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Abstract. Let γt denote a one-parameter family of Jordan curves on the Riemann sphere
depending real-analytically on the parameter t . Let Dt and D⋆

t be the two complementary
Jordan regions separated by γt , and Ft and Gt denote, respectively, the (normalized) Riemann
mappings of the unit disc onto these regions. The conformal welding homeomorphism associated
to γt , ωt = Ft

−1 ◦Gt , is a self-homeomorphism of S1 obtained by comparing the boundary values
of the two complementary Riemann mappings; it plays an important role in geometric function
theory and in the theory of Teichmüller spaces. In this paper we show how to determine the
t -expansions for Ft and Gt , up to arbitrary order in t , from knowledge of the ωt alone.

It appears interesting that Cauchy singular integrals and the Plemelj–Sokhotski “double-
layer” formulae play the crucial role in solving this problem. In an earlier paper in this journal
[N2], we had derived a formula for the first derivative of the conformal welding correspondence
from the space of quasicircles to the space of quasisymmetric homeomorphisms. Our present work
reproves that result and goes on to provide formulas for the higher derivatives.

1. Introduction

Given any oriented Jordan curve γ in the complex plane, there are associated
to it the following three fundamental objects:
(1) Riemann mapping F : ∆ → int (γ) ;
(2) Riemann mapping G: ∆⋆ → ext (γ) ;
(3) Conformal welding homeomorphism ω: S1 → S1 comparing the boundary
homeomorphisms of F and G , i.e., ω = F−1 ◦ G on S1 .

Notations. ∆ denotes the open unit disc, ∆⋆ its exterior in the Riemann
sphere P1 , and S1 is the unit circle, S1 = ∂∆ = ∂D⋆ ; int (γ) = D and ext (γ) =
D⋆ are the two complementary Jordan regions determined by γ on the Riemann
sphere. We assume ∞ ∈ D⋆ .

By Caratheodory’s theorem one knows that F and G extend continuously
to S1 providing two natural parametrizations of the curve γ—and the welding
homeomorphism compares them. (In this discussion we are ignoring the innocuous
Möbius transformation ambiguity in the choice of the functions F , G and ω . That
is easily taken care of by fixing normalizations.)

Theoretically speaking, knowledge of F or G determines, of course, the
bounding curve γ itself, so that, assuming for example F alone to be known,
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the complementary mapping G and the welding ω should be determinable. But
there are no formulae known to effect these passages.

Further, for quasicircles γ it is well-known that the welding ω is a quasisym-
metric homeomorphism of the circle, and that is a complete invariant for the
curve—in fact γ can be recovered from ω by a well-known “µ-trick”. See, for
instance, [A]. Therefore, at least in the context of the universal Teichmüller space,
T (∆), comprising (Möbius equivalence classes of) quasicircles, (and possibly for
more general classes of curves), any one of the three pieces of information above
should, in principle, be sufficient to determine the other two. [It is, of course, quite
trivial to get a formula for the third from knowledge of any two of the functions
above.]

It may be worth pointing out here that the question of passing from informa-
tion of a quasisymmetric welding homeomorphism γ to the associated Riemann
mappings F or G , and vice versa, is quite fundamental in Teichmüller theory.
Given a reference Riemann surface X , uniformized by a Fuchsian group Γ oper-
ating on ∆, any other (q.c. related) complex structure on it is encoded by some new
uniformizing Fuchsian group Λ. Namely, X̃ = ∆/Λ is another point of the Teich-
müller space T (X) (which is a complex submanifold of T (∆)), and, Λ turns out
to be a quasisymmetric conjugate of the original group; i.e., Λ = ωΓω−1 , for some
quasisymmetric homeomorphism ω of S1 . If one now understands which quasi-
circle γ produces this ω as its welding homeomorphism, and finds the Riemann
mappings F (and/or G) to the interior and exterior of γ , then one can immedi-
ately determine the complex analytic variation of the moduli from X = ∆/Γ to
X̃ = ∆/Λ. Indeed, the Kleinian group given by K = G ◦ Γ ◦ G−1 will operate
on the region interior to γ and produce the new surface X̃ as the quotient. See,
for instance, [A], [N1]. Thus, passing from knowledge of ω to the Riemann map
G entails basic understanding of the complex analytic Bers embeddings of the
Teichmüller spaces.

