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NEGATIVELY CURVED GROUPS AND
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TRANSITIVITY IN NEGATIVELY CURVED GROUPS
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Abstract. Let G be a negatively curved group. This paper continues the classification of
limit points of G that began in part I. A probability measure is constructed on the space at infinity
and with respect to this measure almost every point at infinity is shown to be line transitive.

0. Introduction

Let Mn be a closed riemannian n -manifold with all sectional curvatures −1.
Then π1(M

n) is a discrete Möbius group acting properly discontinuously on the
universal cover Hn and conformally on the boundary Sn−1 . Since the action of
π1(M

n) is cocompact, every x ∈ Sn−1 is a point of approximation (conical limit
point) for π1(M

n) (see 2.4.9 of [Nic] for instance). Furthermore, Γ (any Cayley
graph for π1(M

n)) is quasi-isometric to Hn (see [Ca]) and so ∂Γ, the boundary
at infinity of Γ, is homeomorphic to Sn−1 . Therefore every x ∈ ∂Γ is a point of
approximation.

Weakening the above hypotheses, assume Mn is any hyperbolic manifold.
Let x ∈ Sn−1 and suppose L ⊂ Hn is an oriented hyperbolic line with x as one
endpoint. If for any b ∈ Hn there exists a sequence of distinct deck transformations
{gn} ⊂ G = π1(M

n) such that the images gnL come arbitrarily close to b , then x
is called point transitive. If for any oriented hyperbolic line L′ there are distinct gn

such that gnL → L′ preserving orientation, then x is line transitive or a Myrberg
point. Clearly, every Myrberg point is also point transitive, but the converse is
false in general (see [Sh]). Myrberg [M] first showed that for n = 2 the set of
line transitive points has full Lebesgue measure in the boundary at infinity. More
recently, Tukia has proved that in all dimensions the collection of conical limit
points that are not Myrberg points is a nullset for any conformal G measure [T].

Let G be any negatively curved (Gromov hyperbolic) group with Cayley graph
Γ and space at infinity ∂Γ. In I.3.7, the author showed that every x ∈ ∂Γ is a
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point of approximation. In this paper, almost every x ∈ ∂Γ is shown to be line
transitive. The strategy is based on an old idea due to Artin. In [A], Artin showed
that the line transitive points for the modular group SL(2,Z) are exactly those
real numbers whose continued fraction expansion contains each finite sequence of
integers. The continued fraction of a real number ξ can be obtained as the cutting
sequence of a geodesic ray R ⊂ Hn tending to ξ (see 5.4 of [Se]). In the language
of geometric group theory, a cutting sequence for R corresponds to reading the
label of an equivalent geodesic ray R′ in the Cayley graph for SL(2,Z) . Since
SL(2,Z) ≃ Z2 ∗ Z3 is nearly a free group, cutting sequences and labels of geodesic
rays are very similar [Se].

The concept of a geodesic ray containing each finite geodesic subsegment is
somewhat similar to the idea of a normal number. Recall that a real number η
is normal to base r if each block Bk of k digits occurs with frequency 1/rk . It
is well known that almost all real numbers are normal to every base (Chapter 8
[Niv] or 9.3–9.13 in [HW]). Hedlund and Morse generalized a similar concept to
strings of symbols in their paper [HM]. Given a finite set of generating symbols and
certain concatenation rules they considered infinite sequences containing a copy
of every possible finite string of symbols. Such sequences were labelled transitive.
Yet a third related subject concerns Markov chains, see [Fel]. A state (symbol,
outcome, event, etc.) is persistent if with probability one, that state will recur
(infinitely often) within the chain. This paper links all of the above.

Example 0.1. Suppose F = 〈a, b〉 is the free group of rank 2. Embed the
associated Cayley graph in H2 . Each geodesic ray represents a unique point at
infinity. Let w be a freely reduced word of length k in the generators. Emulating
the counting estimate of [Niv], consider the ratio of the number of rays (from 0)
of length nk containing w to the total number of rays of length nk . As n → ∞
this ratio tends to 1. The conclusion is that with respect to a certain natural
(Cantor) measure, almost every ray contains w , and in fact infinitely often. By
a transitive ray, I mean a geodesic ray from 0 that contains every finite geodesic
word as a subpath. Theorem 1.4 below shows that any point represented by such
a ray is line transitive (the proof of Theorem 1.4 in the case of a free group is
much simpler than what I have written). The set of all geodesic segments form a
Markov chain with four states: a, b, a−1, b−1 . A given state can be succeeded by
any state other than its inverse, with probability 1

3
. In the language of [Fel], each

state is aperiodic, persistent, and has finite mean recurrence time, i.e., all states
are ergodic.

