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Abstract. In this paper we state an inhomogeneous Dirichlet problem for a class of lin-
ear partial differential operators which are non-hypoelliptic. We prove uniqueness, existence and
regularity results for its solutions.

1. Introduction

In [1] K. Doppel and the present author stated a homogeneous Dirichlet prob-
lem for non-hypoelliptic linear partial differential operators, especially for a prod-
uct of uniformly elliptic differential operators with smooth coefficient functions.
Here we state an inhomogeneous Dirichlet problem for the same class of par-
tial differential operators. The related homogeneous problem turns out to be an
equivalent reformulation of the homogeneous Dirichlet problem in [1]. But this
new formulation yields more general results than the former one. For further de-
tails of this problem and for some literature relevant in this context we refer to
the introduction in [1].

2. The inhomogeneous problem

Most of the definitions used here are taken from [1]. We recapitulate only
some notation necessary for understanding the subsequent theorems.

Let Ω1 and Ω2 be bounded domains in Rn1 or Rn2 (n1, n2 ≥ 2, respec-
tively) with boundaries ∂Ωµ (µ = 1, 2) of class C∞ (cf. e.g. Grisvard [2, Defini-
tion 1.2.1.1]). Thus the domains Ωµ satisfy the uniform cone condition and the
product domain Ω := Ω1 × Ω2 ⊂ Rn (n = n1 + n2 ) has the same property (cf.
Hochmuth [3, Satz 3.1]). Furthermore, Ω is a Lipschitz domain (cf. Grisvard [2,
Theorem 1.2.2.2]).

On each of the domains Ωµ we consider a uniformly elliptic differential oper-
ator Pµ( · , Dxµ

) of second order

Pµ( · , Dxµ
) := −

nµ∑

i,j=1

Dj

(
a
(µ)
ij (·)Di

)
+

nµ∑

i=1

b
(µ)
i (·)Di + c(µ)(·)
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with Dxµ
= (D1, . . . , Dnµ

) and Dj = ∂/∂xj , where a
(µ)
ij , b

(µ)
i , c(µ) ∈ C∞( Ωµ) are

given real-valued functions with a
(µ)
ij = a

(µ)
ji . Note that then there are constants

̺µ ∈ R+ with

nµ∑

i,j=1

a
(µ)
ij (xµ)ξiξj ≥ ̺µ

nµ∑

i=1

ξ2
i for all xµ ∈ Ωµ and (ξ1, . . . , ξnµ

) ∈ Rnµ .

By P̃µ( · , Dxµ
) we denote the formal adjoint operators

P̃µ( · , Dxµ
) := −

nµ∑

i,j=1

Dj

(
a
(µ)
ji (·)Di

)
−

nµ∑

i=1

Di

(
b
(µ)
i (·)

)
+ c(µ)(·).

We consider the classical homogeneous elliptic Dirichlet problems:

Problem (Ωµ) (µ = 1, 2). For fµ ∈ C0;λ(Ωµ) ∩ C( Ωµ) (λ ∈ (0, 1]) find a
function uµ ∈ C2(Ωµ) ∩ C( Ωµ) such that

Pµ(xµ, Dxµ
)uµ(xµ) = fµ(xµ) for xµ ∈ Ωµ,

uµ(xµ) = 0 for xµ ∈ ∂Ωµ.

Now we formulate the inhomogeneous Dirichlet problem of classical type for
the non-hypoelliptic product operator P ( · , Dx) defined by

P (x, Dx) := P1(x1, Dx1
)P2(x2, Dx2

) for x = (x1, x2) ∈ Ω1 × Ω2.

For P ( · , Dx) the formal adjoint operator is denoted by P̃ ( · , Dx) .

Problem (Ω). For f ∈ C(Ω) and g ∈ C(∂Ω) find a function u ∈ C2,2(Ω) ∩
C(Ω) such that

P (x, Dx)u(x) = f(x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω

is valid.

To give a Hilbert space formulation of problem (Ω) we define

(2.1) Γ := {σ1 ∈ Nn1

0 | |σ1| ≤ 1} × {σ2 ∈ Nn2

0 | |σ2| ≤ 1}.

