Theorem 3.2 can
fail for some exceptional values of t . For any positive integer p ,

ApB−p(p+1)A =

(

1 − p2(p + 1)τ2 (p + 1)τ − p2(p + 1)τ3

−p(p + 1)τ 1 − p(p + 1)τ2

)

.

We now put τ = 1/p and (for simplicity) omit the suffix 1/p on A and B ; thus
from now on, but in this example only, we have

A =

(

1 1/p
0 1

)

, B =

(

1 0
1/p 1

)

.

Then

ApB−p(p+1)A = −

(

p 0
p + 1 p−1

)

= C,

say, is a hyperbolic element fixing 0. It is easy to check that, for every real s ,

CBsC−1 = C

(

1 0
s/p 1

)

C−1 =

(

1 0
s/p3 1

)

= Bs/p3

,

and, as a consequence of this, that

CnBsC−n = Bs/p3n

.

Taking s = 1 we find that

〈A, B〉 ⊂ 〈A, B1/p3n

〉 ⊂ 〈A, B, C〉 ⊂ 〈A, B〉,

so that A and B1/p3n

are a pair of parabolic generators of G . However, as

(3.1) trace [A, B1/p3n

] = 2 +
1

p6n+4
→ 2,

as n → ∞ , these generators are not jointly conjugate to A and B .
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In preparation for our proof of Theorem 3.1, recall that U and V are jointly
conjugate to P and Q in G if there is some W in G with U = WPW−1 and V =
WQW−1 . It is often desirable to replace an element by its inverse and, to avoid
frequent reference to this, we henceforth say that U and V are jointly conjugate

to P and Q if there is some W with U = WP εW−1 and V = WQδW−1 , where
ε = ±1 and δ = ±1. In most cases, this is all that matters.

The proof of Theorem 3.1. First, we verify (c) implies (b). A calculation
shows that trace [At, Bt] = 2 + t4 , so that if (c) holds, then

trace [Ut, Vt] = trace [At, Bt] = 2 + t4.

As this holds for all t , (b) follows.
Conversely, let U and V be parabolic elements of G satisfying (b). Then,

for any positive t , Ut and Vt have distinct fixed points (else they commute and
trace [Ut, Vt] = 2) and so, by moving the fixed points to 0 and ∞ , we see that
they are jointly conjugate to a pair of matrices

(

1 α
0 1

)

,

(

1 0
α 1

)

,

respectively, where α > 0. We deduce that

2 + α4 = trace [Ut, Vt] = 2 + t4;

thus α = t and for some Wt , Ut = WtAtW
−1
t and Vt = WtBtW

−1
t . As this

holds for t = 3, say, the Uniqueness Principle ensures that this joint conjugacy
is transferred from G3 to G and (c) holds. This proves that (b) and (c) are
equivalent.

Next, if (c) holds, say U = WAW−1 and V = WBW−1 , where W ∈ G ,
then U and V generate WG W−1 , which is G , so that (a) holds.

Finally, we show that (a) implies (c). Suppose, then, that U and V are a pair
of parabolic generators of G and apply the isomorphism e3 (that is, put τ = 3).
Then U3 and V3 are parabolic generators of G3 and so, from the standard theory
of Fuchsian groups, each is conjugate in G3 to some power of A3 or B3 . As
X3 = Y3 in G3 if and only if X = Y in G , we can take the liberty of omitting
the suffix 3 throughout the following argument; thus in what follows (and until
further notice), A is really A3 and so on.

By considering WGW−1 (= G), where W ∈ G , we may suppose that

U = Ap, V = XCqX−1,

where X ∈ G , and C is A or B , and p and q are integers. By a further
conjugation with respect to some Ak , we may assume that the fixed point ζ of V
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lies in the interval |x| < 3/2 (recall that A(z) = z +3). Let Σ be the region lying
outside the isometric circles of B and B−1 and in the strip −3/2 < x < 3/2; then
Σ is a fundamental region for G (generated by A and B ).

Next, all elements of G that do not fix ∞ have an isometric circle whose
radius is no larger than that for B ; thus, as the fixed point of the parabolic V
lies in the interval |x| < 3/2, we find

(i) that the region Σ′ lying outside the isometric circles of V and V −1 and in
the strip −p/2 < x < p/2 is a fundamental region for G (generated by U
and V ), and

(ii) that Σ ⊂ Σ′ .