In the case of a generic negatively curved G , relators (of perhaps arbitrarily
long length) destroy the Markov aspect and vastly complicate the counting process.
Showing that most points at infinity can be represented by an actual geodesic
transitive ray seems to be difficult in the general case; in fact it may not be true!
The difficulty is avoided by considering quasigeodesic rays.
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The reader is expected to be familiar with [Fr], the first installment of “Neg-
atively curved groups have the convergence property”. Results from that text
will be prefaced by the the roman numeral I. Section 1 deals with definitions and
preparatory material. Section 2 introduces the key simplification that reduces
everything to symbolic dynamics. In Section 3 a measure on ∂Γ and the main
theorems are established. I thank Jim Cannon for the idea behind Section 2.

1. Preliminaries

Throughout the remainder of the text, let G be a group with a fixed finite
generating set such that the inverse of each generator is also a generator. (I do
not allow the neutral element of G to be in the generating set.) Let Γ be the
Cayley graph of G with respect to the given generators. Assume that Γ has
thin triangle constant δ , boundary at infinity ∂Γ, and that G is non-elementary.
Rays, halfspaces, etc. were defined in I.1.1–I.1.11. The ball with center a ∈ Γ and
radius ρ > 0 is indicated by B(a, ρ) . For ε > 0 and ray R , the neighborhood
{a ∈ Γ : d(a, R) < ε} occurs so often that I will refer to it as the ε corridor
about R .

Exercise 1.1. Let ε > 0. If R: [0,∞) → Γ is a ray and r′, r ∈ (0,∞) with
r′ ≥ r + 2ε , then B(r′, ε) ⊂ H(R, r) .

Definition 1.2. Suppose H is a non-elementary convergence group of the
first kind (every point of X a limit point) acting on a compact Hausdorff space X .
A point x ∈ X is said to be line transitive or a Myrberg point if given any two
distinct points u, v ∈ X there exists a sequence of group elements {hn} such that

hn(x) → u and hn(y) → v for all y 6= x.

By passing to a subsequence we may suppose that the convergence is locally
uniform away from x . If G is a non-elementary negatively curved group acting
properly discontinously, cocompactly, and by isometry on a proper geodesic space
Y , then G acts as a convergence group of the first kind on X = ∂Y and the
above definition is equivalent to the following. If L is any geodesic line with one
endpoint at a Myrberg point x and u 6= v are points at infinity, then there exist
{gn} such that gnL converges to a geodesic joining u and v with gn(x) → u .
This explains the term “line transitive”. (If Y is classical hyperbolic m-space,
such a geodesic is unique, whereas in a Cayley graph there are in general many
geodesics joining a pair of points at infinity.) Definition 1.2 requires no domain
of discontinuity for G , merely a non-elementary limit set. (I have been unable to
find an analogous generalization for point transitivity.)
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Figure 1.1

Lemma 1.3. Let R, S ⊂ Γ be rays, r ∈ R , and s1 ∈ S ∩ H−(R, r) .
If s2 ∈ S ∩ H(R, r + 14δ) with s2 > s1 , then S+ ⊂ H(R, r) for the sub-ray

S+ = S
(

[s2,∞)
)

of S .

Proof. Suppose, by way of contradiction, that S exits H(R, r) after s2 (see
Figure 1.1). Let s3 be a point in S+ ∩ H−(R, r) . Then s1s3 is a geodesic
segment with both endpoints in H−(R, r) with s2 ∈ s1s3 . By Lemma I.2.4, the
halfspace H−(R, r) is quasiconvex(2δ) so d

(

s2, H
−(R, r)

)

< 2δ . On the other
hand, Lemma I.2.5 implies that d(s2, H

−(R, r) is greater than (14− 12)δ = 2δ , a
contradiction.

Theorem 1.4. Suppose x ∈ ∂Γ is represented by a ray R from 0 , and that

for every finite geodesic word, R contains a directed subpath labelled with the

given word. Then x is a Myrberg point.

