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Abstract. We give an asymptotic formula for the Taylor coefficients fn of f(z) = l(h(z))
where l(z) is analytic in the unit disc whose Taylor coefficients ln vary ‘smoothly’ and h(z) is
analytic in a larger disc. We show that under mild conditions on h(z) , fn ∼ σl[σn] as n → ∞
where σ = 1/h′(1) . Applications to renewal theory are also discussed.

1. Introduction

Asymptotic enumeration usually involves estimating coefficients of a generat-
ing function f(z) which satisfies some functional equation. In many cases such a
functional equation can be reduced to the form

f(z) = l
(

h(z)
)

,

where the function l(z) is frequently known and its Taylor coefficients ln are non-
negative and usually satisfy a certain regularity condition (see Bender [1], Meir
and Moon [11]). In this paper we make the following regularity condition on ln
which occurs in many applications:

(†) ln+[λ
√
n ] ∼ ln as n→ ∞ for all λ ∈ R.

For instance, the cases ln = 1 and ln = 1/n from renewal theory and harmonic
renewal theory respectively both satisfy (†) for which our result applies and we
will discuss the details in Theorem 2.11 at the end of the paper. It will be shown
later that for a large class of functions h(z) this is a natural choice to make and
difficulties appear if the ln are made any larger. We note that l(z) has a radius
of convergence equal to 1 and z = 1 is a singularity (since e−ε

√
n < ln < eε

√
n

follows from (†) and ln ≥ 0). We also assume that h(1) = 1, and that h(z)
has non-negative coefficients such that |h(z)| = h(|z|) only if z is real and non-
negative. This last condition is equivalent to h(z) 6= zpk(zr) for any analytic
function k(z) and any r ≥ 2, p ≥ 0 (see Remark 2.7(3)).

We note that many authors have considered the composite function l
(

h(z)
)

where the Taylor coefficients hn are well-behaved, but we consider the case where
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the coefficients ln are well-behaved. Indeed, our setting differs significantly from
the one considered by Embrechts and Omey in [4], since their ‘ l(z) ’ is analytic in
an open region containing the set {h(z) : |z| ≤ 1} . In particular, l(z) would then
be analytic at z = 1.

From an analytical viewpoint we have two quite distinct cases:

(i) h(z) is analytic in a disc D(0, 1 + δ) for some δ > 0.

(ii) h(z) is analytic in the unit disc only.

We shall first consider case (i).

Estimating the coefficients of f(z) can often be done by using the analytic
continuation of f(z) to a region

{

|z| < 1 + η : | arg (z − 1)| > φ for some η > 0 and 0 < φ < 1
2
π
}

.

For instance, such methods have been used in [7] and [12]. However, we will
adopt a different approach in that we do not assume such an analytic extension,
and in this respect the techniques we use seem to be more elementary.

Our main result is

Theorem 1.1. Let f(z) = l
(

h(z)
)

where the Taylor coefficients ln of l(z)
satisfy (†), and h(z) is analytic in |z| < 1 + δ where δ > 0 , has non-negative

coefficients such that |h(z)| = h(|z|) on [0, 1 + δ) only and h(1) = 1 . Then the

coefficients fn of f(z) satisfy

fn ∼ σl[σn] as n→ ∞ where σ =
1

h′(1)
.

We have readily the following corollary which is an extension of the theorem.

Corollary 1.2. Let f(z) = l
(

h(z)
)

with l(z) and h(z) as before, but with

h(z) analytic in |z| < γ such that h(β) = 1 for some 0 < β < γ . Then

fn ∼ σl[σn]β
−n as n→ ∞ where σ =

1

βh′(β)
.

The proof of the corollary follows immediately by putting F (z) = f(βz) and
H(z) = h(βz) so that F (z) = l

(

H(z)
)

and the conditions for the theorem are
satisfied.

After the proof of Theorem 1.1, we will extend the theorem to cover the more
difficult case (ii) in Theorem 2.9.

I wish to thank the referee for many helpful suggestions.
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2. Proof of the theorem

We begin with the following representation of ln .

Lemma 2.1. Given a sequence (ln)n≥0 of positive reals such that ln+[λ
√
n ] ∼

ln as n→ ∞ for all real λ , then

ln = s(e
√
n )

for some slowly-varying function s .

