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Abstract. In this note we prove the finiteness of mean values of subtemperatures over level
surfaces of the Green function and we give a capacitary interpretation of the corresponding “mean
value measure”.

1. Introduction

In a series of papers, N.A. Watson has extended the classical result of F. Riesz
that the integral mean of subharmonic functions in R%, d > 3, over concentric
spheres of radius r is a convex function of r2~¢, for subsolutions of both second
order, linear elliptic partial differential equations with variable coefficients ([8],
[10]) and the heat equation ([6], [7], [9], [10]).

In the case of potential theory for the heat operator, we show that the function
¢ in Theorem 4 of N.A. Watson’s paper [10, p. 253], is actually finite. To prove
this, we use some ideas of [6, p. 249], and the fact that the corresponding mean
value measure ,ué)o . on the heat sphere 9p(po,c) is the balayage of the Dirac
measure €, concentrated at py onto the complement of the heat ball Qp(po,c)
as well as the capacitary measure (for the adjoint operator) for Qp(pg,c), see
Theorem 2 below.

Following N.A. Watson, [10, p. 252], we give some definitions and notations.
Let © denote the heat operator E?Zl 0?/0z2 —0/0t in R™! d € N, and let ©*

denote its adjoint Ele 0?/0x? + 8/0t. In what follows, all notions concerning
the adjoint heat operator will be denoted by *, e.g., *regular, *heat potential etc.

We put
0 0 0
qu = <8—m1u,...,a—de), Vu := <qu,aU),

and use | -|| to denote the Euclidean norm in both R and R¥*!. A temperature
is a solution of the heat equation, and subtemperatures and supertemperatures
are corresponding subsolutions and supersolution, cf. [4].
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Let D be an open subset of R4*t! which is *Dirichlet regular, i.e., if 9D # ()
then for every continuous function f: 9D — R there exists exactly one function
*Hy: D — R such that

©*("Hf)=0 onD, *HP |sp=f

and *H JP > 0 whenever f > 0.

Further, let Gp denote the Green function for D in the sense of [4], cf. [3].
If po € D, then Gp(po,-) is a non-negative *supertemperature on D, and a
“temperature on D \ {pp}. It follows from Sard’s theorem that the set

(1) {p€D; Gp(po,p) = (4mc)~/?}

is a smooth regular d-dimensional manifold for almost every ¢ > 0. We call such
a value of ¢ a reqular value. For an arbitrary positive value of ¢, we put

Qp(po,c) :={p € D; Gp(po,p) > (47rc)_d/2}.

For any regular value of ¢, the union of {py} and the set in (1) is equal to
9Qp(po,c). The set Qp(po,c) is a compact subset of D; see [10, p. 252]. The
set Qp(po, c) is called the heat ball and OQp(po,c) the heat sphere (with respect
to D). If ¢ is a regular value, we put for p € 9Qp(po,c) \ {po}

Kp(po,p) = |V=Gp(po,p)|I*IVGp(po,p)|| "

and
AMp(u,po,c) = / uKp(po,-) do
8QD(P0:C)
whenever the integral exists. Here o denotes the surface area measure on
9Qp(po,c). The measure pl’ . := Kp(po,-)o will be called the mean value mea-

sure. If D = R! | the measure ,u}lj)o’c is called the Fulks—Pini measure; see, e.g.,
[1] for details.
If ¢1, co are regular values, c¢; < co, we put

Ap(po,c1,c2) == Qp(po, c2) \ @p(po,c1).

The following result is due to N.A. Watson, [9, p. 176]; for a simpler proof,
see [10, p. 253].

Theorem 1. Let u be a subtemperature on an open superset E of
Ap(po,c1,c2). Then there is a function ¢, either finite and convex or identically
—00, such that

«%D(Uﬂp()? C) = @(C_d/Q)

for all regular values ¢ in [c1, ca].
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In the case D = Rt the finiteness of .#p(u, po, c) was proved in [6, p. 249].
We will show that this also holds when D # R4+!,

First we give some preliminary results. The *heat potential on D (adjoint
heat potential) of a positive Radon measure p on D is defined by

G (p) ::/DGD(q,p)u(dQ)~

From [3, p. 348], it follows that for every compact set K C D there exists a
uniquely determined Radon measure *up x (called the * equilibrium measure for
K with respect to D) such that

* o~
*Gll)iD,K _ *R{(,

here, of course, *}A%{( denotes the balayage of 1 on K with respect to D and the
adjoint heat theory. The number *up x(K) is called the * capacity of K (with
respect to D).

If U C R is a set and pp € R, then &) stands for the balayage of the
Dirac measure ¢,, concentrated at pg on U.

For ¢ > 0, we consider the function

w(p) := min{(47c)"¥?; Gp(po.p)}, p€D.

Lemma 1. Let pg € D and ¢ be a regular value. Put Q := Qp(po,c) and
V= 85?. Then

GhH =w.

Lemma 2. Let pg € D and ¢ be a regular value. Put Q := Qp(pg,c). Then

*GDHD’5 = (4me) " ?w.

We omit the proofs of Lemma 1 and 2, since they differ from those of [2,
pp. 472, 473] only in minor details.

Theorem 2. Let pyo € D and ¢ be a regular value. Put Q := Qp(pg,c).
Then

D HY) —d/2 x
Ppo.e = €po = (4mc) / Hp -

Proof. The first equality was proved in [9, p. 181]. The second one follows
from the uniqueness of the representation of *heat potentials, see [3, p. 305], and
from Lemma 1 and Lemma 2. o

In the case D = R4*t! the first equality was established by H. Bauer in [1],
the second one in [2].
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Corollary. Let pg,p1 € D and ¢ be a regular value. Then

Mp(Gp(-,p1),po, c) = min{ (47c) =42, Gp(po, p1)}.

Proof. By definitions we have

D
%D (GD('7p1)7p07 C) = / GD(vpl) d,upDO’c = *Gl;)po’c(p1>-
D
According to Lemma 1 and Theorem 2

A5 (Gp(-p1), pos ¢) = w(pr) = min{ (47wc) "% Gp(po,p1)}. o

In the case D = R*!, the assertion of the Corollary was proved by N.A.
Watson in [6, p. 248].

Now, we are in position to prove the finiteness of the mean values .#p (u, po, ¢)
in Theorem 1.

Theorem 1’. Let u be a subtemperature on an open superset E of
Ap(po,c1,c2). Then there is a real-valued convex function ¢ such that

«%D(Uﬂp()? C) = @(C_d/Q)

for all regular values ¢ in [c1, c3].

Proof. Let ¢ € [c1,c2] be a regular value. By Theorem 1, it is sufficient to
prove that .#p(u,po,c) is finite. Let V' be an open superset of Ap(po,c1,ca),
V Cc END, V compact. By the Riesz decomposition theorem, see [4, p. 279],
there exists a finite measure p and a temperature h on V such that u =h — G,
on V. According to [9, p. 168], .#p(h,po,c) = h(po); obviously, h(pg) is finite.
Since, for all p,q e V,

0<Gv(p,q) <Gpl(p,q)

/GV D, q dq /GD b,q )

By Fubini’s theorem and Corollary, we have

we have

(G po, ) / (G (- 0),po, €) p(dq) < (4me)~Y2 - u(V) < 00. 0
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