A simple calculation shows that there are functions aστ ∈ C∞( Ω ) (σ, τ ∈ Γ) with
which we can write the operator P ( · , Dx) in the form

(2.2) P ( · , Dx) =
∑

σ,τ∈Γ

(−1)|σ|Dσ
(
aστ (·)Dτ

)
.
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Thus, partial integration on C∞( Ω ) × C∞
0 (Ω) gives the bilinear form b( · , · ):

(2.3) b(u, φ) :=
(
P ( · , Dx)u, φ

)
0;Ω

=
∑

σ,τ∈Γ

(aστDτu, Dσφ)0;Ω.

We denote by αµ = (αµ
1 , . . . , αµ

n) ∈ Nn
0 (µ = 1, 2) multi-indices for which α1

j = 0

for all j ∈ {n1 + 1, . . . , n} and α2
k = 0 for all k ∈ {1, . . . , n1} , respectively, and

define the (anisotropic) Sobolev space Hs,t(Ω) (s, t ∈ N0) as the completion of
Cs+t

∗ (Ω) with respect to the norm

‖u‖s,t;Ω :=

(
∑

α=α1+α2

|α1|≤s, |α2|≤t

‖Dαu‖2
0;Ω

)1/2

,

and H1,1
0 (Ω) as the smallest closed subspace of H1,1(Ω) including C∞

0 (Ω) (cf. [1]).
Because of the boundedness of the functions aστ , there exists a constant

c ∈ R+ with which

|b(u, ϕ)| ≤ c‖u‖1,1;Ω‖ϕ‖1,1;Ω for all (u, ϕ) ∈ C∞( Ω ) × C∞
0 (Ω),

and the bilinear form b( · , ·) can be continuously extended to H1,1(Ω)×H1,1
0 (Ω).

This extension will also be denoted by b( · , · ) . Because the product domain Ω has
a Lipschitz boundary ∂Ω and because of the continuous embedding H1,1(Ω) →֒
H1(Ω) we can introduce the trace operator γ: H1,1(Ω) → H1/2(∂Ω) (cf. Gris-
vard [2, Theorem 1.5.1.3]).

For the weak formulation of the inhomogeneous Dirichlet problem (Ω) we call
an admissible boundary function every g ∈ L2(Ω) for which the through

ℓg(ϕ) :=
(
g, P̃ ( · , Dx)ϕ

)
0;Ω

for all ϕ ∈ C∞
0 (Ω)

dense in H1,1
0 (Ω) defined linear functional is bounded with respect to ‖ · ‖1,1;Ω ,

i.e. with some constant c ∈ R+ one has
∣∣(g, P̃ ( · , Dx)ϕ

)
0;Ω

∣∣ < c‖ϕ‖1,1;Ω for all ϕ ∈ C∞
0 (Ω).

Problem (W). For f ∈ L2(Ω) and for an admissible boundary function
g ∈ L2(Ω) find a function u ∈ L2(Ω) such that w := u − g ∈ H1,1(Ω) fulfills the
equations

b(w, ϕ) = (f, ϕ)0;Ω +
(
g, P̃ ( · , Dx)ϕ

)
0;Ω

for all ϕ ∈ C∞
0 (Ω),

γw = 0.

For the present it seems that the related homogeneous problem with g = 0
differs from the weak problem (B) in [1]. However, the two formulations are
equivalent (cf. Theorem 3.2). But, by the one given here, one can easily discern
that the star-shapedness of the domain Ω assumed in [1] is not necessary for
the fact that the solutions of problem (Ω) are also solutions of problem (W).
Furthermore, it is easier to handle the inhomogeneous problem by this formulation.
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3. Uniqueness and existence of solutions

First we state a uniqueness result.

Theorem 3.1. Assume that problems (Ωµ ) (µ = 1, 2) are uniquely solvable.
Then a function w ∈ H1,1(Ω) with γw = 0 and

b(w, ϕ) = 0 for all ϕ ∈ C∞
0 (Ω)

vanishes, i.e. w = 0 .

Proof. Let ϕµ ∈ C∞
0 (Ωµ) (µ = 1, 2) and ϕ := ϕ1 ⊗ ϕ2 ∈ C∞

0 (Ω). Then
partial integration and the theorem of Fubini give

(3.1)

0 = b(w, ϕ) = (w, P̃2P̃1ϕ)0;Ω

=

∫

Ω2

P̃2ϕ2(x2)

(∫

Ω1

w(x1, x2)P̃1ϕ1(x1) dx1

)
dx2 = (w̃, P̃2ϕ2)0;Ω2

with w̃ ∈ H1(Ω2) defined by w̃(x2) :=
(
w( · , x2), P̃1ϕ1

)
0;Ω1

for x2 ∈ Ω2 .