In this paper we consider one parameter families of Jordan curves, γt , with
corresponding Ft , Gt and ωt . Let us assume that all the information for the
initial (reference) curve γ0 is known. We show that certain singular integrals
on γ0 with Cauchy kernel can be used to determine all the successive (first and
higher order) variations of both Ft and Gt starting from knowledge of ωt alone.
It appears rather surprising and interesting that Cauchy singular integrals and the
Plemelj–Sokhotski “double-layer” formulae play such a crucial role in solving this
problem.

In an earlier paper [N2] we had derived a formula for the derivative of the
conformal welding correspondence from the space of quasicircles to the space of
quasisymmetric homeomorphisms. Our present calculations naturally allow us to
reprove that result and go deeper.
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2. Singular Cauchy integrals on Jordan curves

Let γ be a rectifiable Jordan curve in the plane, and suppose that f is any
continuous complex valued function defined on γ . As in the Introduction, let D
and D⋆ denote the complementary simply-connected regions separated by γ on
the Riemann sphere.

Question. Can we decompose f additively into two parts, f = f+ − f− ,
such that f+ is the boundary values of a holomorphic function, say H+ , on D ,
and f− is similarly the trace of a holomorphic function H− on D⋆ . (H− is
required to be analytic at ∞ also, of course.) The classical Plemelj–Sokhotski
double-layer formulae provide an affirmative answer to this query whenever f is
Hölder continuous. We will explain this below.

Remark. It is rather evident that a decomposition as above, if exists, must
be unique—up to the choice of an additive constant. That is clear by assuming
two such decompositions for f to exist and comparing the corresponding H+ and
H− functions. Thus, normalizing H−(∞) = 0, absolutely fixes things.

Consider the holomorphic function on the union of D and D⋆ given by:

(2.1) H(z) = (2iπ)−1

∫
γ

f(ζ) dζ

ζ − z

Theorem 2.1. Denote the restrictions of H to D and D⋆ by H+ and H− ,
respectively. Then H+ and H− both have non-tangential boundary values on γ ,
say f+ and f− . At any point σ on the curve γ one has:

f+(σ) = 1
2
f(σ) + (2iπ)−1

∫ (CPV )

γ

f(ζ) dζ

ζ − σ
(2.2+)

f−(σ) = −1
2f(σ) + (2iπ)−1

∫ (CPV )

γ

f(ζ)dζ

ζ − σ
(2.2−)

Therefore, as desired:

(2.3) f = f+ − f−.

Notation. The CPV superscript for the integrals in the formulae (2.2)
indicates that these are singular integrals on γ , and the Cauchy principal value is
being taken. That is done as follows: take a little disc of radius r centered at σ ,
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and compute the integral indicated on the portion of γ that is outside this little
disc. Then proceed to the limit as r tends to 0.

A proof of the above result can be seen in [G]. See also [Du], [D] for related
material.

To understand the above theorem a few more remarks may be in order. Fix
any p bigger than 1, and identify the usual Lp space of an interval with Lp(γ)—
the Lp space of functions living on γ ; (simply use the arc-length parametrization
for γ ). Then it turns out that whenever f is an element of the Lp(γ) satisfying:

(2.4)

∫
γ

zkf(z) dz = 0, for all k ∈ N

then f− and H− are identically zero, [and H+ is actually a member of the Hardy
space Hp(D) ]. When γ is the unit circle S1 itself, then of course this corresponds
to the requirement that all the negative Fourier coefficients of f should vanish.
In fact, in that case f+ , for arbitrary f , is nothing other than the sum of the
Fourier expansion of f over the non-negative indices, and f− is the (negative of)
the Fourier sum over the negative indices. (For the unit circle, the singular Cauchy
integral appearing above is basically the standard Hilbert transform operator.)

Thus it is clear that Theorem 2.1 gives an elegant generalization of this posi-
tive/negative Fourier-parts decomposition of functions on the circle to the situation
of an arbitrary rectifiable Jordan curve. This point of view is useful for our work
in this article.

Cech cohomology interpretation. That a decomposition as above must
exist for fairly arbitrary functions on any Jordan curve can be seen by interpreting
things in Cech cohomology of the Riemann sphere P1 with coefficients in the sheaf
of germs of holomorphic functions, (i.e., the structure sheaf O ). This is a remark
to me by Simha.

In fact, one knows that H1(P1, O) = 0. Let us work with any covering of P1

by two open sets U1 and U2 , which are open neighbourhoods (respectively) of the
closures of D and D⋆ . Thus their intersection is some “thin” neighbourhood of
the curve γ .

