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Abstract. We introduce a natural construction of fundamental domains for actions of sub-
groups of the mapping class group on Teichmüller space and investigate their properties. These
domains are analogous to the classical Dirichlet polyhedra associated to the actions of discrete
isometry groups on hyperbolic spaces.

1. Introduction

In the study of the action of the mapping class group on Teichmüller space
(or on Thurston’s compactification of Teichmüller space by the sphere of projec-
tive measured laminations), one expects that the actions of this group and of its
subgroups will exhibit many of the interesting properties of the actions of discrete
groups acting by isometries on a hyperbolic space (a simply connected space with a
Riemannian metric of constant negative curvature), and its natural compactifica-
tion by the sphere at infinity. This reason, of course, is parallel to our motivation
for studying, in [MP], the dynamics of the actions of subgroups of the mapping
class group on Thurston’s sphere.

In this paper, as in [MP], we develop this line of thought. Specifically, we dis-
cuss a natural construction of fundamental domains in Teichmüller space, which
are analogous to the Dirichlet polyhedra of the setting of hyperbolic manifolds
(which we shall call henceforth the classical setting). It is well known that the
actions of subgroups of the mapping class groups are properly discontinuous. In-
deed, in [MP], we prove a stronger result. Namely, we can define a useful notion
of a limit set for the natural extensions of these actions to Thurston’s compact-
ification of Teichmüller space, and the actions are properly discontinuous on the
complement of the limit set, up to a set of measure zero on the boundary sphere.
Again, this result has a direct analogy in the classical setting [Th] (without the
clause concerning the set of measure zero). Our aim here is not to develop the
proper discontinuity. Rather, we wish to study these “Dirichlet polyhedra”.

The outline of the paper is as follows.
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In Section 2, we establish notation and recall some preliminary facts from the
theory of measured foliations on a surface, Teichmüller spaces and mapping class
groups, which will be used in the subsequent text.

In Section 3, we give the definition of the term “fundamental domain”, which
is in the same spirit of the one used for example by Beardon in his book [Be]. We
then define a domain D in Teichmüller space which is associated to the action
of a subgroup Σ of the mapping class group of the surface. As in the classical
setting, this domain is defined in terms of equidistant loci and their associated
halfspaces. It is well known that there are several metrics that one can define
on Teichmüller space (e.g. Teichmüller metric, Weil–Petersson metric, Thurston’s
stretch metric). Each one of these metrics is natural from some given point of
view. The one that we use is the Teichmüller metric, which has been extensively
studied. In particular, we shall use a fact established by Earle [Ea] concerning the
differentiability of the Teichmüller distance.

In Section 4, we study the equidistant loci and the associated halfspaces.
We establish that an equidistant locus is a hypersurface separating Teichmüller
space into two contractible halfspaces. In addition, we show that any two distinct
equidistant loci intersect transversely.

In Section 5, we study the domains referred to above. We establish the fact
that these domains are fundamental domains. Finally, we discuss the extent to
which our domains share the properties of the classical Dirichlet polyhedra.

Let us insist on the fact that the definition of the fundamental domains is
classical; the point here is that we are studying such a domain in the context of
Teichmüller space, which is not a Riemannian manifold.

This work was done while the authors were visiting the Max-Plank-Institut
für Mathematik (Germany), which they thank for its support.

2. Preliminaries

Let S be a finite type surface of negative Euler characteristic which is not
homeomorphic to a pair of pants (that is, a sphere with three punctures), and let
Γ be the mapping class group of S . Σ will denote an arbitrary subgroup of Γ,
and Σ∗ will denote the subset of nontrivial elements in Σ.

The Teichmüller space T of S is the space of conformal structures on S up to
conformal automorphisms which are isotopic to the identity. By the uniformization
theorem, we may also consider T as the space of hyperbolic metrics on S up to
isometries which are isotopic to the identity. For simplicity, we only consider
conformal structures on S in which the ends of S are conformally isomorphic to
punctured discs. From the geometric point of view, this means that we assume that
the ends of S are cusps in the corresponding hyperbolic metrics. The mapping
class group Γ acts in a natural way on T by the pullback construction.

Teichmüller space has a natural topology in which it is homeomorphic to an
open ball of dimension 6g−6+2e where g is the genus of S and e is the number
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of punctures of S . This topology may be defined by the Teichmüller metric ̺ , a
complete metric with respect to which the mapping class group acts as a group of
isometries. This metric is not Riemannian. Nevertheless, it provides some of the
geometry one associates to Riemannian metrics and in fact, it behaves in some
respects better than a generic Riemannian metric. We are particularly interested
in the following features of ̺ .

