ZUR QUASIKONFORMEN SPIEGELUNG

Reiner Kühnau

Martin-Luther-Universität Halle-Wittenberg, FB Mathematik und Informatik Institut für Analysis, D-06099 Halle an der Saale, Deutschland

Abstract. We define the "reflection center" of a quasicircle as the points of the interior, which occur as the image of ∞ at an extremal quasiconformal reflection w(z). We get estimates for this center. In some cases this center contains more than one point (example: square).

In this connection it is useful to study extremal quasiconformal reflections with the side condition $w(\infty) =$ fixed.

1. Einleitung

Es sei $\mathfrak C$ eine geschlossene Jordankurve in der komplexen w-Ebene. Die "Mitte" von $\mathfrak C$ läßt sich bekanntlich in mannigfacher Weise auffassen bzw. definieren. Hier soll eine "Spiegelungsmitte" von $\mathfrak C$ definiert werden, falls $\mathfrak C$ speziell ein Quasikreis ist, wobei auch die Lage der Tangente (falls vorhanden), sozusagen die Rauhigkeit von $\mathfrak C$, einen Einfluß hat.

Sei nämlich $w^*(w)$ eine möglichst konforme (= extremal quasikonforme) Spiegelung an \mathfrak{C} , d.h. eine orientierungsumkehrende, alle Punkte von \mathfrak{C} festhaltende, quasikonforme Abbildung der Vollkugel auf sich mit kleinstmöglicher Maximal-dilatation. Dann wird man $w^*(\infty)$ als eine mögliche "Spiegelungsmitte" von \mathfrak{C} auffassen können, weil im Falle eines Kreises \mathfrak{C} tatsächlich der Mittelpunkt von \mathfrak{C} entsteht. Für hinreichend glatte \mathfrak{C} ist die möglichst konforme Spiegelung an \mathfrak{C} nach K. Strebel [5] eindeutig bestimmt, und damit auch die Spiegelungsmitte von \mathfrak{C} . Das ist aber nicht immer so—man vgl. schon das einfache Beispiel einer Quadratlinie in [2], [3]. Also wird man im allgemeinen Falle als Spiegelungsmitte von \mathfrak{C} die Gesamtheit der bei allen möglichst konformen Spiegelungen $w^*(w)$ anfallenden Punkte $w^*(\infty)$ definieren. In dieser Mitteilung sollen einige Aussagen über die Lage und Ausdehnung dieser Spiegelungsmitte in Bezug auf \mathfrak{C} gewonnen werden.

Es erweist sich als zweckmäßig, in diesem Zusammenhange mit zu betrachten die Frage nach den möglichst konformen Spiegelungen $w^*(w)$ an \mathfrak{C} unter der Nebenbedingung $w^*(\infty) = w_0$, wobei w_0 ein innerhalb \mathfrak{C} fest vorgegebener Punkt ist. Sei

$$Q(w_0) \ge 1$$
 bzw. $q(w_0) = \frac{Q(w_0) - 1}{Q(w_0) + 1}$

die zugehörige Maximaldilatation. Für die so definierte Ortsfunktion $Q(w_0)$ werden wir Abschätzungen gewinnen. Es wird sich z.B. mit expliziter Abschätzung $Q(w_0) \to \infty$ ergeben, falls w_0 gegen \mathfrak{C} strebt. Das gibt dann Anlaß zu einer a priori-Einschrankung für die Spiegelungsmitte von \mathfrak{C} . Diese besteht aus denjenigen Punkten, in denen $Q(w_0)$ das globale Minimum annimmt.

2. Äquivalente Formen der Fragestellung

Durch die Substitution $W=\sqrt{w-w_0}$ entsteht aus $\mathfrak C$ eine zu W=0 zentrisch symmetrische geschlossene Jordankurve $\mathfrak C'$. Aus den Q-quasikonformen Spiegelungen an $\mathfrak C$ mit $\infty \to w_0$ entstehen zu 0 zentrisch symmetrische Q-quasikonforme Spiegelungen an $\mathfrak C'$ mit $\infty \to 0$, und umgekehrt.