Proof. Let u 6= v ∈ ∂Γ be represented by rays S, T respectively. Denote
the vertices (group elements) of S, T tending from 0 by s1, s2, . . . and t1, t2, . . . .
Given n > 0, the literal edge path t−1

n sn is almost surely not geodesic; I will abuse

notation and denote by t−1
n sn any geodesic path between the vertices tn and sn .

Using an easy thin triangles argument (see 7.5 of [G] or p. 19 of [CDP]) there is a
bound M > 0 independent of n and an intermediate point an of t−1

n sn such that
d(an, 0) ≤ M .

By hypothesis, the ray R contains t−1
n sn as a segment, meaning R =

rnt−1
n sn · · · for some initial geodesic segment rn . For each n > 0 define gn: Γ →

Γ as left multiplication by tnr−1
n . Then gn(0) = tnr−1

n , gn(rn) = tn , and
gn(rnt−1

n sn) = sn (refer to Figure 1.2). Pick any s ∈ S , t ∈ T so that both
halfspaces H(S, s) , H(T, t) are disjoint from the ball B(0, M) . Choose n so large
that sn ≥ s + 22δ and tn ≥ t + 14δ . Evidently gn(R) is a ray passing through
tn, an , and sn , in that order, where an is an intermediate point of the subsegment

t−1
n sn such that d(an, 0) ≤ M . Note that an ∈ H−(T, t) and tn ∈ H(T, t + 14δ) .

From the proof of Lemma 1.3, gn(0) = tnr−1
n ∈ H(T, t) , and by the same argu-

ment, the tail of gn(R) starting at sn lies entirely within H(S, s+8δ) . Therefore
the endpoint gn(x) ∈ D(S, s + 8δ) ⊂ D(S, s) , the last inclusion following from
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1.12 of [Sw]. This shows that gn(0) → v and gn(x) → u as n → ∞ . Use the
convergence property to find a subsequence so that gj → v locally uniformly on
Γ \ {x} .

Figure 1.2

2. Symbols, words, and quasigeodesics

For each positive integer p , let Dp denote the cover of ∂Γ by open combina-
torial disks {D(R, p) : R is a ray from 0} . Lemma 1.14 of [Sw] shows that if R, S
are rays from 0 with d

(

R(p), S(p)
)

> 18δ then the corresponding disks D(R, p) ,
D(S, p) are disjoint. Furthermore, 1.15 of [Sw] says that D(R, p) is uniquely de-
termined by the segment R

(

[p − 4δ, p + 4δ]
)

⊂ R . These two results imply that
there is some P > 0 such that for any fixed p > 4δ , the closure of a given D ∈ Dp

intersects at most P other closed disks in the collection Dp . Let {Dp}
∞

p>4δ be
such a sequence of disk covers of ∂Γ. Fix p > 7δ and for each D(R, p) ∈ Dp , let
O(R, p) denote an open subset of Γ̄ = Γ ∪ ∂Γ such that

D(R, p) ⊂ O(R, p) ⊂
[

H(R, p) ∪ D(R, p)
]

.
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Using any global metric on Γ̄ we may suppose that O(R, p) is so close (pointwise)
to D(R, p) that

D(R, p) ∩ D(S, p) = ∅ implies O(R, p) ∩ O(S, p) = ∅.

Set Op = {O(R, p)} . We may assume that p is so large that there are at least 3P
members of Op .

Lemma 2.1. The distance from any O(R, p) to 0 is at least 4δ .

Figure 2.1

Proof. It is sufficient to show that the distance from H(R, p) to the origin is
at least 4δ (see Figure 2.1). Suppose that a ∈ H(R, p) is within 4δ of 0. Then
a projects to some point b ∈ R[ p,∞) . Consider the triangle with vertices 0, a, b .
Since a is in the halfspace, the length of ab is at most 4δ =d(a, 0). A simple thin
triangles exercise (made explicit in 1.3 of [Sw]) shows that

7δ ≤ d(0, b) ≤ d(0, a) + 2δ ≤ 4δ + 2δ = 6δ

which is a contradiction.

