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Abstract. In this paper we state an inhomogeneous Dirichlet problem for a class of lin-
ear partial differential operators which are non-hypoelliptic. We prove uniqueness, existence and
regularity results for its solutions.

1. Introduction

In [1] K. Doppel and the present author stated a homogeneous Dirichlet prob-
lem for non-hypoelliptic linear partial differential operators, especially for a prod-
uct of uniformly elliptic differential operators with smooth coefficient functions.
Here we state an inhomogeneous Dirichlet problem for the same class of par-
tial differential operators. The related homogeneous problem turns out to be an
equivalent reformulation of the homogeneous Dirichlet problem in [1]. But this
new formulation yields more general results than the former one. For further de-
tails of this problem and for some literature relevant in this context we refer to
the introduction in [1].

2. The inhomogeneous problem

Most of the definitions used here are taken from [1]. We recapitulate only
some notation necessary for understanding the subsequent theorems.

Let 27 and Q9 be bounded domains in R™ or R" (mj,ns > 2, respec-
tively) with boundaries 99, (u =1,2) of class C*° (cf. e.g. Grisvard [2, Defini-
tion 1.2.1.1]). Thus the domains 2, satisfy the uniform cone condition and the
product domain  := Q; x Q3 C R™ (n = n; + ng) has the same property (cf.
Hochmuth [3, Satz 3.1]). Furthermore, 2 is a Lipschitz domain (cf. Grisvard |2,
Theorem 1.2.2.2]).

On each of the domains €2, we consider a uniformly elliptic differential oper-
ator P,(-,D;,) of second order

Pu(+, D) == > Di(al)()Di) + 3 b ()Di+ ()
1,5=1 i=1
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with Dy, = (D1,...,Dy,) and D; = 0/0x;, where agy),bgu),c(“) € C*(9Q,) are
(W) _ (u)

given real-valued functions with a;;” = aj;”. Note that then there are constants

o, € R™ with

Z al ()€€ > QHZg for all 2, € Q, and (&1, ..., &,,) € R™.

1,7=1

By P,(-,D:,) we denote the formal adjoint operators

P.(-,D ZD (al(. ZD (6% () + (1),

2,7=1

We consider the classical homogeneous elliptic Dirichlet problems:
Problem (Q,) (p = 1,2). For f, € C%Q,)NC(Q,) (A € (0,1]) find a
function u, € C*(Q,) N C(Q,) such that
Py(@p, Do, Jup(zp) = fulzp) for x,, € Qy,
uy(z,) =0 for z,, € 0%,.

Now we formulate the inhomogeneous Dirichlet problem of classical type for
the non-hypoelliptic product operator P(-,D,) defined by

P(.CE,Dx) = Pl(xl,Dxl)Pg(wg,sz) for x = (.’131,1132) € Ql X QQ.

For P(-,D,) the formal adjoint operator is denoted by P(-,D,).

_ Problem (Q). For f € C(Q) and g € C(8Q) find a function u € C*?(Q) N
C(Q2) such that
P(x,D,)u(x) = f(x) for x € 1,

u(x) = g(x) for x € 0N
is valid.

To give a Hilbert space formulation of problem () we define
(2.1) I''={o1 e Ny' | |o1] <1} x {02 € Ny? | |02 < 1}.

A simple calculation shows that there are functions a,, € C*(Q) (0,7 € ') with
which we can write the operator P(-,D,) in the form

(2.2) P(-,D;) = Y (-1)l"ID?(ag.(-)D7).

o,7el’
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Thus, partial integration on C*°(€) x C3°(Q2) gives the bilinear form b(-,-):
(23) b(u7 (b) = (P< : 7D$)u7 QS)O;Q = Z (aa'rDTuy DGQS)O;Q-

o,Tel
We denote by ot = (of,...,ak) € Ni (u =1,2) multi-indices for which aj =0
for all j € {n1+1,...,n} and aj =0 for all k € {1,...,n1}, respectively, and
define the (anisotropic) Sobolev space H*'(Q) (s,t € Ng) as the completion of
C:T(Q) with respect to the norm