Ferner ergibt sich unmittelbar in Analogie zu Sektion 3 in [3] ein einfacher Zusammenhang zwischen den Q-quasikonformen Spiegelungen an \mathfrak{C} mit $\infty \to w_0$ und

- (a) den Q-quasikonformen Fortsetzungen einer schlichten konformen Abbildung w(z) von |z| > 1 auf's Äußere von \mathfrak{C} , wobei $z = \infty$ in $w = \infty$ übergeht und von den Fortsetzungen der Übergang von z = 0 in $w = w_0$ gefordert wird;
- (b) den Q-quasikonformen Abbildungen des Äußeren des Einheitskreises auf's Innere desselben bei fest gegebener Randabbildung und der Nebenbedingung $\infty \to 0$;
- (c) den \sqrt{Q} -quasikonformen Abbildungen der Vollebene auf sich, wobei \mathfrak{C} in die Einheitskreislinie übergeht, bei der Nebenbedingung $\infty \to \infty$, $w_0 \to 0$.

Durch (b) ergibt sich insbesondere also ein Zusammenhang mit den grundlegenden Untersuchungen von K. Strebel, E. Reich u.a. Insbesondere ist danach für z.B. analytische $\mathfrak C$ die möglichst konforme Spiegelung mit $\infty \to w_0$ eindeutig bestimmt und in bekannter Weise durch quadratische Differentiale beschreibbar. Speziell für z.B. zentrisch symmetrische analytische $\mathfrak C$ besteht die Spiegelungsmitte von $\mathfrak C$ also aus einem einzigen Punkt, nämlich dem Symmetriepunkt.

3. Abschätzung von $Q(w_0)$ nach unten in Randnähe

Satz 1. Existiert an \mathfrak{C} eine Q-quasikonforme Spiegelung mit $\infty \to w_0$, dann gilt für den größten bzw. kleinsten Abstand M bzw. m zwischen w_0 und \mathfrak{C} mit der Eulerschen ψ -Funktion die (unscharfe) Abschätzung

$$(1) \quad \frac{M}{m} \le \Phi(Q) \quad mit$$

$$\Phi(Q) = \exp\left\{2\psi\left(\frac{1}{2} - \frac{1}{2\pi}\arccos q\right) - 2\psi\left(\frac{1}{2\pi}\arccos q\right) - \pi\left(\sqrt{Q} - \frac{1}{\sqrt{Q}}\right)\right\}$$

$$< \exp\left\{3\pi + \frac{\pi^2}{6} + \pi\sqrt{Q}\right\} \quad bei \ q = \frac{Q-1}{Q+1}.$$

Ist weiter D noch der Durchmesser von \mathfrak{C} , dann gilt für die durch $M/m \ge \exp\{3\pi + (\pi^2/6)\} = 64197, 01...$ beschriebene Randzone innerhalb \mathfrak{C}

(2)
$$Q(w_0) \ge \left(\frac{1}{\pi} \log \frac{M}{m} - 3 - \frac{\pi}{6}\right)^2$$
,

außerdem noch für $D/m \geq 2\exp\{3\pi + (\pi^2/6)\} = 128394, 03\dots$

(3)
$$Q(w_0) \ge \left(\frac{1}{\pi} \log \frac{D}{m} - \frac{1}{\pi} \log 2 - 3 - \frac{\pi}{6}\right)^2.$$

Beweis. Es ergibt sich (1) sofort aus [1, Satz 1], nach der Bemerkung a. in Sektion 2. Der zweite Teil der Ungleichung (1) folgt dabei noch aus der für $0 < y \le x \le \frac{1}{2}$ gültigen Ungleichung

$$\psi(x) - \psi(y) = \sum_{k=0}^{\infty} \frac{x - y}{(x+k)(y+k)} < x \sum_{k=0}^{\infty} \frac{1}{(x+k)(y+k)}$$
$$= x \left[\frac{1}{xy} + \sum_{k=1}^{\infty} \frac{1}{(x+k)(y+k)} \right]$$
$$\leq \frac{1}{y} + x \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{y} + x \frac{\pi^2}{6} \leq \frac{1}{y} + \frac{\pi^2}{12}$$

mit

$$x = \frac{1}{2} - \frac{1}{2\pi} \arccos q, \qquad y = \frac{1}{2\pi} \arccos q \ge \frac{1}{2\pi} \sqrt{1 - q^2}.$$

Dann entsteht noch (2) aus (1) durch Umstellung nach Q und hieraus (3) bei zusätzlicher Benutzung von $2M \geq D$.