First of all, as shown by Kravetz [Kr], (T , ̺) is a straight G-space in the sense
of Busemann ([Bu], [Ab]). In particular, any two distinct points in T , m and n ,
are joined by a unique geodesic segment (i.e. an isometric image of a Euclidean
interval), [m,n] , and lie on a unique geodesic line (i.e. an isometric image of R),
γ(m,n) . This fact is based on Teichmüller’s Theorem and the following result.

Proposition 2.1. Let m , n and p be points in T . If ̺(m,n) + ̺(n, p) =
̺(m, p) , then n lies on [m, p] .

Proof. See [Ab, p. 122] for a proof based on Teichmüller’s theorem.
As a corollary, we have the following well-known fact which will be useful for

us:

Proposition 2.2. Let g be a nontrivial isometry of (T , ̺) . Then the fixed

point set of g is nowhere dense.

Proof. The fixed point set F of g is obviously closed. Hence, it suffices to
show that F has empty interior. Suppose, on the contrary, that g fixes a nonempty
open set U . Let m be a point in U and n be in T . By assumption, g fixes a
neighborhood of m in T and, hence, in γ(m,n) . By uniqueness of geodesics, g
preserves the line γ(m,n) . But an isometry of a line which fixes an open interval
is the identity. Hence, g fixes n . Since n was arbitrary, g is the identity. This is
the desired contradiction.

We obtain as a corollary the following (also well known) fact which we shall
be using:

Corollary 2.3. There exists a point m0 in T whose stabilizer in Γ is trivial.

Proof. Since Γ is a countable group, this follows immediately from the Baire
category theorem for complete metric spaces.

Choose a point m in T . Let ̺m denote distance from m in T .

(2.1) ̺m : T → R , x 7−→ ̺(x,m) .

We shall be interested in the variation of this function. In order to describe
this variation, we must discuss the cotangent space of T at x . We use the
notations of [Ea]. Let X be a Riemann surface representing x . The cotangent
space to T at x is canonically the vector space Q(X) of integrable holomorphic
quadratic differentials on X with the norm, ‖ϕ‖ =

∫

|ϕ|/2. It is an easy exercise
to establish that this norm is strictly convex.
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The norm actually defines a continuous function on the cotangent bundle
f : E → T . Let E0 denote the open set of cotangent vectors of length less than
one. If ϕ in E0 is a cotangent vector at x , (i.e., a quadratic differential on X ), the
Teichmüller differential ‖ϕ‖ϕ/|ϕ| on X determines a point g(ϕ) in T . Indeed,
this construction gives an “exponential” map Ωx from the unit ball Q0(X) in
Q(X) to T .

Theorem 2.4 (Teichmüller). The map Ωx: Q0(X) → T is a homeomor-

phism which maps rays in Q0(X) to geodesic rays in T emitting from x .

Earle improved upon Teichmüller’s result:

Theorem 2.5 ([Ea]). The map Ω: E0 → T × T is a homeomorphism.

Let F : T ×T → E0 denote the inverse of Ω. Earle computed the differential
of ̺m in terms of F .

Theorem 2.6 ([Ea]). Let m be a point in T . Then ̺m is a C1 function

on T \ {m} and its differential is the map x 7→ −F (x, y)/‖F (x, y)‖ .

Let Q1(X) be the unit sphere in Q(X) . If y is a point on a geodesic ray
in T emitting from x which is the image under Ωx of a ray {tϕ : 0 ≤ t < 1} in
Q0(X) for ϕ in Q1(X) , we shall say that ϕ points in the direction of y . From
the definition of the map Ω, we can describe the differential at x .

Corollary 2.7. The differential of ̺m at x is the unique unit norm quadratic

differential on X which points in the direction opposite to m .

This description is what one would expect for a Riemannian metric. The
gradient of the distance function measured from m ought to be tangent to the
field of geodesic rays emitting from m . Earle’s result confirms this intuition.

Let S denote the set of isotopy classes of unoriented, connected and ho-
motopically nontrivial simple closed curves on S which are not homotopic to a
puncture of S . The geometric intersection function i( , ) on S ×S is defined by
the rule:

(2.2) i(α, β) = min{cardinality(a ∩ b) | a ∈ α, b ∈ β} .

Γ acts on S in a natural way. This function is clearly symmetric and Γ-invariant.
The action of Γ on S is a faithful action provided that S is not a closed

surface of genus two, a torus with one puncture or a sphere with four punctures.
In each of these cases, the kernel of the action is a cyclic subgroup of order two.
(These are the only nontrivial maps of surfaces of finite type and negative Euler
characteristic which preserve every element of S .) We say that the involution is
hypergeometric.