It follows that Σ = Σ′ , and hence that p = ±1. Replacing U by U−1 if necessary,
we may now assume that U = A . Next, as Σ = Σ′ , we see that V fixes the origin
and so is a power of B , say V = Bq . Finally, as the isometric circles of V and B
have the same radius, we see that q = ±1 and, replacing V by V −1 if necessary,
we have V = B .

We now revert to the inclusion of the suffix t . The argument above shows
that given a pair U and V of parabolic generators of G , there is some Y in G

such that

U3 = Y3A3Y
−1
3 , V3 = Y3B3Y

−1
3 .

The Uniqueness Principle now shows that U = Y AY −1 and V = Y BY −1 in G ,
and this is (a). The proof is complete.

4. Subgroups of SL(2,R)

We continue with the discussion of the group G generated by A and B in
(3.1), and we now focus our attention on real values of t . First, it is easy to see
that E is dense in (0, 2); indeed, for a dense set of t in (0, 2), the matrix AtB

−1
t

is a rotation of the hyperbolic plane of finite order, so that these values of t are
in E . Moreover, AtB

−1
t is parabolic when, and only when, t2 = 4 so this is an

example of a spurious parabolic element of G . Finally, note that P ∩ (0, 2) = ∅ .
Our earlier results suggest that it might be profitable to consider

T (G) = {trace [U, V ] : U, V non-commuting parabolic elements of G},

where G is a finitely generated non-elementary subgroup of SL(2,C) , and we shall
now show that, for a subgroup G of SL(2,R) , T (G) is sufficient to determine
whether G is discrete or not.

Theorem 4.1. Let G be a non-elementary subgroup of SL(2,R) . Then

(1) G is discrete if and only if T (G) is a discrete subset of [3, +∞) ;
(2) G is non-discrete if and only if T (G) is dense in [2, +∞) .
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Apart from countable many exceptional values, for all t in (0, 2), Gt is non-
discrete and the set T (Gt) is dense in [2, +∞) . In view of this, Theorem 3.2 is
somewhat surprising in that it says that in these cases we can actually characterise
the pairs of parabolic generators of Gt by the trace of their commutator.

Proof of Theorem 4.1. Suppose first that G is discrete, and that U and V
are non-commuting parabolic elements of G . By conjugation, we may suppose
that U fixes ∞ , V fixes the origin, and that the stabiliser of ∞ is generated by
z 7→ z + 1. It follows that U and V are of the form

(4.1) U =

(

1 a
0 1

)

, V =

(

1 0
b 1

)

,

where a is a non-zero integer. As G contains z 7→ z + 1, Jorgensen’s inequality
yields |b| ≥ 1, so that

trace [U, V ] = 2 + a2b2 ≥ 3.

As the set of traces of all elements of a discrete group G is a discrete set ([4]),
this establishes one implication in (1). Notice that this argument shows that
trace [U, V ] > 2 for any pair of non-commuting parabolic elements of SL(2,C) .

To complete the proof of (1) we shall now show that if inf T (G) > 2, then
G is discrete. We suppose, then, that there is some positive ε such that

inf T (G) = 2 + ε4 > 2

(so that G does have parabolic elements). Now consider a parabolic element U
in G . As G is non-elementary, it contains an element X which does not share a
fixed point with A , so that V defined by V = XAX−1 is a parabolic element of
G which does not commute with U . By conjugation, we may suppose that

U =

(

1 1
0 1

)

, V =

(

a b
c d

)

, Us =

(

1 s
0 1

)

,

where ad − bc = 1 and c 6= 0, and s is any real number (though Us is not
necessarily in G). A computation yields

2 + c4 = trace [U, V ] ≥ 2 + ε4;

more generally, if s is such that Us ∈ G , then

2 + s2c4 = trace [Us, V ] ≥ 2 + ε4

so that

(4.2) |s|c2 ≥ ε2.
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Fixing X and varying s , (4.2) shows that there is a smallest (Euclidean)
translation in G , and hence that the subgroup of translations in G is cyclic and
discrete. Further, it is well known that this would be false if G contained a
hyperbolic element fixing ∞ ; thus the stabiliser G(∞) of ∞ is a discrete group of
translations. Now let the smallest translation in G be z 7→ z + s0 , where s0 > 0.
This, together with (4.2), now shows that |c| ≥ ε/s0 for every choice of X , and
with this it is clear that there is some horocycle H at ∞ which is mapped onto
itself by every element of G(∞) and to a disjoint horocycle by all other elements
of G . This proves that G is discrete and completes the proof of (1).