Proof. The result will follow once we can show that ln+1 ∼ ln as n → ∞ .
For then ln+m ∼ ln as n → ∞ for all integers m , so by letting s(x) = l[(logx)2]
we observe that

s(λx) ∼ s(x) as x→ ∞ for all λ > 0,

i.e., s is slowly-varying.
To show that ln+1 ∼ ln , consider ηn(λ) = [λ

√
n ] +

[

−λ
√

n+ [λ
√
n ]

]

for

various λ > 0. By (†), we have ln+ηn(λ) ∼ ln . Taking λ =
√

2 and λ = 2 in turn,

one finds that ηn(
√

2 ) = −2 and ηn(2) = −3 for all n except when |2n−m2| or
|4n−m2| < some constant A .

If this happens, let k = n+ [µ
√
n ] for some 0 < µ < 1. Then 2k and 4k are

bounded away from perfect squares and hence lk−2 ∼ lk−3 ∼ lk from which it will
be seen that ln−2 ∼ ln−3 as required.

Note that the converse holds trivially, so that we have an equivalence.
Slowly-varying functions have been studied in great detail (see Bingham et

al. [3] or Feller [5]) and it is well known that they can be represented as follows:
If s(x) is slowly-varying, then

s(x) = c(x) exp

{
∫ x ε(t)

t
dt

}

where c(x) → c > 0 and ε(x) → 0 as x→ ∞ .
Using this, we easily obtain

Lemma 2.2. If ln+[λ
√
n ] ∼ ln as n→ ∞ for all real λ , then

ln = cn exp

{ n
∑

m=1

δm√
m

}

where cn → c > 0 and δn → 0 as n→ ∞ .
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Proof. Since ln = s(e
√
n ) , we have

ln = c(e
√
n) exp

{
∫ e

√
n

1

ε(t)

t
dt

}

= cn exp

{
∫ n

0

η(s)√
s
ds

}

by putting t = e
√
s , η(s) = 1

2ε(e
√
s ) and cn = c(e

√
n ) . This gives us

ln = cn exp

{ n
∑

m=1

δm√
m

}

where

δm =

∫ 1

0

η(m+ t− 1)
√

1 + (t− 1)/m
dt

which tends to 0, as desired.

This lemma gives us a corollary which will be useful in the proof of the
theorem.

Corollary 2.3. For n and n+ k → ∞ ,

ln+k = ln exp

{

o

( |k|√
n

)

+ o(1)

}

.

Proof. Without loss of generality take k > 0. We have

ln+k

ln
=
cn+k

cn
exp

{ k
∑

m=0

δm+n√
m+ n

}

.

Now cn+k ∼ cn and
∣

∣

∑k
0 δm+n/

√
m+ n

∣

∣ < δk/
√
n as required.

We are particularly interested in the case when a
√
n < |k| < A

√
n logn for

some constants a and A in which case the o(1) term becomes superfluous.
We are now in a position to prove the theorem.
Proof. We have by Cauchy’s integral formula,

fn =
1

2πi

∫

γ

f(z)

zn+1
dz =

1

2πi

∫

γ

l
(

h(z)
)

zn+1
dz =

∞
∑

m=0

lm
1

2πi

∫

γ

h(z)m

zn+1
dz

where γ is inside the unit disc. Thus

(1) fn =

∞
∑

m=0

lmJm,n
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where

Jm,n =
1

2πi

∫

γ

h(z)m

zn+1
dz

is the coefficient of zn in the expansion of h(z)m . Suppose hm0
is the first non-zero

coefficient of h(z) . Then Jm,n = 0 for m > n/m0 . (If m0 = 0, Jm,n > 0 always.)
The proof basically involves estimating Jm,n for m ≥ 0. We will show that Jm,n
is largest when m is close to σn . Recall that σ = 1/h′(1). In fact, (1/σ)Jm,n
behaves like a normal distribution with mean σn and deviation σ

√
2στn where

τ is some positive constant dependent on h(z) . Note that h′(1) =
∑∞

m0
nhn >

m0

∑∞
m0

hn = m0 , so that σn lies in the non-zero range of Jm,n . The special case
where hn = 0 for all n > m0 so that h′(1) = m0 gives h(z) = hm0

zm0 which is
not allowed.

We first find bounds for Jm,n when |m− σn| is ‘large’.

Lemma 2.4. (1) For 0 ≤ m ≤ 1
3
σn and m ≥ 3σn , we have

Jm,n ≤ e−ηn, e−η
′m respectively for some η, η′ > 0.

