A NOTE ON THE CONVEXITY THEOREM FOR MEAN VALUES OF SUBTEMPERATURES

Miroslav Brzezina

Technical University of Liberec, Department of Mathematics Hálkova 6, 461 17 Liberec 1, Czech Republic; miroslav.brzezina@vslib.cz

Abstract. In this note we prove the finiteness of mean values of subtemperatures over level surfaces of the Green function and we give a capacitary interpretation of the corresponding "mean value measure".

1. Introduction

In a series of papers, N.A. Watson has extended the classical result of F. Riesz that the integral mean of subharmonic functions in \mathbb{R}^d , $d \geq 3$, over concentric spheres of radius r is a convex function of r^{2-d} , for subsolutions of both second order, linear elliptic partial differential equations with variable coefficients ([8], [10]) and the heat equation $([6], [7], [9], [10])$.

In the case of potential theory for the heat operator, we show that the function φ in Theorem 4 of N.A. Watson's paper [10, p. 253], is actually finite. To prove this, we use some ideas of [6, p. 249], and the fact that the corresponding mean value measure $\mu_{p_0,c}^D$ on the heat sphere $\partial\Omega_D(p_0,c)$ is the balayage of the Dirac measure ε_{p_0} concentrated at p_0 onto the complement of the heat ball $\Omega_D(p_0, c)$ as well as the capacitary measure (for the adjoint operator) for $\Omega_D(p_0, c)$, see Theorem 2 below.

Following N.A. Watson, [10, p. 252], we give some definitions and notations. Let Θ denote the heat operator $\sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} - \frac{\partial}{\partial t}$ in \mathbf{R}^{d+1} , $d \in \mathbf{N}$, and let Θ^* denote its adjoint $\sum_{i=1}^d \frac{\partial^2}{\partial x_i^2} + \frac{\partial}{\partial t}$. In what follows, all notions concerning the adjoint heat operator will be denoted by $*$, e.g., $*$ regular, $*$ heat potential etc. We put

$$
\nabla_x u := \left(\frac{\partial}{\partial x_1}u, \ldots, \frac{\partial}{\partial x_d}u\right), \qquad \nabla u := \left(\nabla_x u, \frac{\partial}{\partial t}u\right),
$$

and use $\|\cdot\|$ to denote the Euclidean norm in both \mathbb{R}^d and \mathbb{R}^{d+1} . A temperature is a solution of the heat equation, and subtemperatures and supertemperatures are corresponding subsolutions and supersolution, cf. [4].

¹⁹⁹¹ Mathematics Subject Classification: Primary 31B35, 31C15, 35K05.

Financial support by the Konferenz der deutschen Akademien der Wissenschaften is gratefully acknowledged.

Let D be an open subset of \mathbb{R}^{d+1} which is *Dirichlet regular, i.e., if $\partial D \neq \emptyset$ then for every continuous function $f: \partial D \to \mathbf{R}$ there exists exactly one function * H_f^D : $\overline{D} \to \mathbf{R}$ such that

$$
\Theta^*(^*H_f^D) = 0 \quad \text{on } D, \qquad ^*H_f^D \mid_{\partial D} = f
$$

and $^*H_f^D \geq 0$ whenever $f \geq 0$.

Further, let G_D denote the Green function for D in the sense of [4], cf. [3]. If $p_0 \in D$, then $G_D(p_0, \cdot)$ is a non-negative *supertemperature on D , and a *temperature on $D \setminus \{p_0\}$. It follows from Sard's theorem that the set

(1)
$$
\{p \in D; G_D(p_0, p) = (4\pi c)^{-d/2}\}
$$

is a smooth regular d-dimensional manifold for almost every $c > 0$. We call such a value of c a regular value. For an arbitrary positive value of c , we put

$$
\Omega_D(p_0, c) := \{ p \in D \, ; \, G_D(p_0, p) > (4\pi c)^{-d/2} \}.
$$

For any regular value of c, the union of $\{p_0\}$ and the set in (1) is equal to $\partial\Omega_D(p_0, c)$. The set $\overline{\Omega}_D(p_0, c)$ is a compact subset of D; see [10, p. 252]. The set $\Omega_D(p_0, c)$ is called the *heat ball* and $\partial \Omega_D(p_0, c)$ the *heat sphere* (with respect to D). If c is a regular value, we put for $p \in \partial \Omega_D(p_0, c) \setminus \{p_0\}$