Pick q > p so large that the complement of B(0, q) ⊂ Γ is contained in
∪Op . Assign a distinct symbol to each element in G of length q . Let Aq be the
alphabet of symbols having (reduced word) length q . Assign to each s ∈ Aq a
shortest representative word in G , or equivalently, a geodesic edge path from 0
to s in the Cayley graph. Define a formal concatenation of symbols as follows.
Let s, t ∈ Aq . The product s· t is admissible if s−1 and t , considered as edge
paths from 0 in the Cayley graph, terminate in O(R, p) , O(S, p) respectively,
with O(R, p) ∩ O(S, p) = ∅ . A word in the alphabet Aq is admissible if each
subword of length 2 is admissible. Let Wq be the set of all admissible words in
the alphabet Aq .
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Definition 2.2 (see 11.15 of [Ca]). Let N > 0, a, b, c ∈ Γ, and suppose ab, bc
are geodesic segments. Define the N -deviation of the broken geodesic segment
ab ∪ bc at b by

devN ( ab ∪ bc ) = sup
{

d(x, b), d(y, b) : d(x, y) ≤ N, x ∈ ab, y ∈ bd
}

.

The deviation is a measure of the angle at which ab and bc meet. If ab ∪ bc is
geodesic, then the N -deviation of their union is N .

Deviation Lemma 2.3. Given the collection Op , there exists d > 0 such

that for all sufficiently large q and for all s, t ∈ Aq with s· t admissible, it is true

that the 3δ -deviation of s−1 ∪ t is less than d .

Proof. Suppose the conclusion is false. Then there exists an unbounded
increasing sequence of positive integers qn with corresponding alphabets and word
sets Aqn

, Wqn
, respectively, and symbols sqn

, tqn
∈ Aqn

such that sqn
· tqn

is
admissible and

dev3δ(s
−1
qn

∪ tqn
) ≥ n.

Figure 2.2

By passing to subsequences we may assume that s−1
qn

, tqn
are represented by

edge paths that are initial substrings of the edge paths representing s−1
qn+1

, tqn+1
,

respectively, for all n . Thus the increasing unions

∪s−1
qn

and ∪ tqn

correspond to geodesic rays S , T in the Cayley graph. Given a fixed qn > 0 there
are points s ∈ S and t ∈ T with d(s, t) ≤ 3δ and (without loss of generality)
d(0, s) ≥ n (refer to Figure 2.2). Using the fact that triangle(s0t) is δ -thin it is
evident that 0s is in the 4δ corridor about T . Furthermore, d(0, t) is at least
n−3δ . Since the above argument works for arbitrarily large n it follows that S is
in the 4δ corridor about T , T is in the 4δ corridor about S , and thus S and T are
in fact equivalent rays. Evidently S and T end in the same D(R, p) ⊂ O(R, p) .
This contradicts the fact that each sqn

· tqn
is admissible.



140 Eric M. Freden

Given d from the deviation lemma fix q > max{p, 2d + 12δ} so large that
Γ \ B(0, q) is contained in the union of all the O(R, p) . Let A = Aq , W = Wq ,
O = Op denote the corresponding alphabet, set of admissible words, and collection
of open sets, respectively.

Recall that a path Q in Γ is quasigeodesic(K) if each subpath Q′ = ab of Q
having length at least K satisfies

d(a, b) ≥
( 1

K

)

length(Q′).

Corollary 2.4. There exists K > 0 such that each w ∈ W is quasigeode-

sic(K) .

Proof. By 11.16 of [Ca] and the deviation lemma, each w ∈ W is quasigeo-
desic(K) with K = q − (2d + 12δ) .

Furthermore, if a, b denote the endpoints of w as a path in Γ and ab is any
geodesic segment from a to b , then there exists some N > 0 depending only on
K and Γ such that w lies in the N corridor about ab (see 11.20 of [Ca]).

Definition 2.5. Let W∞ be the set of all infinite sequences of symbols
a0· a1· a2 · · · such that ai−1· ai is admissible for all i ≥ 1. A cylinder is a tree;
namely a set of the form

S = {a0· a1 · · ·ai· ai+1 · · · ∈ W∞ : a0· a1 · · ·ai is fixed }.

The initial fixed edges a0· a1 · · ·ai form the stem. Unless otherwise noted, all
cylinders are to be regarded as having stems based at the origin. The other end
of the stem is the branch vertex. The level of a (non-stem) vertex v in a cylinder
is the number of edges between the branch vertex and v .