Suppose that f has a complex analytic extension to some arbitrarily thin
such annular neighbourhood of γ . Then f determines, by definition, an element
of H1({U1, U2}, O) . But at the first cohomology level, the map induced by re-
finements of covering is always injective. Hence, since the first cohomology with
coefficients in the structure sheaf vanishes, the above cohomology element must
be a coboundary. That is exactly the same as saying that every holomorphic func-
tion in any arbitrarily thin annular neighbourhood of any Jordan curve γ can be
written as the difference f = H+ − H− , with H+ holomorphic on the closure of
D and H− holomorphic on the closure of D⋆ .

Now, any real-analytic (complex valued) function on a real-analytic curve will
naturally allow holomorphic extension to such an annular neighbourhood. In our
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situation we only want f to be the difference of traces of holomorphic functions
H+ and H− , so that an approximation argument by real-analytic objects shows
that, under rather mild conditions, “any” function f on a regular curve γ allows
a plus/minus parts decomposition of the required type. (The optimal conditions
for this matter are not relevant to us at present.)

The upshot is that we have here a nice theoretical justification for the existence
of the desired decomposition for functions on curves.

Our aim is to apply this plus/minus-parts decomposition method to the prob-
lem of relating conformal welding with the Riemann mapping functions.

3. One-parameter families of Jordan curves

Let γt denote a one-parameter family of Jordan curves depending real analyt-
ically on the parameter t (t ∈ (−ε, ε)). The initial (base) curve γ0 , corresponding
to t = 0, may be assumed to be even real-analytic. We herein take the attitude
that all the information for γ0 is known, and thence try to determine recursive
formulae for calculating the information for each γt to arbitrary order in t .

Notations. Let Dt and D⋆
t be the Jordan regions on P1 separated by

γt , and Ft and Gt denote the Riemann maps of ∆ and ∆⋆ to these regions
(respectively). We assume that the Riemann maps are normalized so that the
welding homeomorphism for γt :

(3.1) ωt = Ft
−1 ◦ Gt

becomes a self-homeomorphism of S1 fixing three points—say 1,−1, i .
Let the t -expansion for ωt starting from ω0 be the following:

(3.2) ωt = ω0 + tv1 + t2v2 + t3v3 + · · ·

where the vj are some complex functions on S1 .
Let us set up the t -expansions for the Riemann mappings:

Ft = F0 + tµ1 + t2µ2 + · · ·(3.3)

Gt = G0 + tν1 + t2ν2 + · · ·(3.4)

Our main result will exhibit the t -expansions for Ft and Gt assuming that for ωt

to be given; namely, we shall show how to to determine the µj and the νj from
the vj . The formula for the first variation term (i.e., j = 1) has been obtained
earlier by Kirillov [K].

The fundamental equation is that on the unit circle S1 , one has:

(3.5) Ft ◦ ωt = Gt.
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Working to first order in t , (neglecting terms o(t)), one obtains from this (denoting
d/dz by prime):

(3.6) (F ′

0 ◦ ω0)v1 + µ1 ◦ ω0 = ν1

valid on S1 . Transfer this relationship over to the reference Jordan curve γ0 by
precomposing both sides with the inverse of G0 :

(3.7) (F ′

0 ◦ F0
−1)(v1 ◦ G0

−1) = (ν1 ◦ G0
−1) − (µ1 ◦ F0

−1)

valid on γ0 . But the first term on the right hand side of (3.7) is holomorphic on
the exterior of γ0 , and the second term is holomorphic in the interior of γ0 . We
are therefore in the situation of Theorem 2.1 quoted above, and we see that we
have proved:

Proposition 3.1. Given the first variation term v1 of the family of weldings,
set up the function: φ1 = (F ′

0 ◦ F0
−1)(v1 ◦ G0

−1) on the initial curve γ0 . Apply-
ing the plus/minus parts decomposition of Theorem 2.1 to φ1 produces the first
variation terms for the Riemann mappings via the explicit formulae:

µ1 = −(φ1
+ ◦ F0)(3.8+)

ν1 = −(φ1
− ◦ G0).(3.8−)

It is now possible to carry through the above analysis to any order in t ,
and get a corresponding function “φj ” on the curve γ0 whose plus/minus parts
decomposition determines µj and νj . In fact, next, if we neglect terms that are
o(t2) , then the welding equation (3.5) generates the following relation on S1 :

(F ′

0 ◦ ω0)v2 + 1
2
(F ′′

0 ◦ ω0)v
2
1 + (µ′

1 ◦ ω0)v1 = ν2 − µ2 ◦ ω0.