(2) For 1
3σn ≤ m ≤ σn− 2σ

√
n logn and σn+ 2σ

√
n logn ≤ m ≤ 3σn , we

have

Jm,n ≤ Ae−|m−σn|/σ√n for some A.

Proof. (1) Consider first 0 ≤ m ≤ 1
3σn . We have

0 ≤ Jm,n ≤ h(r)m

rn

for any 0 < r < 1 + δ since |h(z)| ≤ h(|z|) . Take r = eε where ε > 0 is chosen
such that

h(eε) ≤ e2ε/σ.

This is possible because h(et) = 1+(t/σ)+O(t2) = exp
(

(t/σ)+O(t2)
)

as t→ 0.
Then

Jm,n ≤ e(2εm/σ)−εn ≤ e−εn/3

as required. For m ≥ 3σn , take r = e−ε where ε > 0 is chosen such that
h(e−ε) ≤ e−ε/2σ . Then again Jm,n ≤ e−(εm/2σ)+εn ≤ e−εm/6σ .

(2) For the range 1
3σn ≤ m ≤ σn− 2σ

√
n logn take r = e1/

√
n in the above

inequality. Then

Jm,n ≤ h
(

e1/
√
n
)m
e−

√
n = e((1/σ

√
n )+O(1/n))m−√

n = e−(|m−σn|/σ√n)+O(1).

If σn+2σ
√
n logn ≤ m ≤ 3σn take r = e−1/

√
n and the result follows similarly.
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Let S = {m | 1
3σn < m < 3σn and |m − σn| ≥ 2σ

√
n logn} . Then from

these bounds, we find that

∑

|m−σn|≥2σ
√
n logn

lmJm,n =
∑

0≤m≤σn/3, m≥3σn

lmJm,n +
∑

S

lmJm,n

≤ e−ηn
∑

0≤m≤σn/3
lm +

∑

m≥3σn

lme
−η′m

+ A
∑

S

lme
−|m−[σn]|/σ√n

≤ e−η
′′n + 2Al[σn]

∑

k≥2σ
√
n logn

e−k/σ
√
n+o(k/

√
n )

by putting k = m − [σn] and using Corollary 2.3 and the fact that ln = eo(
√
n ) .

The last sum is bounded for all large n by

∫ ∞

2σ
√
n logn

e−t/2σ
√
n dt =

2σ√
n
.

Hence
∑

|m−σn|≥2σ
√
n logn

lmJm,n = O

(

l[σn]√
n

)

.

Now it only remains to consider the range |m − σn| < 2σ
√
n logn . Here Jm,n

behaves as follows:

Lemma 2.5. For |m− σn| < 2σ
√
n logn , we have

Jm,n =
1

2
√
πστn

exp

{

−(m− σn)2

4σ3τn

}

+O
((logn)2

n

)

where τ = 1
2

(

h′(1) + h′′(1) − h′(1)2
)

> 0 by Remark 2.6 .

Proof. We have

Jm,n =
1

2πi

∫

γ

h(z)m

zn+1
dz =

1

2π

∫ 2π

0

e−niθh(eiθ)m dθ.

Let δn =
√

2 logn/στn with τ as before. Then

∣

∣

∣

∣

1

2π

∫ 2π−δn

δn

e−niθh(eiθ)m dθ

∣

∣

∣

∣

≤ sup
δn≤θ≤2π−δn

|h(eiθ)|m = |h(e±iδn)|m
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for all n sufficiently large, since |h(eiθ)| decreases near 0 and 2π where it is
maximal. But

h(eiθ) = h
(

1 + iθ − 1
2θ

2 +O(θ3)
)

= 1 + h′(1)iθ − 1
2

(

h′(1) + h′′(1)
)

θ2 +O(θ3)

= exp
( i

σ
θ − τθ2 +O(θ3)

)

so that |h(e±iδn)|m = exp
(

−mτδ2n +O(mδ3n)
)

= O(n−2) . Hence

Jm,n =
1

2π

∫ δn

−δn

e−niθh(eiθ)m dθ +O
( 1

n2

)

.