Other authors define a more general cylinder, see 2.4.1 of [K]. It is not hard
to see that the cylinders form a base for a topology that makes W∞ a Cantor set.
(The reader should realize at this point that W∞ is an abstract topological space
distinct from the Cayley graph of G . There is an obvious quotient map from W∞

onto ∂Γ that will be used in the next section.) The usual middle thirds Cantor
set can be visualized as the ends of a regularly branching tree while the tree for
W∞ ostensibly branches in an irregular fashion (see Figure 2.3).

Corollary 2.4 implies that each a0· a1· a2 · · · ∈ W∞ is a quasi-ray (quasi-
geodesic ray) contained in the N corridor about some ray R . The converse is also
true.

Approximation Lemma 2.6. Given any geodesic ray R ⊂ Γ from 0 , there

exists a quasi-ray W = a0· a1· a2 · · · ∈ W∞ such that R lies inside the δ corridor

about W and W is in the δ corridor about R .
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Figure 2.3

Proof. The quasi-ray W is defined inductively. For n = 0, pick v0 to be the
unique vertex (group element) on R satisfying d(0, v0) = q . There is a symbol
a0 ∈ A which, interpreted as an edge path from 0, terminates at v0 . Assume
the string a0· a1 · · ·an−1 has been constructed. Let vn be the unique vertex on
R satisfying d(0, vn) = (n + 1)q . There is a symbol an ∈ A such that the edge
path a0· a1 · · ·an−1· an terminates at vn .

Suppose, by way of contradiction, that an−1· an is not admissible. Then
there exist O, O′ ∈ O such that a−1

n−1, an are vertices in O, O′ respectively, with
O ∩ O′ 6= ∅ . Pick b ∈ O ∩ O′ and consider any geodesic segments connecting
a−1

n−1, an with b . Note that a−1
n−1 and an are joined by a translated segment of R

passing through 0 (refer to Figure 2.4). By thinness of the triangle with vertices

a−1
n−1 , b , and an , it follows that d(0, a−1

n−1b∪ ban ) ≤ δ . Without loss of generality

suppose that d(0, a−1
n−1b) ≤ δ .
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Figure 2.4

By construction, O is contained in a halfspace H of the form H(R, p) . Using
I.2.4, the latter halfspace is quasiconvex(2δ) , meaning that the entire segment

a−1
n−1b stays within 2δ of H . Therefore the distance from the origin to the open

set O is at most δ + 2δ = 3δ . This contradicts Lemma 2.1, therefore an−1· an is
admissible.

The infinite word a0· a1· a2 · · · labels a geodesic ray in Γ which at levels
0, q, 2q, · · · coincides with the vertices 0, v0, v1, · · · of R . It is clear that the subpath
labelled by an can stray no farther than 1

2
q from R . In fact, this bound can be

improved to δ : Let vn−1, vn be the vertices on R corresponding to the endpoints
of the edge path an . The geodesic digon with vertices vn−1, vn and edges from R
and W is δ -thin.

Corollary 2.7. If w 6= w′ ∈ W , there is some a ∈ A such that w· a·w′ ∈ W .

Proof. Let s, t ∈ A denote the last symbol in w and the first symbol in w′ ,
respectively. By design, there are at most P inadmissible suffixes to s and P
inadmissible prefixes for t , but at least 3P symbols in A . Let a ∈ A be any one
of the (at least 3P − P − P = P ) symbols such that s· a· t is admissible. Then
w· a·w′ ∈ W .

The hypotheses of Theorem 1.4 may be impossible to satisfy for arbitrary
negatively curved groups. The weaker condition that x ∈ ∂Γ is represented by a
quasi-ray R′ ∈ W∞ satisfying the property that R′ contains every finite admissible
word is sufficient to guarantee that x is line transitive.

Theorem 2.8. Suppose x ∈ ∂Γ is represented by a quasi-ray R′ ∈ W∞ , and

that every w ∈ W occurs as a substring of R′ . Then x is a Myrberg point.