4. Abschätzung von Q(w) nach oben

Mit den Bezeichnungen m und D von Sektion 3 und $Q_{\mathfrak{C}}$ für den Spiegelungskoeffizienten von \mathfrak{C} (= kleinstmögliche Maximaldilatation bei den quasikonformen Spiegelungen an \mathfrak{C} = Minimum von Q(w)) gilt der

Satz 2. Für jedes w_0 innerhalb \mathfrak{C} ist

$$(4) Q(w_0) \leq Q_{\mathfrak{C}} \cdot \mathfrak{Cotg}^2\left(\frac{1}{4}\pi K'(t)/K(t)\right) \text{mit } t = 1 - 2\left(m/(64D)\right)^{Q_{\mathfrak{C}}}.$$

 $Mit\ K$ wird hierbei noch—wie üblich—das elliptische Integral erster Gattung bezeichnet.

Beweis. Bekanntlich (vgl. z.B. [3]) gibt es eine $Q_{\mathfrak{C}}$ -quasikonforme Abbildung der w-Ebene auf die z-Ebene mit $\infty \to \infty$, die außerhalb \mathfrak{C} konform ist, wobei \mathfrak{C} in |z|=1 übergeht. Sei dabei $z_0=z(w_0)$. Wir schließen eine nach O. Teichmüller [6] existierende

$$\mathfrak{Cotg}^{\ 2}\left(\frac{1}{4}\pi K'(|z_0|)/K(|z_0|)\right)$$
-quasikonforme Abbildung $Z(z)$

des Einheitskreises auf sich an, mit festen Randwerten, wobei z_0 in Z=0 übergeht.

Eine quasikonforme Spiegelung an \mathfrak{C} mit $w_0 \to \infty$ und der der rechten Seite von (4) entsprechenden Dilatationsschranke konstruieren wir jetzt so. Das Innere von \mathfrak{C} wird zuerst $Q_{\mathfrak{C}}$ -quasikonform durch z(w) auf |z| < 1 aufgebildet. Dann folgt die eben erwähnte Abbildung auf |Z| < 1. Sodann Spiegelung am Einheitskreis, letztlich konformer Übergang von |Z| > 1 auf's Äußere von \mathfrak{C} durch Umkehrung von z(w). Insgesamt bleiben alle Punkte von \mathfrak{C} fest, und es transformiert tatsächlich $w_0 \to \infty$. Wir erhalten die genannte Dilatationsschranke durch Multiplikation von $Q_{\mathfrak{C}}$ mit der Dilatationsschranke der Teichmüllerschen Abbildung, wenn wir in dem hierfür angegebenen Ausdrucke noch $|z_0|$ abschätzen.

Dazu betrachten wir die Kreislinie k des Radius' 2 mit Mittelpunkt $z_0/|z_0|$. Diese hat ein Bild in der w-Ebene, das innerhalb eines Kreises mit Radius $4 \cdot \frac{1}{2}D = 2D$ liegt, da w(z) außerhalb k schlicht konform ist mit Ableitung $\leq \frac{1}{2}D$ in ∞ . Also liegt w(k) innerhalb einer zu $w(z_0/|z_0|)$ konzentrischen Kreisscheibe des Radius' 4D. Auf die $Q_{\mathfrak{C}}$ -quasikonforme Abbildung w(z) des Inneren von k wenden wir nebst dem Schwarzschen Lemma den bekannten Morischen Verzerrungssatz [4] an (nach Ähnlichkeitstransformation):

$$\frac{m}{4D} \le \frac{1}{4D} \left| w(z_0) - w\left(\frac{z_0}{|z_0|}\right) \right| \le 16 \left| \frac{1}{2} \left(z_0 - \frac{z_0}{|z_0|} \right) \right|^{1/Q_{\mathfrak{C}}},$$

$$|z_0| \le 1 - 2 \left(\frac{m}{64D} \right)^{Q_{\mathfrak{C}}}.$$

Das ist die zum Beweis von (4) noch ausstehende Ungleichung.