Because of γw = 0, i.e. especially

∫

∂Ω2

(∫

Ω1

|w(x1, η)|2 dx1

)
dη = 0,

we get for almost all η ∈ ∂Ω2

(3.2)

∫

Ω1

|w(x1, η)|2 dx1 = 0.

Bearing in mind (3.2) and observing

|w̃(x2)| =
∣∣(w( · , x2), P̃1ϕ1

)
0;Ω1

∣∣ ≤ ‖w( · , x2)‖0;Ω1
‖P̃1ϕ1‖0;Ω2

we get w̃ ∈ H1
0 (Ω2) . Therefore relation (3.1), the unique solvability of problem

(Ω2 ) and elliptic regularity yield w̃ = 0, and we have for x2 ∈ Ω2

(
w( · , x2), P̃1ϕ1

)
0;Ω1

= 0 for ϕ1 ∈ C∞
0 (Ω1).

Furthermore, we have w( · , x2) ∈ H1
0 (Ω1) for almost all x2 ∈ Ω2 . Finally, the

unique solvability of problem (Ω1 ) and the elliptic regularity give w( · , x2) = 0
for almost all x2 ∈ Ω2 , i.e. w = 0.

The next theorem shows that H1,1
0 (Ω) can be characterized by the trace

operator γ . A consequence of this theorem is that problem (B) in [1] and problem
(W) with g = 0 are equivalent.
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Theorem 3.2. A function w ∈ H1,1(Ω) lies in H1,1
0 (Ω) if and only if γw = 0 .

Proof. Because C∞
0 (Ω) is dense in H1,1

0 (Ω), the functions w ∈ H1,1
0 (Ω) have

the property γw = 0. Thus we only have to prove that functions w ∈ H1,1(Ω)
with γw = 0 lie in H1,1

0 (Ω). First we remark that the bilinear form b( · , ·) :=
( · , ·)1,1;Ω is induced by the Laplace operators Pµ( · , Dxµ

) = −∆. The boundary
value problems (Ωµ ) with respect to this partial differential operators are uniquely

solvable. On the other hand, for w ∈ H1,1(Ω) a unique w̃ ∈ H1,1
0 (Ω) exists with

(w − w̃, ϕ)1,1;Ω = 0 for all ϕ ∈ H1,1
0 (Ω).

By γ(w − w̃) = 0 and Theorem 3.1 we have w = w̃ , i.e. w ∈ H1,1
0 (Ω).

To state an existence result we have to introduce the coerciveness: we say
that the bilinear form b( · , ·) is H1,1

0 (Ω)-coercive if there are constants ̺ ∈ R+

and q ∈ R with which

b(u, u) ≥ ̺‖u‖2
1,1;Ω − q‖u‖2

0;Ω for all u ∈ H1,1
0 (Ω).

Theorem 3.3. If problems (Ωµ ) are uniquely solvable and if the bilinear form

b( · , · ) is H1,1
0 (Ω) -coercive, then for every f ∈ L2(Ω) and for every admissible

boundary function g ∈ L2(Ω) there exists a unique solution u = w + g ∈ L2(Ω)
of problem (W) with w ∈ H1,1

0 (Ω) .

Proof. The inhomogeneous problem is equivalent to finding a function w ∈
H1,1

0 (Ω) (cf. Theorem 3.2) with

b(w, ϕ) = (f, ϕ)0;Ω +
(
g, P̃ ( · , Dx)ϕ

)
0;Ω

for all ϕ ∈ H1,1
0 (Ω).

The H1,1
0 (Ω)-coerciveness of the bilinear form b( · , · ) implies the Fredholm prop-

erty for the latter problem. Therefore, because of Theorem 3.1, there is a unique
solution w ∈ H1,1

0 (Ω). Thus the assertion of the theorem follows with u = w+g .