(2.3) If g is an element of Γ which fixes every simple closed curve in S , then g
is either the identity or the hypergeometric involution of a closed surface of
genus two, a torus with one puncture or a sphere with four punctures.
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By associating to each element α of S the length l(m,α) of the correspond-
ing geodesic on X , we obtain a length function, which is evidently Γ-invariant:

(2.4) l(gm, gα) = l(m,α) for all g ∈ Γ , m ∈ T , α ∈ S .

We may choose a finite family A of simple closed curves in S such that the
elements of S are parametrized by their geometric intersection with A :

(2.5) If i(β, α) = i(γ, α) for all α ∈ A , then β = γ .

We shall say that A is a coordinate system.
The Γ-invariance of i implies that Γ acts on coordinate systems. The stabi-

lizers of this action are finite.

Proposition 2.8. Let A be a coordinate system. The stabilizer of A in Γ
is a finite group.

Proof. There is, of course, a subgroup Σ of finite index in the stabilizer which
fixes every element of A . It suffices to show that Σ is finite. Suppose that g is
an element of Σ. Then:

(1) i(α, g−1β) = i(gα, β) = i(α, β) for each β ∈ S , α ∈ A .

By the definition of a coordinate system, it follows that g−1 fixes every curve β
in S . By (2.3), g is either the identity or the hypergeometric involution on S (in
the special cases). Hence, Σ is of order at most two.

As an immediate consequence, we have:

(2.6) Let A and B be coordinate systems. There are at most finitely many map-

ping classes taking A to B .

Suppose that {gn} is an infinite sequence of distinct mapping classes. Let A

be a coordinate system. By (2.6), the collection of coordinate systems {gn(A )}
must be infinite (though not necessarily distinct). Hence, for some curve α in
A , {gn(α)} must also be infinite. By the definition of a coordinate system, the
geometric intersection of these curves with A must be unbounded. Therefore:

(2.7) For any infinite sequence of distinct mapping classes {gn} , there exists a pair

of simple closed curves, α and β , such that the sequence {i(gn(α), β)} is

unbounded.

There is a useful inequality relating geometric intersection and length.

Lemma 2.9 ([FLP]). Let m be a point in T . There is a constant C ,

depending only on m , such that, for every pair, α and β , of simple closed curves

in S , one has i(α, β) ≤ Cl(m,α)l(m, β) .

There is another important inequality, due to Wolpert, relating the length
function to the Teichmüller metric.

Theorem 2.10 ([Wo]). Assume m and n are points in T and α is in S .

Then l(n, α) ≤ e̺(m,n)l(m,α) .
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From this inequality and the previous remarks, we may deduce the proper
discontinuity of the Γ-action (and, hence, of the Σ-action).

Theorem 2.11. Γ acts properly discontinuously on T .

Proof. Suppose that K is a compact subset of T . We wish to show that there
are only finitely many mapping classes g in Σ such that the intersection g(K)∩K
is nonempty. Suppose, on the contrary, that there is an infinite sequence {fn} of
distinct mapping classes such that, for every n , fn(K) ∩K is nonempty.

Since K is compact, it has a bounded diameter d . Let m be a point in K .
Since K meets fn(K) :

(1) for every n , ̺(m, fn(m)) ≤ 2d .

If we consider the sequence of mapping classes {gn} , where gn = f−1
n , we may

apply (2.7) to choose simple closed curves, α and β , such that
{

i
(

gn(α), β
)}

is
unbounded. By (2.4) and Lemma 2.9:

(2) {l(fn(m), α)} =
{

l
(

m, gn(α)
)}

is unbounded.

On the other hand, by Theorem 2.10:

(3) l
(

fn(m), α
)

≤ e̺(m,fn(m))l(m,α) .

Clearly, (1), (2) and (3) give the desired contradiction.

3. Fundamental domains

As in Beardon [Be], we define a fundamental domain for the action of Σ on
T as follows. A fundamental set for Σ is a subset of T which contains exactly
one point from each orbit in T . A domain in T is an open subset in T which
is homeomorphic to a ball. A fundamental domain for the action of Σ on T is a
subset D of T which satisfies the following three properties:

(3.1) D is a domain in T ,

(3.2) there is a fundamental set, F , with D ⊂ F ⊂ D ,

(3.3) ∂D is a connected, properly embedded locally flat submanifold of codimension

one in T .