In the range |θ| ≤ δn , we have

e−niθh(eiθ)m = exp
(

−niθ +
mi

σ
θ −mτθ2 +O(mθ3)

)

= exp

{

m− σn

σ
iθ − στnθ2 +O

(

(logn)2√
n

)}

= exp

{

m− σn

σ
iθ − στnθ2

}(

1 +O

(

(logn)2√
n

))

by using m = σn+O(
√
n log n) . Thus

Jm,n =
1

2π

∫ δn

−δn

e(m−σniθ/σ)−στnθ2 dθ +O

(

(logn)2√
n

∫ δn

−δn

e−στnθ
2

dθ

)

+O
( 1

n2

)

=
1

2π
√
στn

∫

√
2 logn

−
√

2 logn

e−φ
2+(m−σn)iφ/σ

√
στn dφ+O

(

(logn)2

n

∫ ∞

−∞
e−φ

2

dφ

)

=
1

2π
√
στn

e−(m−σn)2/4σ3τn

∫ ∞

−∞
e−(φ−i(m−σn)/2σ

√
στn )2 dφ

+ o
( 1

n2

)

+O
((logn)2

n

)

=
1

2
√
πστn

exp
{

−(m− σn)2

4σ3τn

}

+O
((logn)2

n

)

since
∣

∣

∣

∣

∫

|φ|≥
√

2 logn

∣

∣

∣

∣

≤ 1√
2 logn

∫ ∞

√
2 logn

2φe−φ
2

dφ = o
( 1

n2

)

.

Remark 2.6. Note that τ > 0. This is because
∑∞

0 hn
∑∞

0 n2hn ≥
(
∑∞

0 nhn
)2

by Cauchy–Schwarz. Equality occurs only if hn = 0 for all n ex-
cept perhaps for one value of n but this case has already been ruled out.
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To finalize the proof of the theorem, we must consider the sum
∑

lmJm,n
over the range |m− σn| < 2σ

√
n logn .

First we have

∑

|m−σn|<2σ
√
n logn

lm
(logn)2

n
= l[σn]

(logn)2

n

∑

|k|<2σ
√
n logn

eo(|k|
√
n )

= O

(

l[σn]
(logn)2

n

∫ 2σ
√
n logn

0

eεt/
√
n dt

)

= O(l[σn]n
−(1/2)+ε′)

where ε and ε′ are arbitrarily small. Now choose an arbitrary A > 0. Then we
have

1

2
√
πστn

∑

|m−σn|<2σ
√
n logn

lme
−(m−σn)2/4σ3τn =

∑′
+

∑′′
,

where
∑′

is over the range |m− σn| ≤ A
√
n and

∑′′
is over A

√
n < |m− σn| ≤

2σ
√
n log n . For

∑
′′

we have

∑′′
=

l[σn]

2
√
πστn

∑

A
√
n<|k|≤2σ

√
n logn

e−(k2/4σ3τn)+o(|k|/√n)

= O

(

l[σn]√
n

∫ 2σ
√
n logn

A
√
n

e−(t24σ3τn)+o(t/
√
n ) dt

)

= O

(

l[σn]

∫ ∞

A

e−(y2/4σ3τ)+o(y) dy

)

where t = y
√
n

< ε(A)l[σn]

where ε(A) → 0 as A→ ∞ .
Lastly

∑′
∼ l[σn]

∑

|m−σn|≤A√
n

Jm,n by virtue of (†)

= l[σn]

∞
∑

m=0

Jm,n
(

1 + δn(A)
)

where, as before, |δn(A)| ≤ δ(A) → 0 as A → ∞ by using the previous known
bounds on Jm,n . But

∞
∑

m=0

Jm,n =
1

2πi

∫

γ

1
(

1 − h(z)
)

zn+1
dz = σ +O(a−n)
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for some a > 1, by choosing γ so that it contains the simple pole of 1/1 − h(z)
at 1. So letting A→ ∞ , (1) gives

fn ∼ σl[σn]

as desired.

Remark 2.7. (1) The result is ‘best possible’ in the sense that if we increase
the growth rate of ln it becomes false. In particular, by the same methods one
can prove that if ln = r(e

√
n) where r is a regularly-varying function with index

ρ , then

fn ∼ σl[σn]e
σ3τρ2/4 as n→ ∞.

(Lemma 2.4 would have to be improved to Jm,n = O
(

e−(m−σn)2/4σ3τn
)

for

|m− σn| = O(n2/3) . This is done by taking r = e−(m−σn)/2σ2τn in the proof.)
Also, if the ln are made larger than eA

√
n (any A), then the arguments

following Lemma 2.4 and Remark 2.6 fail and only with very precise knowledge
of the behaviour of l[σn]+m/l[σn] as m varies, can we obtain a simple asymptotic
formula for fn .