Remark. Especially every function g ∈ H1,1(Ω) is an admissible boundary
function. For g ∈ H1,1(Ω) the proof of Theorem 3.3 implies the existence of a
constant c ∈ R+ independent of f and g with which

(3.3) ‖w‖1,1;Ω ≤ c
(
‖f‖0;Ω + ‖g‖1,1;Ω

)
.

Furthermore, one gets u ∈ H1,1(Ω) and the estimate (3.3) for solutions u .
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4. Regularity of solutions

Obviously, the solutions u ∈ C∞( Ω ) of the homogeneous boundary value
problem considered in [1, Theorem 3.5], are also solutions of problem (W) for
g = 0. Analogously to [1] one can show by (3.3) and the density of C∞( Ω ) in
Hs,t(Ω) (cf. Grisvard [2, Theorem 1.4.2.1]):

Theorem 4.1. Let us suppose that problems (Ωµ ) are uniquely solvable and

that the bilinear form b( · , · ) is H1,1
0 (Ω) -coercive. Let further f ∈ L2(Ω) and an

admissible boundary function g ∈ L2(Ω) be such that for some s, t ∈ N0 there is
a constant c ∈ R+ with

(4.1)
∣∣(f, ϕ)0;Ω +

(
g, P̃ ( · , Dx)ϕ

)
0;Ω

∣∣ ≤ c‖ϕ‖s,t;Ω for all ϕ ∈ C∞( Ω ).

Then there exists a unique solution u = w + g ∈ L2(Ω) of problem (W) with

w ∈ Hs+2,t+2(Ω).

Remark. Condition (4.1) is obviously satisfied for functions f ∈ Hs,t(Ω)
and g ∈ Hs+2,t+2(Ω). In this case one gets u ∈ Hs+2,t+2(Ω) and a constant
cs,t ∈ R+ independent of f and g with

‖u‖s+2,t+2;Ω ≤ cs,t

(
‖f‖s,t;Ω + ‖g‖s+2,t+2;Ω

)
.

By using Theorem 4.1, the remark above, the continuous embedding Hs,t(Ω)
→֒ Hmin(s,t)(Ω) and the usual Sobolev embedding one gets regularity results sim-
ilar to the classical ones. But the product property of the domain Ω allows us to
prove more appropriate embedding and regularity theorems.

Theorem 4.2. For the domains Ωµ ⊂ Rnµ (µ = 1, 2) satisfying the uniform
cone condition and for Ω = Ω1 × Ω2 we have a continuous embedding

Hs1,s2(Ω) →֒ C( Ω )

for numbers sµ ∈ N0 with sµ > nµ/2 .

Proof. By assumption also the domain Ω satisfies the uniform cone condition
and therefore C∞( Ω ) lies dense in Hs1,s2(Ω). Thus it is enough to prove for the
functions u ∈ C∞( Ω ) the estimate

(4.2) sup
x∈Ω

|u(x)| ≤ c‖u‖s1,s2;Ω

for some constant c ∈ R+ . Then continuation yields (4.2) on Hs1,s2(Ω), and thus
the statement of the theorem is valid.
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To give a detailed proof we have to introduce some notation concerning the
assumed uniform cone condition. Here cones C(rµ, Σµ) with vertex at xµ = 0 are
sets

C(rµ, Σµ) := B(rµ) ∩ {λyµ | yµ ∈ Σµ, λ > 0},

where Σµ is an open set on the surface of the ball B(rµ) = {yµ ∈ Rnµ | |yµ| < rµ} .

Let x = (x1, x2) ∈ Ω1 × Ω2 ⊂ Ω and let Cxµ
= C(rµ, Σµ) be cones related

to the uniform cone condition with respect to Ωµ , especially xµ − Cxµ
⊂ Ωµ .

Furthermore, let fµ be fixed functions in C∞
0 (Rnµ) with the properties

1. fµ(yµ) = 1 for |yµ| < 1,

2. fµ(yµ) = 0 for |yµ| ≥ 2,

3. |Dαfµ(yµ)| ≤ M for yµ ∈ Rnµ , |α| ≤ sµ + 1 and with some M ∈ R+ .

We define the functions eµ(yµ) := fµ

(
2(yµ − xµ)/rµ

)
on Rnµ . Thus we have

eµ(yµ) =

{
1 for |yµ − xµ| < rµ/2,
0 for |yµ − xµ| ≥ rµ

and

(4.3) |Dαeµ(yµ)| ≤
M

r
|α|
µ

for |α| ≤ sµ.