We say that the fundamental domain D is locally finite if the following property
is also satisfied:

(3.4) Every compact subset of T meets only finitely many images of D under

elements of Σ .

Note: This is not the same definition of a fundamental domain as used in [Ma]
or [MP]. The present notion is more precise.

We shall now proceed with the construction of a fundamental domain D
for Σ. In the subsequent sections, we shall establish that D is a locally finite
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fundamental domain for Σ which is, in some sense, a polyhedron. (We shall be
more precise below.)

For the remaining discussion, choose a point m0 , as in Corollary 2.3, which
is not fixed by any element of Σ∗ . Our domain shall be defined exactly as in the
classical setting. Hence, we shall be comparing distances.

For each g in Σ∗ , we have the equidistant locus from m0 to gm0 :

(3.5) Lg(m0) = {m ∈ T | ̺(m,m0) = ̺(m, gm0)} .

Note that the stabilizer of gm0 is also trivial and:

(3.6) Lg(m0) = Lg−1(gm0) .

We shall denote the set of points closer to m0 as:

(3.7) Hg(m0) = {m ∈ T | ̺(m,m0) < ̺(m, gm0)} .

The remaining points in T are denoted as:

(3.8) Eg(m0) = Hg−1(gm0) .

We shall refer to Hg(m0) as a half space centered at m0 and to Eg as the exterior

halfspace to m0 . (Of course, if we replace m0 by gm0 , then Eg is a halfspace
centered at gm0 and Hg is exterior to gm0 .)

The Dirichlet polyhedron for Σ centered at m0 , D(m0) , is defined by:

(3.9) D(m0) = ∩{Hg(m0) | g ∈ Σ∗} .

The closed Dirichlet polyhedron for Σ centered at m0 , ∆(m0) , is defined in a
similar way:

(3.10) ∆(m0) = ∩{Hg(m0) | g ∈ Σ∗} .

The standard argument involving invariance of distance demonstrates that
these sets are natural in the following sense:

(3.11) h
(

D(m0)
)

= D
(

h(m0)
)

for all h ∈ Σ ,

(3.12) h
(

∆(m0)
)

= ∆
(

h(m0)
)

for all h ∈ Σ .

4. Equidistant loci and halfspaces

We shall need to consider the closed halfspaces. The following fact is central
to our discussion.

Lemma 4.1. Suppose that m lies on Lg . Then the half-closed interval

[m0, m) is contained in Hg(m0) .

Proof. Suppose that Lg(m0)∩ [m0, m) is nonempty. Let n be a point of this
intersection. Then:

(1) ̺(m0, n) + ̺(n,m) = ̺(m0, m) ,

(2) ̺(m0, n) = ̺
(

g(m0), n
)

.

On the other hand, since m is in Lg :
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(3) ̺(m0, m) = ̺
(

g(m0), m
)

.

Thus, we conclude that:

(4) ̺
(

g(m0), n
)

+ ̺(n,m) = ̺
(

g(m0), m
)

.

By Proposition 2.1, n lies on [m0, g(m0)] . Clearly, n is not one of the end-
points of this interval. Hence, by uniqueness of geodesics, it follows that:

(5) γ(m0, m) = γ(m0, n) = γ(m0, gm0) .

Now, γ(m0, gm0) is isometric to the real line with the standard metric. The
points m and n are each equidistant from the distinct points of this line, m0 and
gm0 . Clearly, this implies that m is equal to n . This is impossible, since n lies
on [m0, m) .

Therefore, [m0, m) is contained in the complement of Lg(m0) . The sets,
Hg(m0) and Eg(m0) , form a separation of this complement. Since [m0, m) is
connected and m0 is in Hg(m0) , [m0, m) is contained in Hg(m0) .

Corollary 4.2. Suppose that m lies on Lg . Then the half-open interval

from gm0 to m is contained in Eg(m0) .

Proof. This is immediate from (3.6), (3.8) and Lemma 4.1.

These results yield the desired description of the closed halfspaces.

Corollary 4.3.

(a) Hg(m0) = Hg(m0) ∪ Lg(m0) = {m ∈ T | ̺(m,m0) ≤ ̺(m, gm0)} ,

(b) Eg(m0) = Eg(m0) ∪ Lg(m0) = {m ∈ T | ̺(m, gm0) ≤ ̺(m,m0)} ,

(c) ∂Hg = ∂Hg = Lg = ∂Eg = ∂Eg ,

(d) Hg = int (Hg) and Eg = int (Eg) .