1/2
:( 5 nmunag) |

a:a1+a2
|o¢1|§s, |a2|§t
and Hy' () as the smallest closed subspace of H'1(Q) including C§°(Q) (cf. [1]).
Because of the boundedness of the functions a,,, there exists a constant
c € R* with which

b(u, p)| < cllullinallpllie  forall (u, ) € CF(Q) x Cg°(Q),

and the bilinear form b(-,-) can be continuously extended to H“(Q) x Hy' ().
This extension will also be denoted by b( -, ). Because the product domain 2 has
a Lipschitz boundary 9Q and because of the continuous embedding H1(Q) —
H'(Q) we can introduce the trace operator v: H'1(Q) — HY2(9Q) (cf. Gris-
vard [2, Theorem 1.5.1.3]).

For the weak formulation of the inhomogeneous Dirichlet problem () we call
an admissible boundary function every g € L?(§) for which the through

[l

ly(p) = (9, P(-, Da)p)yq  forall p € C57(Q)

dense in H&’l(Q) defined linear functional is bounded with respect to || - [|1,1.0,
i.e. with some constant ¢ € R* one has

(9, P(+, D2)e) 0| <cllglia  forall p € C5°(Q).

Problem (W). For f € L9(Q2) and for an admissible boundary function
g € L2(Q) find a function u € L2(?) such that w :=u — g € HYY(Q) fulfills the
equations

b(w, ) = (f.P)osa + (9. P(+, Da)p)y,  forall p € CF°(Q),

)

yw = 0.

For the present it seems that the related homogeneous problem with g = 0
differs from the weak problem (B) in [1]. However, the two formulations are
equivalent (cf. Theorem 3.2). But, by the one given here, one can easily discern
that the star-shapedness of the domain 2 assumed in [1] is not necessary for
the fact that the solutions of problem ({2) are also solutions of problem (W).
Furthermore, it is easier to handle the inhomogeneous problem by this formulation.
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3. Uniqueness and existence of solutions
First we state a uniqueness result.

Theorem 3.1. Assume that problems (£2,,) (u = 1,2) are uniquely solvable.
Then a function w € H>*(Q) with yw = 0 and

b(w, ) =0 for all ¢ € C5°(Q)

vanishes, i.e. w = 0.

Proof. Let ¢, € C3°(Q,) (p =1,2) and ¢ := ¢1 ® g2 € C§°(2). Then
partial integration and the theorem of Fubini give

0= b(w, p) = (w, PPrp)osa

(3.1) _ /Q2 ]52@(@)(/91 w(ml,xg)fﬁsﬁl(xl)dxl) dxs = (T, Pap2)o;0,

with @ € H'(€Q) defined by w(z2) := (w(- ,xg),lglgpl)(),
Because of yw = 0, i.e. especially

/ ( / \w(xl,n>|2dx1) dn =0,
0o Q1

we get for almost all n € 9€s

o for zo € Q5.

(3.2) / |w(zy,n)|* dzy = 0.
931
Bearing in mind (3.2) and observing
@ (w2)] = [(w(-,22), Pron) g, | < lw(-,z2)llo0, | Preilloes

we get w € Hi(Q2). Therefore relation (3.1), the unique solvability of problem
(Q2) and elliptic regularity yield w = 0, and we have for x5 € Q9

(w(-,22), Prpr) g =0 for g1 € C5° ().

Furthermore, we have w(-,z3) € H(Q) for almost all 5 € Q5. Finally, the
unique solvability of problem (€;) and the elliptic regularity give w(-,z2) = 0
for almost all x5 € 5, i.e. w=0.0

The next theorem shows that Hé 1(Q) can be characterized by the trace
operator . A consequence of this theorem is that problem (B) in [1] and problem
(W) with g = 0 are equivalent.
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Theorem 3.2. A function w € HY(Q) lies in Hy' (Q) if and only if yw = 0.