Bemerkung. Die somit durch (3) und (4) gewonnenen unteren und oberen Schranken für $Q(w_0)$ sind für kleine Werte m, also in Randnähe, asymptotisch (für festes \mathfrak{C})

(5)
$$\frac{1}{\pi^2} \left(\log \frac{1}{m} \right)^2 \qquad \text{bzw. } \frac{16}{\pi^4} Q_{\mathfrak{C}}^3 \left(\log \frac{1}{m} \right)^2.$$

Also ist jedenfalls für $m \to 0$

(6)
$$Q(w_0)/\left(\log \frac{1}{m}\right)^2$$
 beschränkt durch $\frac{1}{\pi^2}$ bzw. $\frac{16}{\pi^4}Q_{\mathfrak{C}}^3$

nach unten bzw. oben. Es ist die Frage, ob für diesen Quotienten in (6) ein Grenzwert existiert (von der Geometrie von $\mathfrak C$ abhängig).

5. Spiegelungsmitte bei kreisnahen C

Wir wollen nun sehen, daß für \mathfrak{C} , die einer Kreislinie in einem geeigneten Sinne nahe sind, die Spiegelungsmitte nahe dem Mittelpunkt dieses Kreises ist.

Es sei $\mathfrak C$ bezüglich w=0 sternförmig und in dem Sinne kreisnahe, daß $\mathfrak C$ liegt in

(7)
$$\frac{1}{1+\varepsilon} < |w| < 1+\varepsilon,$$

ferner stückweis glatt (d.h. endlich viele Ausnahmepunkte), wobei der Winkel $\alpha(\varphi)$ zwischen dem Strahl arg $w=\varphi=\mathrm{const}$ und der (in den Ausnahmepunkten einseitigen) Tangente an $\mathfrak C$ im betreffenden Schnittpunkte stets erfüllt

(8)
$$|\cos \alpha(\varphi)| < \delta$$

mit kleinem ε und δ . Ist $r = |w| = r(\varphi)$ Darstellung von $\mathfrak C$ in Polarkoordinaten, dann liefert nach einer bekannten Ahlforsschen Konstruktion $w^*(w) = r^2(\varphi)/\overline{w}$ eine quasikonforme Spiegelung an $\mathfrak C$ mit $w^*(\infty) = 0$ und einer Maximal-dilatation $\leq (1+\delta)/(1-\delta)$. Dadurch ist $q(0) \leq \delta$, also erst recht für einen Punkt w_0 der Spiegelungsmitte

$$q(w_0) \le \delta.$$

Nun gilt weiter nach (1)

(10)
$$\frac{1}{1+\varepsilon} + |w_0| \le (1+\varepsilon - |w_0|) \Phi(Q(w_0)),$$
$$|w_0| \le \frac{\Phi - 1}{\Phi + 1} + \varepsilon \left(1 - \frac{\varepsilon}{(1+\varepsilon)(\Phi + 1)}\right) < \frac{1}{2}(\Phi - 1) + \varepsilon.$$

Damit haben wir den

Satz 3. Ist \mathfrak{C} nahe zum Einheitskreis |w| = 1 im Sinne von (7) und (8), dann liegen sämtliche Punkte w_0 der Spiegelungsmitte von \mathfrak{C} in der durch

(11)
$$|w_0| \le \frac{1}{2} \left(\Phi\left(\frac{1+\delta}{1-\delta}\right) - 1 \right) + \varepsilon$$

beschriebenen Umgebung von 0. Diese Umgebung von 0 ergibt sich für kleine ε und δ zu

$$|w_0| \le \frac{8}{\pi} G\delta + \varepsilon + O(\delta^2)$$

mit G = 0,915... (Catalansche Konstante).