To complete the proof of (2), it remains only to assume that G is non-
elementary and non-discrete, and to show that T (G) is dense in [2, +∞) . Let

Λ = {x : 2 + x ∈ T (G)}.

We have seen above that the set T (G) accumulates at 2, so

(a) Λ contains a sequence xn decreasing strictly to zero.

Also, if A and B are parabolic and trace [A, B] = 2 + x , then trace [An, B] =
2 + n2x as can be seen by assuming (after conjugation) that A(z) = z + 1. Thus

(b) if x ∈ Λ then n2x ∈ Λ for n = 1, 2, . . . .

It is easy to see that (a) and (b) imply that Λ is dense in (0, +∞) as follows.
Take any interval I = (a, b) , where 0 < a < b . Then, for all sufficiently large n ,
the union of intervals

(4.3)
( a

n2
,

b

n2

)

∪
( a

(n + 1)
2 ,

b

(n + 1)
2

)

∪ · · ·

is connected and so contains some interval of the form (0, η) , where η > 0. From
(a), there is some x in Λ ∩ (0, η) , so that x lies in one of the intervals in (4.3).
It follows that for some k , k2x ∈ I and so I ∩ Λ 6= ∅ as required. The proof of
Theorem 4.1 is complete.

5. Closing remarks

For elements in SL(2,R) , the geometric interpretation of the trace of the
commutator is of interest. Still discussing the group generated by A and B in
(3.1), it is evident that when 0 < t < 2, the trace of [At, Bt] determines, and is
determined by, the hyperbolic area of the polygon bounded by the lines x = ±t/2
and the isometric circles of Bt and B−1

t (a similar statement is true when t > 2,
providing the area in question is taken to be the intersection of Ft with the Nielsen
convex region for Gt ). Of course, for the generic t in (0, 2), Gt does not have a
fundamental polygon (for it is not discrete) but we can still interpret Theorem 3.2
as saying that, for all but a countable set of t , the hyperbolic area of a hyperbolic
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quadilateral whose sides are paired by some pair of parabolic generators of Gt is
independent of the choice of generators. This is the analogue of the familiar result
that the area of a fundamental region of a discrete group is independent of the
choice of the generators, but it applies here to almost all non-discrete groups in
the family. For the exceptional groups discussed in Sections 3 and 4 (in which τ =
1/p), we found pairs of parabolic generators Pn and Qn with trace [pn, Qn] → 0.
This shows that G1/p can be generated by two parabolic elements which are side-
pairings of a hyperbolic quadilateral whose area can be taken to be as small as we

choose.
Another geometric interpretation of the trace of the commutator of two par-

abolic elements is possible, and this does not require 0 < t < 2. Let U and V
be non-commuting parabolic isometries of the hyperbolic plane (with hyperbolic
metric ̺) and let ℓ be the hyperbolic geodesic joining the fixed points of U and V .
The function

z 7→ sinh 1
2
̺(z, Uz) sinh 1

2
̺(z, V z)

attains its minimum m(U, V ) at each point of ℓ (and nowhere else) and moreover,

(5.1) trace [U, V ] = 2 + 16m(U, V )2.

Using this, it is possible to give alternative proofs of some of the earlier results.
To prove (5.1), simply take U(z) = z + 1 and V (z) = (az + b)/(cz + d) and make
the appropriate calculations (see [1, p. 200]).

Another curious feature of the example discussed above is that for certain
values of t , Bt is conjugate to a power of itself. It is easy to see that this happens
for a (general) parabolic element P only when P shares a common fixed point
with some hyperbolic element; it is a well-known and frequently used fact that
this never happens within a discrete group. There are many questions about the
groups Gt studied above which may be of interest, and we mention a few here.

(1) A and B are not conjugate in G , but can At and Bt ever be conjugate in
Gt ?

(2) Are there any t for which Gt contains infinitely many conjugacy classes of
primitive parabolic elements?

(3) Is it possible for the stabiliser of, say, ∞ to be non-discrete yet not contain
any hyperbolic elements?

(4) Is it possible for the stabiliser of, say, ∞ to contain a fractional power of A
yet still be discrete?

Finally, we indicate briefly how the example discussed above might be gen-
eralised to, say, Schottky groups. We simply let A and B be two loxodromic
elements of SL(2,C) with no common fixed points, and then embed A and B in
a one parameter family of elements by, roughly speaking, shrinking the radii of
their isometric circles to zero. For a range of values of the parameter w , the cor-
responding group Gw will be a Schottky group which, for these w , is the discrete
free product of its two generators.
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