Proof. The proof is modelled on Theorem 1.4. Quasigeodesics behave in the
large very much like geodesics and only some of the constants need be changed.
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Figure 2.5

Let R′ = ρ1· ρ2· ρ3 · · · ∈ W∞ be any transitive quasi-ray from 0 representing x
in the N corridor about some equivalent geodesic ray R . Suppose u 6= v ∈ ∂Γ, and
let S, T be rays from 0 representing u, v respectively. Using the approximation
Lemma 2.6 there are quasi-rays σ1· σ2· σ3 · · · and τ1· τ2· τ3 · · · in the δ corridors
about S, T respectively.

By Corollary 2.7 there exist admissible quasigeodesic segments connecting
each τn to σn , considered as vertices in Γ. I will abuse notation and refer to

any such segment as τ−1
n σn . By hypothesis, the admissible quasi-ray ρ1· ρ2· ρ3 · · ·

contains τ−1
n σn as a subsegment, i.e., the quasi-ray R′ contains ρkn

· (τ−1
n σn) as

an initial segment for some ρkn
∈ W . For each n , define gn as left multiplication

by τnρ−1

kn

. Then

gn(0) = τnρ−1

kn

and gn

(

ρkn
(τ−1

n σn)
)

= σn.

Since R′ behaves very much like a geodesic, it is not hard to see that there is a
constant M > 0 independent of n and a point αn ∈ gn(R′) such that d(αn, 0) ≤
M for each n . Also there exist sn, tn in S , T respectively, such that d(sn, σn) < δ
and d(tn, τn) < δ . Clearly sn → u and tn → v as n → ∞ . Let s ∈ S and t ∈ T
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so that H(S, s) ∩ B(0, M + N) = ∅ = H(T, t) ∩ B(0, M + N) . Pick n so large
that tn > t + 2N + 16δ and sn > s + 2N + 24δ and choose rn ∈ R within N of
ρkn

= g−1
n (τn) ∈ R′ . Then gn(rn) ∈ gn(R) is within N +δ of tn ∈ T . Exercise 1.1

implies that gn(rn) ∈ B(tn, N + δ) ⊂ H
(

T, tn − 2(N + δ)
)

⊂ H(t, t + 14δ) ,
while an intermediate point of gn(R) near αn is inside B(0, M + N) ⊂ H−(T, t) .
Lemma 1.3 says the image of R between 0 and ρkn

is inside H(T, t) . Therefore
gn(0) → v .

Similar changes in constants show that a tail of gn(R) ⊂ H(S, s) . The details
are left to the reader.

Although the word space W is a groupoid rather than a group, it possesses
an automatic structure in the sense that there exists a deterministic finite state
automaton that decides if w· s ∈ W for any s ∈ A , w ∈ W . In fact all the
decision making data can be stored in a square (0, 1)-matrix M = (mij) of order
|A | , the cardinality of the q -sphere in Γ. Enumerate A = {s1, s2, . . .} . Set

mij =

{

1, if the product si· sj is admissible;
0, else.

This construction makes W a Markov chain, see pp. 2, 88 of [R] or Chapter XV
of [Fel]. Corollary 2.7 implies that the matrix M is primitive of exponent 3 (i.e.,
each entry of M3 is strictly positive). Further links between graph and matrix
theories are given in [B].

The approximation lemma implies that every point of ∂Γ is represented by
at least one quasi-ray W ∈ W∞ . The boundary at infinity is complicated by the
local interaction of relators in Γ. These difficulties can be reduced by considering
the simpler structure of W∞ .

3. Measures on W∞ and ∂Γ

There is a natural Cantor measure ν on W∞ such that ν(W∞) = 1. To each
a ∈ A let C(a) denote the number of admissible suffixes for a . If S1 ⊂ W∞ is
the cylinder of all quasi-rays with fixed initial symbol a1 , define ν(S1) = 1/|A | .
Inductively, if Sn ⊂ W∞ is the set of quasi-rays whose first n entries consist of
the fixed symbols a1 · · ·an and Sn+1 ⊂ Sn consists of those quasi-rays satisfying
the additional condition that the n+1st position contains the symbol an+1 , define

ν(Sn+1) = ν(Sn)
1

C(an)
=

(

1

|A |

)(

1

C(a1)

)

· · ·

(

1

C(an)

)

.

The cylinders of the type Sn are analogous to open intervals in the construc-
tion of Lebesgue measure on the unit interval (refer to Figure 2.3). For any Borel
set E ⊂ W∞ define ν(E ) as the infimum of

∑

ν(S ) where ∪S is any countable
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covering of E by basic open cylinders of the above types. In this way ν becomes
a non-atomic regular Borel measure on W∞ with total mass 1.