Diese Nähe der Spiegelungsmitte zu 0 folgt nicht, wenn (8) (mit kleinem δ) weggelassen wird, wie unten das Beispiel einer linear transformierter Ellipse zeigt.

6. Beispiele

(a) $\mathfrak{C} = Kreislinie$. Wir können \mathfrak{C} als |w| = 1 annehmen. Eine Spiegelung an \mathfrak{C} mit $\infty \to w_0$ induziert sofort eine quasikonforme Abbildung der Einheitskreisscheibe auf sich mit $0 \to w_0$ bei festen Randwerten. Die zugehörige möglichst konforme Abbildung wurde von O. Teichmüller [6] (dort berühmter Fehler: auf S. 343 ist unterhalb der Mitte K durch \sqrt{K} zu ersetzen), so daß wir erhalten (vgl. [4] zum Modul des "Teichmüllerschen Extremalgebietes")

(13)
$$Q(w) = \mathfrak{Cotg}^{2}(\frac{1}{4}\pi K'(|w|)/K(|w|)) \quad \text{für } |w| < 1.$$

Dies ist das einzige Beispiel \mathfrak{C} , bei dem Q(w) für alle Punkte w innerhalb \mathfrak{C} bekannt ist.

Es gilt in Randnähe für $|w| \to 1$

(14)
$$Q(w) \sim \frac{16}{\pi^4} (\log(1 - |w|))^2$$

(der Quotient beider Seiten strebt gegen 1).

Natürlich ist der einzelne Punkt w=0 die Spiegelungsmitte dieses \mathfrak{C} .

(b) $\mathfrak{C}=$ Ellipse. Ist diese $a^{-2}u^2+b^{-2}v^2=1$ (a>b>0) bei w=u+iv, dann gilt

$$(15) Q(0) = a/b.$$

Denn nach einer Ähnlichkeitstransformation kann man annehmen, daß diese Ellipse durch

(16a)
$$w = z + \frac{\kappa}{z}, \qquad 0 < \kappa < 1,$$

aus |z|=1 entsteht. Und diese Abbildung von $|z|\geq 1$ ist durch die Affinität

(16b)
$$w^* = z + \kappa \bar{z}, \quad \text{Umkehrung } z = \frac{w^* - \kappa \overline{w^*}}{1 - \kappa^2},$$

bekanntlich nach $|z| \leq 1$ möglichst konform fortsetzbar (vgl. z.B. [3]), mit der konstanten Dilatation Q = a/b. Das gibt Anlaß zur (eindeutig bestimmten) möglichst konformen Spiegelung an \mathfrak{C} mit dieser Dilatation:

(17)
$$w = \frac{1 - \kappa^2}{\overline{w^*} - \kappa w^*} + \kappa \frac{\overline{w^*} - \kappa w^*}{1 - \kappa^2}$$

(Abbildung des Inneren der Ellipse $\mathfrak C$ auf's Äußere). Insbesondere ist diese möglichst konforme Spiegelung eine elementare Funktion (in [3, Mitte von S. 102] Irrtum).

Ferner ist z.B. nach dem Anfang von Sektion 2

(18)
$$Q(\pm \sqrt{a^2 - b^2}) = \frac{a}{b} + \sqrt{\left(\frac{a}{b}\right)^2 - 1} \quad \text{in den Brennpunkten.}$$

Denn durch $W = \sqrt{w - w_0}$ mit $w_0 = -\sqrt{a^2 - b^2}$ entsteht aus unserer Ellipse wieder eine Ellipse mit W = 0 als Mittelpunkt, jetzt mit den Halbachsen $\sqrt{a \mp w_0}$.

Weitere Werte von $Q(w_0)$ sind noch nicht bekannt.

Die Spiegelungsmitte von $\mathfrak C$ ist natürlich der einzelne Symmetriepunkt w=0.