Suppose that m is an element of a subset K of T . We say that K is starlike

at m if, for every point n in K , the geodesic segment from m to n is contained
in K .

It is not clear whether the halfspaces are geodesically convex. This seems
unlikely, except for the case of genus one and one puncture, where it is true, due
to the fact that Teichmüller space with the Teichmüller metric is the hyperbolic
plane. We shall be using the following weaker result:

Proposition 4.4. Hg and Hg are starlike at m0 .

Proof. In view of Lemma 4.1 and Corollary 4.3(a), it suffices to show that
Hg is starlike at m0 . To this end, let m be a point in Hg(m0) . Suppose [m0, m]
intersects Lg(m0) . Since Lg is closed and the interval is compact, we can choose
n in [m0, m] such that:

(1) n ∈ Lg(m0) and (n,m] ⊂ Hg(m0) ∪ Eg(m0) .

By Lemma 4.1 and the connectedness of (n,m] , we conclude that:
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(2) [m0, n) ∪ (n,m] ⊂ Hg(m0) .

Observe that we have shown that, for every point p in Hg , the geodesic segment
from p to m0 is contained in Hg . Now consider the exponential map at m0 :

(3) Ω0: Q(M0) → T .

Let ϕ be the preimage of m , Ω0(ϕ) = m . There exists a real number s such that
0 < s < 1 and Ω0(sϕ) = n .

Choose an open neighborhood U of ϕ such that Ω0(U ) is contained in Hg .
The punctured cone on U :

(4) C (U ) = {tψ | 0 < t < 1, ψ ∈ U }

forms an open neighborhood of sϕ in Q(M0) . By the observation above and
Theorem 2.4, Ω0

(

C (U )
)

is an open neighborhood of n which is contained in Hg .

Since n is in Lg , Corollary 4.3(c) implies that Ω0

(

C (U )
)

meets Eg . This gives
the desired contradiction.

This allows us to sharpen the assertion of Lemma 4.1:

Lemma 4.5. Suppose that m lies on Lg . Let r(m0, m) be the geodesic ray

from m0 through m . Then:

(a) r(m0, m) ∩Hg(m0) = [m0, m) ,

(b) r(m0, m) ∩ Lg(m0) = {m} ,

(c) r(m0, m) ∩Eg(m0) = r(m0, m) \ [m0, m] .

Proof. By Lemma 4.1 and the hypothesis:

(1) [m0, m) ⊂ r(m0, m) ∩Hg(m0) ,

(2) {m} ∈ r(m0, m) ∩ Lg(m0) .

In particular, each point in the closed interval [m0, m] is contained in Hg(m0) .
Suppose n is contained in a point on the ray which is not on this closed

interval. Then m is in the half-closed interval [m0, n) . Hence, by Lemma 4.1, n
is not in Lg . Likewise, by Proposition 4.4, n is not in Hg . Thus:

(3) r(m0, m) \ [m0, m] ⊂ r(m0, m) ∩Eg(m0) = r(m0, m) .

Since Hg , Lg , and Eg are disjoint, the result follows immediately.

Note: One does not need the full thrust of Theorem 2.4 for the proof of Propo-
sition 4.4. An argument based on Corollary 4.3(c) and convergence of sequences
of geodesics ([Bu, Chapter 1, (8.14)]) would lead to the same contradiction.

Let δg denote the difference ̺gm0
− ̺m0

of the distance functions, ̺gm0
and

̺m0
. Let Jg = γ(m0, gm0) \ [m0, gm0] .

Lemma 4.6. δg is nonsingular exactly on the complement of Jg in T .

Proof. By Corollary 2.7, δg is singular at m if and only if m0 and gm0 are
on the same ray from m .
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Proposition 4.7. Lg is a connected, properly embedded C1 -submanifold of

codimension one in T .

Proof. Since Lg is closed, it is properly imbedded.
Clearly, no point of Lg lies on Jg . Hence, by the implicit function theorem,

Lg is a C1 -submanifold of codimension one in T . In particular, Lg is bicollared
in T . (Alternatively, one can use the rays from m0 through Lg to define a global
bicollar on Lg .)

Teichmüller space is contractible. By Proposition 4.4, Corollary 4.3 and (3.8),
so are Hg and Eg . Since Lg is bicollared, a direct application of the Mayer–
Vietoris sequence shows that Lg has the homology of a point. In particular, Lg

is connected.

Proposition 4.8. If g and h are distinct elements of Σ , then Lg ∩ Lh is

either empty or a properly embedded submanifold of codimension 2 .