$$
K_D(p_0,p):=\|\nabla_x G_D(p_0,p)\|^2\|\nabla G_D(p_0,p)\|^{-1}
$$

and

$$
\mathscr{M}_D(u,p_0,c) := \int_{\partial \Omega_D(p_0,c)} u K_D(p_0,\cdot) d\sigma
$$

whenever the integral exists. Here σ denotes the surface area measure on $\partial\Omega_D(p_0, c)$. The measure $\mu_{p_0, c}^D := K_D(p_0, \cdot) \sigma$ will be called the mean value measure. If $D = \mathbf{R}^{d+1}$, the measure $\mu_{p_0,c}^D$ is called the Fulks–Pini measure; see, e.g., [1] for details.

If c_1, c_2 are regular values, $c_1 < c_2$, we put

$$
A_D(p_0, c_1, c_2) := \Omega_D(p_0, c_2) \setminus \overline{\Omega_D(p_0, c_1)}.
$$

The following result is due to N.A. Watson, [9, p. 176]; for a simpler proof, see [10, p. 253].

Theorem 1. Let u be a subtemperature on an open superset E of $A_D(p_0, c_1, c_2)$. Then there is a function φ , either finite and convex or identically $-\infty$, such that \mathbf{z}

$$
\mathscr{M}_D(u, p_0, c) = \varphi(c^{-d/2})
$$

for all regular values c in $[c_1, c_2]$.

In the case $D = \mathbf{R}^{d+1}$, the finiteness of $\mathcal{M}_D(u, p_0, c)$ was proved in [6, p. 249]. We will show that this also holds when $D \neq \mathbf{R}^{d+1}$.

First we give some preliminary results. The $*$ heat potential on D (adjoint heat potential) of a positive Radon measure μ on D is defined by

$$
^*\!G_D^{\mu}(p) := \int_D G_D(q,p)\,\mu(dq).
$$

From [3, p. 348], it follows that for every compact set $K \subset D$ there exists a uniquely determined Radon measure $^* \mu_{D,K}$ (called the ^{*} equilibrium measure for K with respect to D) such that

$$
^*\!G_D^{{}^*\!\mu_{D,K}} = {^*\!\widehat R}_1^K;
$$

here, of course, $\sqrt[n]{R_1^K}$ denotes the balayage of 1 on K with respect to D and the adjoint heat theory. The number $^*\mu_{D,K}(K)$ is called the * capacity of K (with respect to D).

If $U \subset \mathbf{R}^{d+1}$ is a set and $p_0 \in \mathbf{R}^{d+1}$, then $\varepsilon_{p_0}^U$ stands for the *balayage* of the Dirac measure ε_{p_0} concentrated at p_0 on U.

For $c > 0$, we consider the function

$$
w(p) := \min\{(4\pi c)^{-d/2}; G_D(p_0, p)\}, \quad p \in D.
$$

Lemma 1. Let $p_0 \in D$ and c be a regular value. Put $\Omega := \Omega_D(p_0, c)$ and $\nu:=\varepsilon_{p_{0}}^{\texttt{C}\Omega}.$ Then

$$
^*\!G_D^\nu = w.
$$

Lemma 2. Let $p_0 \in D$ and c be a regular value. Put $\Omega := \Omega_D(p_0, c)$. Then

$$
^*\!G_D^{\mu_{D,\overline{\Omega}}} = (4\pi c)^{-d/2}w.
$$

We omit the proofs of Lemma 1 and 2, since they differ from those of [2, pp. 472, 473] only in minor details.

Theorem 2. Let $p_0 \in D$ and c be a regular value. Put $\Omega := \Omega_D(p_0, c)$. Then

$$
\mu_{p_0,c}^D = \varepsilon_{p_0}^{\complement \Omega} = (4\pi c)^{-d/2} \, \sqrt[*]{\mu_{D,\overline{\Omega}}}.
$$

Proof. The first equality was proved in [9, p. 181]. The second one follows from the uniqueness of the representation of [∗] heat potentials, see [3, p. 305], and from Lemma 1 and Lemma 2.

