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Abstract. In this note we prove the finiteness of mean values of subtemperatures over level
surfaces of the Green function and we give a capacitary interpretation of the corresponding “mean
value measure”.

1. Introduction

In a series of papers, N.A. Watson has extended the classical result of F. Riesz
that the integral mean of subharmonic functions in Rd , d ≥ 3, over concentric
spheres of radius r is a convex function of r2−d , for subsolutions of both second
order, linear elliptic partial differential equations with variable coefficients ([8],
[10]) and the heat equation ([6], [7], [9], [10]).

In the case of potential theory for the heat operator, we show that the function
ϕ in Theorem 4 of N.A. Watson’s paper [10, p. 253], is actually finite. To prove
this, we use some ideas of [6, p. 249], and the fact that the corresponding mean
value measure µD

p0,c on the heat sphere ∂ΩD(p0, c) is the balayage of the Dirac
measure εp0

concentrated at p0 onto the complement of the heat ball ΩD(p0, c)

as well as the capacitary measure (for the adjoint operator) for ΩD(p0, c), see
Theorem 2 below.

Following N.A. Watson, [10, p. 252], we give some definitions and notations.

Let Θ denote the heat operator
∑d

i=1 ∂2/∂x2
i −∂/∂t in Rd+1 , d ∈ N , and let Θ∗

denote its adjoint
∑d

i=1 ∂2/∂x2
i + ∂/∂t. In what follows, all notions concerning

the adjoint heat operator will be denoted by ∗ , e.g., ∗ regular, ∗heat potential etc.
We put

∇xu :=

(
∂

∂x1
u, . . . ,

∂

∂xd
u

)
, ∇u :=

(
∇xu,

∂

∂t
u

)
,

and use ‖ · ‖ to denote the Euclidean norm in both Rd and Rd+1 . A temperature
is a solution of the heat equation, and subtemperatures and supertemperatures
are corresponding subsolutions and supersolution, cf. [4].
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Let D be an open subset of Rd+1 which is ∗Dirichlet regular, i.e., if ∂D 6= ∅
then for every continuous function f : ∂D → R there exists exactly one function
∗HD

f : D → R such that

Θ∗(∗HD
f ) = 0 on D, ∗HD

f |∂D= f

and ∗HD
f ≥ 0 whenever f ≥ 0.

Further, let GD denote the Green function for D in the sense of [4], cf. [3].
If p0 ∈ D , then GD(p0, ·) is a non-negative ∗ supertemperature on D , and a
∗ temperature on D \ {p0} . It follows from Sard’s theorem that the set

(1)
{
p ∈ D ; GD(p0, p) = (4πc)−d/2

}

is a smooth regular d -dimensional manifold for almost every c > 0. We call such
a value of c a regular value. For an arbitrary positive value of c , we put

ΩD(p0, c) :=
{
p ∈ D ; GD(p0, p) > (4πc)−d/2

}
.

For any regular value of c , the union of {p0} and the set in (1) is equal to
∂ΩD(p0, c) . The set ΩD(p0, c) is a compact subset of D ; see [10, p. 252]. The
set ΩD(p0, c) is called the heat ball and ∂ΩD(p0, c) the heat sphere (with respect
to D ). If c is a regular value, we put for p ∈ ∂ΩD(p0, c) \ {p0}

KD(p0, p) := ‖∇xGD(p0, p)‖2‖∇GD(p0, p)‖−1

and

MD(u, p0, c) :=

∫

∂ΩD(p0,c)

uKD(p0, ·) dσ

whenever the integral exists. Here σ denotes the surface area measure on
∂ΩD(p0, c) . The measure µD

p0,c := KD(p0, ·)σ will be called the mean value mea-

sure. If D = Rd+1 , the measure µD
p0,c is called the Fulks–Pini measure; see, e.g.,

[1] for details.
If c1 , c2 are regular values, c1 < c2 , we put

AD(p0, c1, c2) := ΩD(p0, c2) \ ΩD(p0, c1).

The following result is due to N.A. Watson, [9, p. 176]; for a simpler proof,
see [10, p. 253].