Proof. Let x be a point in Lg ∩ Lh . By the implicit function theorem, it
suffices to show that the differentials at x of the functions δg and δh are linearly
independent.

Let α be the unit norm quadratic differential at x pointing in the direction of
m0 , and β1 (respectively β2 ) the unit norm quadratic differential at x pointing in
the direction of gm0 (respectively hm0 ). Since the points m0 , gm0 and hm0 are
distinct points in T at equal distances from x , the rays from x to these points
are distinct. Hence, the unit norm differentials, α , β1 , and β2 , are distinct.

By Corollary 2.7, the differential at x of δg (respectively δh ) is equal to α−β1

(respectively α−β2 ). Hence, if these differentials were linearly dependent, α , β1 ,
and β2 would be affinely dependent. That is, they would lie on a common line
(not necessarily passing through the origin). Since they are distinct unit vectors
in Q(x) , this would contradict the strict convexity of the unit sphere in Q(x) .

We shall now prove some lemmas which will be used in establishing the poly-
hedral nature of D as well as in the proof that D is a locally finite fundamental
domain.

Lemma 4.9. Let m be a point in T and {gn} be an infinite sequence of

distinct mapping classes in Σ . Then the sequence of real numbers {̺(m, gnm0)}
is unbounded.

Proof. The argument is implicit in the proof of proper discontinuity, Theo-
rem 2.11.

Lemma 4.10. For any compact set K in T , the set {g ∈ Σ | K is not

contained in Hg(m0)} is finite.

Proof. Suppose, for the sake of contradiction, that there exists an infinite
sequence {gn} of distinct mapping classes in Σ such that for every n we have
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K ∩ Egn
(m0) 6= φ . Choose a sequence of points, {mn} , such that mn is an

element of K ∩Egn
(m0) . Let m be an accumulation point of the sequence {mn}

in K . By taking a subsequence, we can assume that mn converges to m . As mn

lies in Egn
(m0) , we have, for every n :

(1) ̺(mn, gnm0) ≤ ̺(mn, m0).

Let ε be a positive real number. Since mn converges to m , there exists an
integer n0 such that, for every n ≥ n0 , the following two properties hold:

(2) ̺(mn, m0) ≤ ̺(m,m0) + ε ,

(3) ̺(m,mn) ≤ ε .

By using the triangle inequality, we have:

(4) for all n ≥ n0 , ̺(m, gnm0) ≤ ̺(m,m0) + 2ε ,

which shows that the sequence {̺(m, gnm0)} is bounded. This contradicts
Lemma 4.9.

The following corollary is an immediate consequence of the previous lemma.

Corollary 4.11. For any compact set K in T , the set {g ∈ Σ | K∩Lg(m0) 6=
φ} is finite.

5. The structure of the fundamental domain

The following few results give some information on the topology of D and ∆.

Proposition 5.1. m0 is in the interior of ∆ .

Proof. Let K be a compact neighborhood of m0 in T . By Lemma 4.10,
there is a finite subset F of Σ such that:

(1) for each g ∈ Σ \ F , K ⊂ Hg(m0) .

For each element g in F , let Kg denote the intersection K ∩Hg . Since Hg

is open, Kg is a neighborhood of m0 in T . The intersection (over all g in F ) of
the sets {Kg} is a neighborhood of m0 in T which is contained in ∆.

Proposition 5.2. interior (∆) = D and ∆ = D .

Proof. Let m be a point in the interior of ∆. In particular:

(1) for every g ∈ Σ∗ , ̺(m,m0) ≤ ̺(m, gm0) .

If, for some g in Σ∗ , equality held, then m would be on Lg(m0) . By Corol-
lary 4.3(c), interior (∆), being a neighborhood of m , would contain a point n
satisfying the strict inequality, ̺(n,m0) > ̺(n, gm0) , which is impossible since
interior (∆) is contained in ∆. Therefore, m is in D .

Conversely, let m be a point in D . By Lemma 4.10, we can find an open ball
U containing m and a finite subset F of Σ such that, for each g in Σ \ F , U is
contained in Hg(m0) . For each g in F , m is in Hg , which is open. Let Ug be
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equal to U ∩Hg . The intersection of the sets {Ug} (over all g in F ) is an open
neighborhood of m contained in ∆. Hence, m is in the interior of ∆. This proves
the first assertion.

For the second assertion, we know that D is contained in ∆, because ∆ is
closed. Let us prove that ∆ is contained in D .

Let m be a point in ∆. By definition, for each g in Σ∗ , we have:

(2) m ∈ Hg(m0) or m ∈ Lg(m0) .