By construction of O , A , W there is a uniform upper bound of C for C(a) .
Suppose W = a1· a2· a3 · · · ∈ W∞ . For a given s ∈ A , let α2n be the probability
that the first occurrence of s in W is s = a2n−1 or s = a2n . Then the probability
that s occurs as a symbol in W is

∑

∞

n=1
α2n . Define β2n =

∑n
i=1

α2i . The claim
is that B = limn→∞ β2n is in fact 1.

Let W2n be the set of all words in W of symbolic length at most 2n . Let
U2n ⊂ W2n be those words containing s , and let V2n = W2n \U2n . By definition,
β2n = ν(U2n) .

Suppose v ∈ V2n . By Corollary 2.7, there is some a ∈ A such that v· a· s ∈
W . Hence the measure of the set of quasi-rays beginning in v and having s as
symbol 2n + 1 or 2n + 2 is at least 1/C2 times the measure of the cylinder set

S (v) = {W ∈ W∞ : W has v as initial segment}.

Consequently

α2n ≥
1

C2
ν(V2n) =

1

C2
(1 − β2n−2) ≥

1

C2
(1 − B).

But
∑

α2n ≤ ν(W∞) = 1, so that α2n ↓ 0. Therefore 1 − B = 0. This proves

Lemma 3.1. Let s ∈ A and suppose W ∈ W∞ is a quasi-ray. Then with

probability 1 , W contains s as a symbol.

Scholium 3.2. Suppose that s ∈ W . Then with probability 1 , W contains

s as a subword. (The set of all W ∈ W∞ containing s has full ν measure.)

Proof. The argument given above need only be modified slightly. Let k be
the length of s in the alphabet A . Note that if w ∈ W , then w· s is admissible as
soon as w· s1 is admissible, where s1 is the first symbol of s . Write W = w1·w2 · · ·
where each wn ∈ W consists of k + 1 symbols. Define αn as the probability that
s first appears in W as a substring of wn . The probability that s occurs in at
least one of the blocks wi is

∑

∞

n=1
αn . Let βn be the nth partial sum. As in the

previous argument, given a prefix w1·w2 · · ·wn−1 there is at least one admissible
word wn−1· a· s for some a ∈ A . Thus

αn ≥
1

Ck+1
(1 − βn−1).

If B = limn→∞ βn < 1, then just as in Lemma 3.1, αi ≥ (1 − B)/Ck+1 > 0 and
∑

αi diverges, a contradiction.
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In the language of symbolic dynamics, the measure ν makes W∞ an ergodic
Markov process with respect to the shift map that sends a quasi-ray W ∈ W∞

to the same ray less its first symbol. All the relevant information for ν can be
encoded in a symmetric doubly-stochastic matrix Π = (πij) defined by

πij =

{

1/C(ai), if mij = 1;
0, else,

where M = (mij) is the matrix of admissibility discussed at the conclusion of
Section 2.

Let f : W∞ → ∂Γ be the quotient map that identifies each quasi-ray to its
endpoint at infinity. Then f is a proper continuous surjection between compact
metric spaces. The map f induces a measure µ on ∂Γ by

µ(E) = ν
(

f−1(E)
)

for each E ⊂ ∂Γ.

From 2.2.17 of [Fed], µ is a regular Borel (Radon) measure on ∂Γ. The next
lemmas show that µ has no atoms.

Lemma 3.3. Let S ⊂ W∞ be a cylinder and m0 a positive integer. Divide

S into levels of length m0 . Throw out one branch (and its descendants) from

each subcylinder based at levels 0, m0, 2m0, 3m0, . . . . The remaining set E

satisfies ν(E ) = 0 .

Proof. First consider the case when m0 = 1 and S is a regular tree of valence
C with root at the origin, i.e., S is the entire symbol space W∞ . It is easy to see
(Figure 3.1) that the measure of the complement of E is the sum of a geometric
series.

ν(S \ E ) =
1

C
+

C − 1

C2
+

(C − 1)2

C3
+ · · · = 1

Thus ν(E ) = 0.