Again we precompose all terms by G−1
0 , and set up the function φ2 on the Jordan

curve γ0 :

(3.9) φ2 = (F ′

0◦F0
−1)(v2◦G0

−1)+ 1
2
(F ′′

0 ◦F0
−1)(v2

1◦G0
−1)+(µ′

1◦F0
−1)(v1◦G0

−1).

This function is known on the initial curve since v1 and v2 are supplied to us, and
we have already determined the holomorphic function µ1 on the unit disc by the
first order formula (3.8+) above. [Of course, each µk throughout ∆ is determined
by the Cauchy formula from its boundary values on S1 . A similar remark is valid
for the νk .] Hence, applying the Theorem 2.1 decomposition to φ2 on the initial
curve γ0 gives us:

µ2 = −(φ2
+ ◦ F0)(3.10+)

ν2 = −(φ2
− ◦ G0).(3.10−)

An elementary induction argument now proves that there are formulae as above
for all the µk and νk :
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Theorem 3.2. Expanding out the welding equation (3.5) up to terms of
order tk , and passing over to γ0 via G−1

0 , one obtains on γ0 a relation of the
form:

(3.11) φk[v1, v2, . . . , vk] = (νk ◦ G0
−1) − (µk ◦ F0

−1)

with an explicit universal formula for the function φk as a polynomial in the
(vj ◦ G0

−1) , j = 1, . . . , k . Applying Theorem 2.1 to this φk we determine as
desired:

µk = −(φk
+ ◦ F0)(3.k+)

νk = −(φk
− ◦ G0).(3.k−)

Note that the only term in φk involving the k th variation term (vk ) of the weldings
is (F ′

0 ◦ F0
−1)(vk ◦ G0

−1) .

Remark. Of course, the coefficients of the polynomial φk involve the µ1 to
µk−1 , and their derivatives on the unit circle. But these are assumed to have been
determined by knowledge of the preceding φj from j = 1, . . . , (k − 1). We thus
have a recursive procedure for solving the basic problem posed.

Remark. The t could be a complex parameter, and all our relations would
still be valid. We would then be in the situation of the λ-Lemma of [MSS], and
the family of Jordan regions Dt would be automatically a holomorphically varying
family of quasidiscs.

4. Variation of power series coefficients of Ft and Gt

In the paper [N2] we had pointed out a remarkably simple identity between the
Fourier series coefficients for v1 and the power series coefficients of the Riemann
mapping functions. The results of Section 3 allow us not only to reprove that
relationship but go much further.

In [N2] we supposed that some vector field v(eiθ)d/dθ on the circle S1 defines,
up to first order, the flow of the one-parameter family ωt of conformal weldings.
Expand the vector field in Fourier series on S1 :

(4.1) v(eiθ) =
∑

akeikθ.

Note that āk = a−k , since the vector field is real on S1 . Further, because we have
to Möbius-normalize the entire set-up, we may assume that all the weldings fix
three points on S1 . That means that v must vanish at these three points. (See
[N2], and our earlier papers referenced therein.)

For the associated family of domains, let the Riemann mappings for small
values of t be:

(4.2) Ft(z) = z + t(d2z
2 + d3z

3 + · · ·) + o(t)
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valid in the unit disc, and,

(4.3) Gt(ζ) = ζ + t(c1ζ
−1 + c2ζ

−2 + · · ·) + o(t)

valid in the exterior of the unit disc. The coefficients dk and ck appearing above
are, of course, the t -derivatives (at t = 0) of the power series coefficients of the
Ft and Gt , respectively. [Notice that since we are deforming the identity welding
homeomorphism by the vector field v , the initial curve is S1 itself; consequently,
F0 and G0 are the identity maps on ∆ and ∆⋆ , respectively.]

Utilising critically the perturbation formula for the solutions of the Beltrami
equation, we had shown in Theorem 1 of [N2] that:

(4.4) ck−1 = ia−k = iāk, k = 2, 3, . . .

But (4.4) is easily seen to be a consequence of formulae (3.8±) of Section 3 above.

In fact, the term v1 of formula (3.2) is obtained from the vector field by the
relation: v1(e

iθ) = ieiθv(eiθ) . We now apply the plus/minus-parts decomposition
to this v1 , and that is trivial to do since we are working on S1 and we have the
Fourier series given to us. We immediately get µ1 and ν1 from formulae (3.8±),
and comparing with the expansions (4.2), (4.3) we derive:

(4.5) ck−1 = ia−k = dk+1, k = 2, 3, ...

as desired.
The above relationship shows, moreover, that the variations of the power

series coefficients for the Riemann mappings to the interior and exterior of γt are
essentially (modulo a shift of index) complex conjugates of each other.
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