Consider the geodesic segment [m0, m] between m0 and m . By Lemma 4.1 and
Proposition 4.4, (2) shows that, except possibly for its endpoint m , this segment
is contained in D . Therefore, m is contained in D .

Since intersections of sets which are starlike at m0 are starlike at m0 , we
have an immediate corollary of Proposition 4.4.

Proposition 5.3. D(m0) and ∆(m0) are starlike at m0 .

With this, we may deduce the following analogue for ∂D of Proposition 4.7
(without the smoothness property). The proof follows the same plan as the proof of
this previous proposition. (Note the remark in the proof concerning an alternative
argument for the existence of a bicollar.)

Proposition 5.5. ∂D is a properly embedded, locally flat submanifold of

codimension one in T .

Let us recall that the property of being locally flat means the existence (lo-
cally) of a bicollar, that is, ∂D looks locally like Rn sitting in Rn+1 . Of course,
this topological definition allows for corners, as in the classical case.

The next two lemmas imply the existence of a fundamental set satisfying
(3.2).

Lemma 5.6. For any point m in T , the Σ -orbit of m intersects D(m0) in

at most one point.

Proof. Suppose that g1(m) and g2(m) are distinct points in D , where g1
and g2 are elements of Σ. Clearly, g1 and g2 are distinct. Hence, the assumption
that g1 is in D(m0) implies that:

(1) ̺(g1m,m0) < ̺(g1m, g1g
−1
2 m0) = ̺(m, g−1

2 m0) = ̺(g2m,m0) .

Similarly, since g2m is in D :

(2) ̺(g2m,m0) < ̺(g1m,m0) .

This gives the desired contradiction.

Lemma 5.7. For any element m of T , there exists a mapping class h in Σ
such that m is in ∆(hm0) .
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Proof. Suppose, on the contrary, that m is not in ∆(hm0) for any h in Σ.
Then we can find an infinite sequence {gn} of distinct mapping classes such that:

(1) · · · < ̺(m, g2m0) < ̺(m, g1m0) < ̺(m,m0) .

This implies that the sequence of real numbers {̺(m, gnm0)} is bounded, in con-
tradiction to Lemma 4.9.

The next result follows from Lemma 4.10.

Proposition 5.8. For any compact set K in T , the set {g ∈ Σ | K ∩
∆(gm0) 6= ∅} is finite.

Proof. If g is not the identity, then, by the definition of ∆(gm0) , (3.6), (3.8)
and Corollary 4.3, we have:

(1) ∆(gm0) ⊂ Hg−1(gm0) = Eg(m0) .

Again, by Corollary 4.3, the result follows immediately from Lemma 4.10.

We have established all the necessary facts to deduce the main result.

Theorem 5.9. D is a locally finite fundamental domain for the action of Σ
on T .

Proof. Condition (3.1) is implicit in Propositions 5.2 and 5.3, (3.2) in Propo-
sition 5.2 and Lemma 5.7, (3.3) in Proposition 5.5 and (3.4) in Proposition 5.8.

We shall close with a brief discussion of the polyhedral nature of D .
By Proposition 5.2, every point of ∂D lies on at least one hypersurface

Lg(m0) . On the other hand, by Corollary 4.11, every point in T lies on at
most finitely many such hypersurfaces (for a fixed m0 ). We shall say that a point
of ∂D lies on a face of D (or of ∆) if it lies on exactly one hypersurface. If g is
an element of Σ, the g -face Fg(m) of D is the set of points of ∂D which lie only
on the hypersurface Lg(m0) . (Therefore, m is on a face of D if and only if, for
some g in Σ, m is on Fg .)

Suppose that x is a point in T and n is in the Σ-orbit of m0 . We say that
x is closest to n if ̺(x, n) is less than or equal to ̺(x, hm0) for all h in Σ.

Proposition 5.10. Let x be a point in T . Then x is on Fg(m0) if and

only if x is closest to exactly two points of the Σ -orbit of m0 , m0 and gm0 .

Proof. Given Proposition 5.2, the proof is a trivial exercise in the definitions.

Corollary 5.11. Fg(m0) = Fg−1(gm0) .

Corollary 5.12. Fg(m0) ⊂ ∆(m0) ∩ ∆(gm0) ⊂ Lg(m0) .

Corollary 5.13. Let x be a point of ∆(m0)∩∆(gm0) . Then x is on a face

of D(m0) if and only if x is on a face of D(gm0) . If x is on a face of D(m0) ,
then x is on Fg(m0) .
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We observe that, in particular, the property of being “on a face” is indepen-
dent of which copy of D we consider. This, of course, is a property we would ask
of any reasonable notion of a tesselation.