Theorem 1. Let u be a subtemperature on an open superset E of

AD(p0, c1, c2) . Then there is a function ϕ , either finite and convex or identically

−∞ , such that

MD(u, p0, c) = ϕ(c−d/2)

for all regular values c in [c1, c2] .
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In the case D = Rd+1 , the finiteness of MD(u, p0, c) was proved in [6, p. 249].
We will show that this also holds when D 6= Rd+1 .

First we give some preliminary results. The ∗heat potential on D (adjoint
heat potential) of a positive Radon measure µ on D is defined by

∗Gµ
D(p) :=

∫

D

GD(q, p) µ(dq).

From [3, p. 348], it follows that for every compact set K ⊂ D there exists a
uniquely determined Radon measure ∗µD,K (called the ∗ equilibrium measure for
K with respect to D ) such that

∗G
∗µD,K

D = ∗R̂K
1 ;

here, of course, ∗R̂K
1 denotes the balayage of 1 on K with respect to D and the

adjoint heat theory. The number ∗µD,K(K) is called the ∗ capacity of K (with
respect to D ).

If U ⊂ Rd+1 is a set and p0 ∈ Rd+1 , then εU
p0

stands for the balayage of the
Dirac measure εp0

concentrated at p0 on U .
For c > 0, we consider the function

w(p) := min
{
(4πc)−d/2 ; GD(p0, p)

}
, p ∈ D.

Lemma 1. Let p0 ∈ D and c be a regular value. Put Ω := ΩD(p0, c) and

ν := ε∁Ω
p0

. Then
∗Gν

D = w.

Lemma 2. Let p0 ∈ D and c be a regular value. Put Ω := ΩD(p0, c) . Then

∗G
∗µ

D,Ω

D = (4πc)−d/2w.

We omit the proofs of Lemma 1 and 2, since they differ from those of [2,
pp. 472, 473] only in minor details.

Theorem 2. Let p0 ∈ D and c be a regular value. Put Ω := ΩD(p0, c) .
Then

µD
p0,c = ε∁Ω

p0
= (4πc)−d/2 ∗µD,Ω.

Proof. The first equality was proved in [9, p. 181]. The second one follows
from the uniqueness of the representation of ∗heat potentials, see [3, p. 305], and
from Lemma 1 and Lemma 2.

In the case D = Rd+1 , the first equality was established by H. Bauer in [1],
the second one in [2].
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Corollary. Let p0, p1 ∈ D and c be a regular value. Then

MD

(
GD(·, p1), p0, c

)
= min{(4πc)−d/2, GD(p0, p1)}.

Proof. By definitions we have

MD

(
GD(·, p1), p0, c

)
=

∫

D

GD(·, p1) dµD
p0,c = ∗G

µD
p0,c

D (p1).

According to Lemma 1 and Theorem 2

MD

(
GD(·, p1), p0, c

)
= w(p1) = min

{
(4πc)−d/2, GD(p0, p1)

}
.

In the case D = Rd+1 , the assertion of the Corollary was proved by N.A.
Watson in [6, p. 248].

Now, we are in position to prove the finiteness of the mean values MD(u, p0, c)
in Theorem 1.

Theorem 1 ′ . Let u be a subtemperature on an open superset E of

AD(p0, c1, c2) . Then there is a real-valued convex function ϕ such that

MD(u, p0, c) = ϕ(c−d/2)

for all regular values c in [c1, c2] .

Proof. Let c ∈ [c1, c2] be a regular value. By Theorem 1, it is sufficient to
prove that MD(u, p0, c) is finite. Let V be an open superset of AD(p0, c1, c2) ,
V ⊂ E ∩ D , V compact. By the Riesz decomposition theorem, see [4, p. 279],
there exists a finite measure µ and a temperature h on V such that u = h−Gµ

V

on V . According to [9, p. 168], MD(h, p0, c) = h(p0) ; obviously, h(p0) is finite.
Since, for all p, q ∈ V ,

0 ≤ GV (p, q) ≤ GD(p, q)

we have ∫

V

GV (p, q) µ(dq) ≤

∫

V

GD(p, q) µ(dq).

By Fubini’s theorem and Corollary, we have

MD(Gµ
V , p0, c) ≤

∫

V

MD

(
GD(·, q), p0, c

)
µ(dq) ≤ (4πc)−d/2 · µ(V ) < ∞.
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