(c) $\mathfrak{C} = linear transformierte Ellipse$. Und zwar entstehe \mathfrak{C} aus der Ellipse mit Scheiteln in $\pm (1+\kappa)$, $\pm (1-\kappa)$ bei $0 < \kappa < 1$ (vgl. oben (b)) durch die lineare Transformation, bei der übergeht

$$\pm (1+\kappa) \to \pm 1, \qquad w_1 \to \infty \qquad (w_1 > 1+\kappa).$$

 $\mathfrak C$ hängt also von dem Parameter w_1 ab. Diesen lassen wir nun gegen $1+\kappa$ streben. $\mathfrak C$ liegt immer innerhalb des Einheitskreises, diesen in ± 1 berührend, und für w_1 nahe $1+\kappa$ schmiegt sich $\mathfrak C$ dem Einheitskreis immer mehr an (man verfolge nämlich bei dieser linearen Transformation einen die Ellipse in $1+\kappa$ von innen berührenden Kreis). Man errechnet, daß der linear transformierte Spiegelungspunkt von w_1 bei (17) (also die Spiegelungsmitte von $\mathfrak C$) gegen $-\kappa$ konvergiert, wenn w_1 gegen $1+\kappa+0$ strebt. Dieser Punkt $-\kappa$ ist nun noch beliebig nahe bei -1 einzurichten, wenn die Ausgangsellipse hinreichend flach gewählt wird (nämlich mit $\kappa \approx 1$).

Also: \mathfrak{C} läßt sich so einrichten, daß sich \mathfrak{C} in einem konzentrischen Kreisring befindet, dessen Radienverhältnis beliebig nahe bei 1 ist, wobei die Spiegelungsmitte beliebig exzentrisch, d.h. beliebig nahe bei diesem Kreisring liegt.

Man überlegt leicht, daß diese Annäherung von $\mathfrak C$ an eine Kreislinie aber nicht so erfolgt, daß auch eine Annäherung bei der Tangente erfolgt; wie es nach Satz 3 sein muß.

(d) $\mathfrak{C} = Quadratlinie$. Wenn die Seitenlänge 1 ist und \mathfrak{C} zu 0 konzentrisch liegt, gibt es nach [2], [3] eine möglichst konforme 3-quasikonforme Spiegelung an \mathfrak{C} , die in der durch $|w| < 1 - \frac{1}{2}\sqrt{2}$ charakterisierten Kreisscheibe \mathfrak{K} konform ist. Nun gibt es nach [6] (vgl. auch oben unter (a)) eine 3-quasikonforme Abbildung von \mathfrak{K} auf sich mit festen Randwerten, bei der 0 in 0, 24249... übergeht. Also besteht die Spiegelungsmitte von \mathfrak{C} mindestens aus den Punkten von $|w| \leq 0, 24249...$

Andererseits ergibt sich für Q = 3 aus (1)

$$m \ge \frac{D}{2\Phi(Q)} = \frac{D}{32} = \frac{\sqrt{2}}{32},$$

so daß die Spiegelungsmitte von $\mathfrak C$ vollständig in dem zu $\mathfrak C$ konzentrischen und homothetischen Quadrat liegen muß, das aus $\mathfrak C$ durch ähnliche Verkleinerung mit dem Faktor $1-\frac{1}{16}\sqrt{2}=0,9116\ldots$ entsteht.

Diese Aussagen lassen sich durch aufwendigere feinere Betrachtungen leicht verbessern; ähnlich beim nächsten Beispiel.

Dieses Beispiel des Quadrates \mathfrak{C} zeigt insbesondere auch, daß die Funktion Q(w) nicht immer reell-analytisch ist.

(e) $\mathfrak C=$ gleichseitiges Dreieck. Wenn die Seitenlänge 1 ist und $\mathfrak C$ zu 0 konzentrisch liegt, existiert nach [2], [3] eine 5-quasikonforme Spiegelung an $\mathfrak C$, und es ergibt sich analog wie in (d), daß die Spiegelungsmitte von $\mathfrak C$ mindestens aus den Punkten w mit $|w| \leq 0,14753\ldots$ besteht. Andererseits ergibt sich für Q=5 aus (1)

$$m \ge \frac{D}{2\Phi(Q)} = D \cdot 0,0060299... = 0,0060299...,$$

so daß die Spiegelungsmitte von $\mathfrak C$ vollständig in dem zu $\mathfrak C$ konzentrischen und homothetischen gleichseitigen Dreieck liegen muß, das aus $\mathfrak C$ durch ähnliche Verkleinerung mit dem Faktor $0,9791119\ldots$ entsteht.