For the unit vectors ηµ with xµ + ηµ̺µ ∈ Ωµ for 0 < ̺µ < rµ we have

u(x1, x2) = −e1(x1 + η1̺1)u(x1 + η1̺1, x2)
∣∣∣
̺1=r1

̺1=0

= −

∫ r1

0

∂
(
e1(x1 + η1̺1)u(x1 + η1̺1, x2)

)

∂̺1
d̺1,

and by partial integration we get

u(x1, x2) =
(−1)s1

(s1 − 1)!

∫ r1

0

̺s1−1
1

∂s1

(
e1(x1 + η1̺1)u(x1 + η1̺1, x2)

)

∂̺s1

1

d̺1.

By using e2 and the Fubini theorem one analogously gets

u(x1, x2) =
(−1)s1+s2

(s1 − 1)!(s2 − 1)!

∫ r1

0

∫ r2

0

̺s1−1
1 ̺s2−1

2

∂s1+s2

∂̺s1

1 ∂̺s2

2

[
e1(x1 + η1̺1)

× e2(x2 + η2̺2)u(x1 + η1̺1, x2 + η2̺2)
]
d̺1d̺2.
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Integration over Σ1 × Σ2 , again the Fubini theorem and the Schwarz inequality
yield with Cxµ := xµ − Cxµ

(4.4)
|Σ1 × Σ2| |u(x1, x2)|

=
1

(s1 − 1)!(s2 − 1)!

∣∣∣∣
∫

Cx1

∫

Cx2

̺s1−n1

1 ̺s2−n2

2

∂s1+s2

∂̺s1

1 ∂̺s2

2

[e1e2u] dy1 dy2

∣∣∣∣

≤ c

∫

Cx1

̺s1−n1

1

∣∣∣∣
∫

Cx2

̺
2(s2−n2)
2 dy2

∣∣∣∣
1/2∣∣∣∣

∫

Cx2

∣∣∣∣
∂s1+s2

∂̺s1

1 ∂̺s2

2

[e1e2u]

∣∣∣∣
2

dy2

∣∣∣∣
1/2

dy1

≤ c

∣∣∣∣
∫

Cx1

̺
2(s1−n1)
1 dy1

∣∣∣∣
1/2∣∣∣∣

∫

Cx2

̺
2(s2−n2)
2 dy2

∣∣∣∣
1/2

×

∣∣∣∣
∫

Cx1

∫

Cx2

∣∣∣∣
∂s1+s2

∂̺s1

1 ∂̺s2

2

[e1e2u]

∣∣∣∣
2

dy1 dy2

∣∣∣∣
1/2

≤ c

∣∣∣∣
∫

Cx1

̺
2(s1−n1)
1 dy1

∣∣∣∣
1/2∣∣∣∣

∫

Cx2

̺
2(s2−n2)
2 dy2

∣∣∣∣
1/2

‖e1e2u‖s1,s2;Ω.

We have (cf. Wloka [4, Section 6])

(4.5)

∫

Cxµ

̺2(sµ−nµ)
µ dyµ =

2πnµ/2

Γ(nµ/2)(2sµ − nµ)
r2sµ−nµ

µ .

If we apply the Leibniz product rule to e1e2u and refer back to (4.3) we obtain

(4.6) ‖e1e2u‖s1,s2;Ω ≤ c · max
|α1|≤s1

r
−|α1|
1 · max

|α2|≤s2

r
−|α2|
2 · ‖u‖s1,s2;Ω.

Taking account of (4.5) and (4.6) in (4.4), we get

|Σ1×Σ2| |u(x1, x2)| ≤ c ·r
s1−n1/2
1 · max

|α1|≤s1

r
−|α1|
1 ·r

s2−n2/2
2 · max

|α2|≤s2

r
−|α2|
2 · ‖u‖s1,s2;Ω,

i.e. (4.2).

Corollary 4.3. For domains Ωµ ⊂ Rnµ (µ = 1, 2) satisfying the uniform
cone condition and for Ω = Ω1 × Ω2 we have the continuous embedding

Hs1,s2(Ω) →֒ Ct1,t2( Ω )

for sµ, tµ ∈ N0 with sµ − tµ > nµ/2 .
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