Proof. Because C§°(f) is dense in Hy'' (), the functions w € Hy' () have
the property yw = 0. Thus we only have to prove that functions w € H1(Q)
with yw = 0 lie in Hol’l(Q). First we remark that the bilinear form b(-,-) :=
(+,-)1,1;0 is induced by the Laplace operators P,(-,D;,) = —A. The boundary
value problems (2, ) with respect to this partial differential operators are uniquely
solvable. On the other hand, for w € H'(Q) a unique @ € H,' (Q) exists with

(w—w,¢)1,1.0=0 for all ¢ € Hy''(Q).

By ~(w — @) = 0 and Theorem 3.1 we have w = @, i.e. w € Hy' (). o

To state an existence result we have to introduce the coerciveness: we say
that the bilinear form b(-,-) is Hy''(Q)-coercive if there are constants ¢ € R*
and ¢ € R with which

b(u,u) = ollull? 1o — dllullfe  for allu e Hy™ ().

Theorem 3.3. If problems (£, ) are uniquely solvable and if the bilinear form
b(-,-) is Hy'(Q)-coercive, then for every f € Ly(?) and for every admissible
boundary function g € Ly(2) there exists a unique solution u = w + g € Lo ()
of problem (W) with w € Hy' ().

Proof. The inhomogeneous problem is equivalent to finding a function w €
Hy' () (cf. Theorem 3.2) with

b(w,p) = (f,Q)oa+ (9, P(+. Da)p) .  for all p € Hy'(Q).

)

The H& ’1(Q)—Coerciveness of the bilinear form b( -, -) implies the Fredholm prop-
erty for the latter problem. Therefore, because of Theorem 3.1, there is a unique
solution w € Hé 1(Q) Thus the assertion of the theorem follows with © = w+g. o

Remark. Especially every function g € HY(€) is an admissible boundary
function. For g € H}(Q) the proof of Theorem 3.3 implies the existence of a
constant ¢ € R* independent of f and g with which

(3.3) lwll e < c(llfloe + llgllue)-

Furthermore, one gets u € H1(Q) and the estimate (3.3) for solutions u.
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4. Regularity of solutions

Obviously, the solutions u € C*(€) of the homogeneous boundary value
problem considered in [1, Theorem 3.5], are also solutions of problem (W) for
g = 0. Analogously to [1] one can show by (3.3) and the density of C°°() in
H5*(Q) (cf. Grisvard [2, Theorem 1.4.2.1]):

Theorem 4.1. Let us suppose that problems (£, ) are uniquely solvable and
that the bilinear form b(-,-) is Hy' (Q)-coercive. Let further f € Ly(Q) and an
admissible boundary function g € Lo(§2) be such that for some s,t € Nq there is
a constant ¢ € R* with

41 [(f9oa+ (9P D2)e) gl <clelsnn  forallp e C(Q),
Then there exists a unique solution u = w + g € L2(€Q)) of problem (W) with
w e H5 22 Q).
Remark. Condition (4.1) is obviously satisfied for functions f € H®'(Q)

and g € Ht212(Q). In this case one gets u € H*T2!2(Q) and a constant
cs+ € RT independent of f and g with

ulls12,t42:0 < CS,t(Hf 5,60 T ||g||s+2,t+2;9)'

By using Theorem 4.1, the remark above, the continuous embedding H**(Q)
< H™(8 () and the usual Sobolev embedding one gets regularity results sim-
ilar to the classical ones. But the product property of the domain 2 allows us to
prove more appropriate embedding and regularity theorems.

Theorem 4.2. For the domains Q,, C R™ (u=1,2) satisfying the uniform
cone condition and for ) = €)1 x Q5 we have a continuous embedding

H*%2(Q) < O(Q)

for numbers s, € Ny with s, >n,/2.