Proposition 5.14. There exists an element g of Σ such that Fg(m0) is

nonempty.

Proof. This follows immediately from Propositions 4.8 and 5.5. We shall,
however, give more explicit information.

Let g be an element of Σ∗ such that m0 is closest to gm0 which, according
to the definitions, means the following:

(1) ̺(m0, gm0) ≤ ̺(m0, hm0) for all h in Σ .

Let m be the midpoint of [m0, gm0] . Suppose that m is not closest to m0 :

(2) ̺(m, hm0) < ̺(m,m0) for some h in Σ .

Then, by the triangle inequality:

(3) ̺(m0, hm0) ≤ ̺(m0, m) + ̺(m, hm0) < 2̺(m0, m) = ̺(m0, gm0) .

This contradicts the choice of g . Hence, m is closest to m0 :

(4) ̺(m,m0) = ̺(m, gm0) ≤ ̺(m, hm0) for all h in Σ .

Thus, by Proposition 5.2, m is in ∂D ∩ Lg .
Suppose that m lies on another hypersurface Lh . Since m0 , gm0 and hm0

are distinct points equidistant from the midpoint of [m0, gm0] , hm0 does not lie
on γ(m0, gm0) . Hence, by Proposition 2.1:

(5) ̺(m0, hm0) < ̺(m0, m) + ̺(m, hm0) = ̺(m0, gm0) .

Again, this contradicts the choice of g . Therefore, m lies on exactly one hyper-
surface Lg(m0) . This shows that m is in Fg(m0) .

Proposition 5.15. Fg is an open subset of ∂D .

Proof. Suppose that m is on Fg(m0) . By Lemma 4.10, we may choose a
neighborhood U of m and a finite subset F of Σ such that U is contained in
Hh(m0) for all h in Σ \ F . For each element h of F \ {g} , let Uh denote the
intersection U ∩Hh . Since m is in ∆ and lies on only one hypersurface Lg , Uh is
an open neighborhood of m for each such h . The intersection V of the sets {Uh}
(over h in F \ {g}) is an open neighborhood of m which is contained in Hh(m0)
for all h in Σ \ {g} . The intersection of V with ∂D gives a neighborhood of m
in ∂D entirely contained in Fg .

Proposition 5.16. The union of the faces of ∂D is a dense open subset

of ∂D .

Proof. The complement of this union consists of points which, by Propo-
sition 4.8 and Corollary 4.11, lie on a locally finite union of codimension one
submanifolds of ∂D . This set is closed and nowhere dense. Hence, the union is a
dense open subset.
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We note that the structure which we have developed is sufficient to deduce
that the group Σ is generated by face pairing transformations. We say that an
element g of Σ is a face pairing transformation of D(m0) if Fg(m0) is nonempty.
By Proposition 4.8, Corollary 5.12 and Proposition 5.15, this amounts to the
assertion that ∆(m0) ∩ ∆(gm0) has nonempty interior in ∂D(m0) .

Theorem 5.17. Σ is generated by the face pairing transformations of

D(m0) .

Proof. The proof is analogous to one that can be done in the case of discrete
isometry groups acting in hyperbolic spaces:

Let h be an element of Σ. Clearly, m0 is in D(m0) and hm0 is in D(hm0) .
Let α be a path in T from m0 to hm0 . By Propositions 5.1, 5.2, 5.5 and 5.8,
we may assume that, for all g in Σ, α is transverse to ∂D(gm0) and intersects
∂D(gm0) only in points on faces of D(gm0) .

As we traverse α , we encounter various copies of our domain:

(1) D(him0) , 0 ≤ i ≤ n ,

such that:

(2) h0 = 1 and hn = h ,

(3) ∅ 6= Fgi
(him0) ⊂ ∆(him0) ∩ ∆(hi+1m0) , 1 ≤ i ≤ n ,

where:

(4) hi+1 = gihi .

We prove, by induction, that hi is a product of face pairing transformations of
D(m0) for 1 ≤ i ≤ n .

By definition, h1 is a face pairing transformation. Suppose that hi is a
product of face pairing transformations. By conjugating (3), we obtain:

(5) ∅ 6= F
h
−1

i
hi+1

(m0) ⊂ ∆(m0) ∩ ∆(h−1
i hi+1m0) .

This implies that h−1
i hi+1 is a face pairing transformation. But:

(6) hi+1 = hi(h
−1
i hi+1) .

Hence, hi+1 is a product of the desired type.
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