The deleted branches have full measure

Figure 3.1
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For m0 > 1, consider S as a regular tree of valence m0C , where initial edges
have been identified (see Figure 3.2). In terms of the measure ν , nothing has been
changed:

ν(S \ E ) =
1

m0C
+

m0C − 1

(m0C)2
+

(m0C − 1)2

(m0C)3
+ · · · = 1.

In the general case S has an initial segment, branches irregularly, but has
valence bounded by some C > 0. Omitting one branch at each m0 level results
in a set E having ν -measure less than or equal to the corresponding case of a
regular tree of valence C .

m = 1

valence 4
0

m = 2

valence 2
0

split appropriate edges

Figure 3.2

Lemma 3.4. Let ξ ∈ ∂Γ , and suppose R ⊂ Γ is a geodesic ray represent-

ing ξ . There exists N > 0 such that any quasi-ray W representing ξ lies entirely

within the N + 2δ corridor about R .

Proof. The remarks following Corollary 2.4 imply that there is some (globally
defined) N > 0 such that any quasi-ray W representing ξ lies in the N corridor
of some ray S . Clearly S represents ξ . By I.1.7 the ray S lies inside the 2δ
corridor about R .
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Lemma 3.5. Let ξ ∈ ∂Γ . There exists a positive integer m0 such that

for any geodesic ray R ending at ξ and any cylinder S whose branch vertex is

within N +2δ of R , there exists a branch of S which at level m0 is farther than

2(N + δ) from R . (Translation: any cylinder whose branch point is in the N +2δ
corridor of a ray has a branch that exits that corridor shortly. See Figure 3.3.)

Sketch of proof. Following ideas in [CS], there is a global constant m1 such
that non-equivalent geodesic rays diverge more than N +2δ from each other (and
continue to diverge) after traveling m1 units from a common vertex. There exists
a similar constant m0 ≥ m1 for which the analogous result holds for inequivalent
quasi-rays based at the same vertex (the details are left to the reader). By con-
struction every cylinder contains non-equivalent quasi-rays (in fact the f -image of
a cylinder contains some disk D(T, t) and thus has non-empty interior in ∂Γ).

corridor

cylinder
O

A branch must exit

Figure 3.3

ξ

Theorem 3.6. µ is non-atomic.

Proof. Let ξ ∈ ∂Γ be represented by a ray R . By Lemma 3.4, all quasi-
rays mapping to ξ lie in the N + 2δ -corridor about R . Let {S1, S2, S3, . . .} be
the collection of all cylinders containing f−1(ξ) . This set is countable since the
totality of all cylinders is countable. Let Si be such a cylinder. Evidently Si

has its branch vertex inside the N + 2δ corridor about R (else no quasi-ray of
Si can map to ξ by Lemma 3.4). Lemma 3.5 says that at level m0 there is a
branch of Si that exits the corridor, i.e., this branch is disjoint from f−1(ξ) . As
in Lemma 3.3, let Ei ⊂ Si be the set of those branches that remain to (possibly)
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map to ξ . Lemma 3.3 says that ν(E ) = 0. Thus

0 ≤ µ(ξ) = ν
(

f−1(ξ)
)

≤
∑

i

ν(Ei) = 0.

Main Theorem 3.7. The set of Myrberg points in ∂Γ has full µ measure.

Proof. Let E be the set of all quasi-rays in W∞ that contain every finite sub-
word. By Scholium 3.2, ν(E ) = 1, and E ⊂ f−1

(

f(E )
)

is always true. Therefore

µ
(

f(E )
)

= ν
(

f−1
(

f(E )
))

≥ ν(E ) = 1.

It is sufficient to show that each x ∈ f(E ) is a Myrberg point. Theorem 2.8 does
precisely this.

Comments and Conjectures 3.8. Michel Coornaert has recently defined
a family of quasi-conformal measures for the boundary of a Gromov hyperbolic
group [Co]. Hausdorff measure is one such example. I conjecture that µ defined
above is a quasi-conformal measure. Negatively curved groups have no parabolic
elements. Does an analog of Theorem 3.7 hold for arbitrary discrete isometry
groups of negatively curved (Gromov hyperbolic) geodesic spaces? Myrberg points
are defined topologically (Definition 1.2) whereas my methods are geometric. Does
Theorem 3.7 depend on the geometry of the Cayley graph or is there a topological
proof, in particular, does Theorem 3.7 hold for convergence groups of the first
kind?
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