(f) $\mathfrak{C} = reguläres Kreisbogen-n-Eck$. Wenn die Ecken z.B. die n-ten Einheitswurzeln sind, und die Innen- oder Außenwinkel zwischen den in den Ecken zusammenstoßenden Kreisbögen $= \alpha \pi$ sind, existiert nach [2] eine quasikonforme Spiegelung mit der Dilatationsschranke

$$(19) (1+|1-\alpha|)/(1-|1-\alpha|).$$

Die zugehörige Konstruktion dieser Spiegelung in [2] ist dabei konform in einer zu 0 konzentrischen Kreisscheibe \mathfrak{K} , deren Radius nach 1 strebt, wenn $n \to \infty$ bei festem α . Wenn nun noch α hinreichend nahe bei 1 liegt, liegt auch die Dilatationsschranke (19) nahe bei 1, so daß bei Festhaltung der Randpunkte von \mathfrak{K} der Nullpunkt beliebig nahe zum Rand von \mathfrak{K} geschoben werden kann unter Wahrung der Dilatationsschranke. Also: Wenn n hinreichend groß und α hinreichend nahe bei 1, dann macht in diesem Beispiel die Spiegelungsmitte fast das ganze Innere von \mathfrak{C} aus, d.h. nicht zur Spiegelungsmitte gehören nur Punkte eines beliebig schmalen inneren Randstreifens von \mathfrak{C} .

7. Zusatzbemerkungen

- (a) Aus Kompaktheitsgründen bilden die Punkte der Spiegelungsmitte von $\mathfrak C$ immer eine abgeschlossene Menge. Was läßt sich Genaueres sagen?
- (b) Man kann die ganze Problematik so verallgemeinern. Sei $\mathfrak M$ eine beschränkte Punktmenge der Ebene, an der quasikonform gespiegelt werden kann, d.h. für die eine orientierungsumkehrende quasikonforme Abbildung der Vollebene

auf sich existiert, bei der \mathfrak{M} punktweis festbleibt. (Eine vollständige Charakterisierung dieser Mengen existiert noch nicht; z.B. gehören alle endlichen Punktmengen dazu.) Wie steht es hier mit der (entsprechend zu definierenden) Spiegelungsmitte und der Funktion Q(w)? Wenn z.B. \mathfrak{M} aus n Punkten besteht, gibt es sicher einen zu Satz 3 analogen Satz, falls diese Punkte annähernd auf einer Kreislinie liegen (und die Spiegelungen in entsprechender Homotopieklasse betrachtet werden). Die Spiegelungsmitte liegt übrigens nicht immer in der konvexen Hülle der n Punkte, kann sogar beliebig weit weg von diesen liegen. Triviales Beispiel ist n=3. Dann ist die Spiegelungsmitte der Mittelpunkt des durch die drei Punkte verlaufenden Kreises.

Literatur

- [1] KÜHNAU, R.: Eine Verschärfung des Koebeschen Viertelsatzes für quasikonform fortsetzbare Abbildungen. Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 1975, 77–83.
- [2] KÜHNAU, R.: Zur Berechnung der Fredholmschen Eigenwerte ebener Kurven. Z. Angew. Math. Mech. 66, 1986, 193–200.
- [3] KÜHNAU, R.: Möglichst konforme Spiegelung an einer Jordankurve. Jahresber. Deutsch. Math.-Verein. 90, 1988, 90–109.
- [4] LEHTO, O., und K.I. VIRTANEN: Quasikonforme Abbildungen. Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [5] STREBEL, K.: On the existence of extremal Teichmueller mappings. J. Analyse Math. 30, 1976, 464–480.
- [6] TEICHMÜLLER, O.: Ein Verschiebungssatz der quasikonformen Abbildung. Deutsche Math. 7, 1944, 336–343 (vgl. auch die "Gesammelten Abhandlungen", Springer-Verlag, Berlin-Heidelberg-New York, 1982).

Eingegangen am 29. Juni 1994