In the case $D = \mathbf{R}^{d+1}$, the first equality was established by H. Bauer in [1], the second one in [2].

114 Miroslav Brzezina

Corollary. Let $p_0, p_1 \in D$ and c be a regular value. Then

 $\mathscr{M}_D\big(G_D(\cdot,p_1),p_0,c\big)=\min\{(4\pi c)^{-d/2},G_D(p_0,p_1)\}.$

Proof. By definitions we have

$$
\mathcal{M}_D(G_D(\cdot,p_1),p_0,c) = \int_D G_D(\cdot,p_1) d\mu_{p_0,c}^D = {}^*\!G_D^{\mu_{p_0,c}^D}(p_1).
$$

According to Lemma 1 and Theorem 2

$$
\mathscr{M}_D(G_D(\cdot,p_1),p_0,c)=w(p_1)=\min\{(4\pi c)^{-d/2},G_D(p_0,p_1)\}.
$$

In the case $D = \mathbf{R}^{d+1}$, the assertion of the Corollary was proved by N.A. Watson in [6, p. 248].

Now, we are in position to prove the finiteness of the mean values $\mathscr{M}_D(u, p_0, c)$ in Theorem 1.

Theorem 1'. Let u be a subtemperature on an open superset E of $A_D(p_0, c_1, c_2)$. Then there is a real-valued convex function φ such that

$$
\mathcal{M}_D(u, p_0, c) = \varphi(c^{-d/2})
$$

for all regular values c in $[c_1, c_2]$.

Proof. Let $c \in [c_1, c_2]$ be a regular value. By Theorem 1, it is sufficient to prove that $\mathscr{M}_D(u, p_0, c)$ is finite. Let V be an open superset of $\overline{A_D(p_0, c_1, c_2)}$, $\overline{V} \subset E \cap D$, \overline{V} compact. By the Riesz decomposition theorem, see [4, p. 279], there exists a finite measure μ and a temperature h on V such that $u = h - G_V^{\mu}$ V on V. According to [9, p. 168], $\mathscr{M}_D(h, p_0, c) = h(p_0)$; obviously, $h(p_0)$ is finite. Since, for all $p, q \in V$,

$$
0 \le G_V(p,q) \le G_D(p,q)
$$

we have

$$
\int_V G_V(p,q) \,\mu(dq) \leq \int_V G_D(p,q) \,\mu(dq).
$$

By Fubini's theorem and Corollary, we have

$$
\mathscr{M}_D(G_V^{\mu}, p_0, c) \le \int_V \mathscr{M}_D(G_D(\cdot, q), p_0, c) \,\mu(dq) \le (4\pi c)^{-d/2} \cdot \mu(V) < \infty. \ \Box
$$

References

- [1] Bauer, H.: Heat balls and Fulks measures. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 62–82.
- [2] Brzezina, M.: Capacitary interpretation of the Fulks measure. Exposition. Math. 11, 1993, 469–474.
- [3] Doob, J.L.: Classical potential theory and its probabilistic counterpart. Springer-Verlag, Berlin, 1984.
- [4] WATSON, N.A.: Green functions, potentials, and the Dirichlet problem for the heat equation. - Proc. London Math. Soc. (3) 33, 1976, 251–298.
- [5] Watson, N.A.: Thermal capacity. Proc. London Math. Soc. (3) 37, 1978, 342–362.
- [6] WATSON, N.A.: A convexity theorem for local mean value of subtemperatures. Bull. London Math. Soc. 22, 1990, 245–252.
- [7] Watson, N.A.: Mean values and thermic majorization of subtemperatures. Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 1991, 113–124.
- [8] WATSON, N.A.: Mean values of subharmonic functions over Green spheres. Math. Scand. 69, 1991, 307–319.
- [9] WATSON, N.A.: Mean values of subtemperatures over level surfaces of Green functions. -Ark. Mat. 30, 1992, 165–185.
- [10] Watson, N.A.: Generalization of the spherical mean convexity theorem on subharmonic functions. - Ann. Acad. Sci. Fenn. Ser. A I Math. 17, 1992, 241–255.

Received 4 August 1994