Proof. By assumption also the domain (2 satisfies the uniform cone condition
and therefore C>°(2) lies dense in H**2({2). Thus it is enough to prove for the
functions u € C*°(Q)) the estimate

(4.2) sup |u(z)] < cflulls, 50
weﬁ

for some constant ¢ € R*. Then continuation yields (4.2) on H*"*2(2), and thus
the statement of the theorem is valid.
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To give a detailed proof we have to introduce some notation concerning the
assumed uniform cone condition. Here cones C(r,, ¥,) with vertex at =, =0 are
sets

C(ru,Xyu) = B(ry) N { Ay, | yu € Zuy A > 0}

where ¥, is an open set on the surface of the ball B(r,) = {y, € R™ | |y,| < r.}.
Let @ = (z1,22) € Q1 x Q2 € Q and let C,, = C(ry,S,) be cones related

to the uniform cone condition with respect to €2, especially z, — Cy, C §2,.
Furthermore, let f, be fixed functions in C3°(R"™*) with the properties

1. fuly,) =1 for |y, <1,
2. fuly,) =0 for |y,| > 2,
3. |D*fulyu)| < M for y, € R™, |a] <5, +1 and with some M € R*.

We define the functions e, (y,) := f.(2(y, — 24)/r.) on R™ . Thus we have

eu(y,) = 1 for |y, — | <7/2,
e 0 for [y, —zpul 21y

and

M

(4.3) Deu(y)l < T for o] < s
T

For the unit vectors 7, with z, 4+ n,0, € ©, for 0 < g, < r, we have

01=T1

u(xy, x9) = —ey (1 +mro1)u(xy + n1o1, x2)

01=0

B /Tl d(er(z1 +mor)u(zr + o1, x2))
0 691

th

and by partial integration we get

(=1)* /r1 951—1 o (el(xl +nro1)u(ry + 77191,962))
0

AT doy.
(51— 1)! 1 9o a1

u(xy, x2) =

By using es and the Fubini theorem one analogously gets

( 81—|—32 S 1 s 1 6314—82
u(zy, 2) = o1 / / 09 8@‘?3@52 [61(% +n01)

82—1

X eg(w2 + n202)u(z1 + M1, T2 + n202)] do1dos.
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Integration over ¥; x 35, again the Fubini theorem and the Schwarz inequality
yield with C*» :=x, — Cy,
(4.4)

31 x Xg| |U($175E2)|

6814-82 [ ]
S$1—nN1 52 no
514 5, |€1E62U dy; dys
/oml /(,~m2 e 001" 005°

N (81 — 1 82 — 1
2(s2—m2) 1/2 Hsits2 2 1/2
< C/Ogc1 Qil ny /sz 09 2— N2 dyo /Ogc2 W[elegu] dyo dy,
2(s1—n1) 1z 2(sy—ng) 1/2
Sc / 01 dys / 05 dys
cr1 Cx2
/ / Hs1ts2 ] 2 o 1/2
=1 Joms ag?a S2 6182u Y1 ays
2(s1—n1) 2 2(s2—na2) 1z
<c / 01 diy / 05 dya|  |lereaul|s, s0:0-
c= Cw2

We have (cf. Wloka [4, Section 6])

22
4.5 2(sp—ny) dy,, = QSH—TLN.
(4.5) / e Ui = T )2) (250 — )

If we apply the Leibniz product rule to ejesu and refer back to (4.3) we obtain

46 lereaullonn o max r ™ e g ® s

Taking account of (4.5) and (4.6) in (4.4), we get

|31 X Bo |u(x1, x2)] §c~rf1_n1/2- max rf|a1|~r§2_n2/2- max 7, ~laz] Nl sy, 505025
lon|<s1 |z |<s2

ie (42). o
Corollary 4.3. For domains Q, C R"™ (u = 1,2) satisfying the uniform
cone condition and for ) = €)1 x €5 we have the continuous embedding

51,52 (Q) N Cthtz ( ﬁ)

for s,,t, € Ny with s, —t, >n,/2.
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