(2) The proof of the theorem would in many cases be substantially easier if we
did not allow the ln to be quite so large. For example, if ln was regularly-varying
(which satisfies (†)), we only need Lemma 2.4 after which

∑

|m−σn|≤2σ
√
n logn

lmJm,n ∼ l[σn]

∑

|m−σn|≤2σ
√
n logn

Jm,n ∼ l[σn]

∞
∑

m=0

Jm,n ∼ σl[σn]

follows immediately. Also, with a little extra work, we can usually find an asymp-
totic expansion for fn given that ln has one.

(3) The original condition on h(z) was that |h(z)| = h(|z|) on [0, 1+ δ) only.
As stated earlier this is equivalent to saying that h(z) is not of the form zpk(zr)
for any analytic k(z) and p ≥ 0, r ≥ 2. On the other hand, if h(z) = zpk(zr) ,
then consider gcd(p, r) > 1 and = 1. In the former case, the theorem fails since
fn = 0 if d 6 |n . In fact, if gcd(p, r) = d ≥ 2 then h(z) = k1(z

d) some k1 analytic
which is equivalent to the case p = 0. If however gcd(p, r) = 1, the result is,
surprisingly enough, still true. Lemma 2.4 will hold as before but a change occurs
in Lemma 2.5. Here we have

Jm,n =

{

r

2
√
πστn

e−(m−σn)2/4σ3τn +O
((logn)2

n

)

if pm ≡ n (mod r),

0 otherwise.

A little elementary number theory will be needed in the later stages of the proof.
Thus the result stands true for all h(z) not of the form k(zr) as long as there is



198 Titus Hilberdink

a β > 0 within its radius of convergence such that h(β) = 1. If h(z) = k(zr)
with r ≥ 2 maximal, β = 1, then f(z) = F (zr) with F (z) =

∑∞
0 Fnz

n and the
theorem applies to F (z) , i.e., Fn ∼ rσl[rσn] . The result now covers all possible
forms of h(z) .

In case (ii), where h(z) is analytic in the unit disc only, we cannot use the
arguments of Lemma 2.4 (for the case m < σn) so other methods are needed to
provide the bounds we want, viz.

Jm,n = O
(

e−λ|m−σn|/√n )

for some λ > 0.

For the result fn ∼ σl[σn] to hold, we clearly need some bound on hn (given that

we still allow ln to be large). For example, if hn 6= O
(

e−λ
√
n

)

for any λ > 0, we

can always find an ln = s(e
√
n ) such that l[σnk] = o(hnk

) along some sequence
nk → ∞ . Then since fn ≥ l1hn the theorem cannot hold.

However, if hn = O
(

e−λ
√
n

)

for some λ > 0, the theorem still holds. The
trick is to use an approximation to h(z) , namely hn(z) =

∑n
r=0 hrz

r , and to
observe that Jm,n is still the coefficient of zn in the expansion of hn(z)

m . Thus
we can use Cauchy’s inequality Jm,n ≤ hn(r)

mr−n with any r > 0. For r close
to 1 this is useful, provided we know how hn(r) varies. Whence the following
lemma.

Lemma 2.8. Suppose hn(z) =
∑n
r=0 hrz

r with hn = O(e−λ
√
n ) for some

λ > 0 . Then for 0 < εn ≤ µ/
√
n with µ < λ ,

hn(eεn) =

K−1
∑

k=0

εknS
(n)
k

k!
+O(εKn )

for any K ≥ 1 where S
(n)
k =

∑n
r=0 hrr

k .

Proof. We have

(∗) hn(e
εn) =

n
∑

r=0

hre
rεn =

n
∑

r=0

hr

∞
∑

k=0

rkεkn
k!

=

∞
∑

k=0

εkn
k!

n
∑

r=0

hrr
k =

∞
∑

k=0

εknS
(n)
k

k!

and for each k fixed, S
(n)
k → Sk =

∑∞
r=0 hrr

k as n→ ∞ . Note that if the radius

of convergence of
∑

hnz
n is 1 then hn(eε) =

∑∞
k=0 ε

kS
(n)
k /k! converges for all

n and ε > 0, but this is unbounded as n → ∞ so the series cannot possibly be
an asymptotic series. To prove the lemma we must estimate the right hand side

in (∗) . To do this let T
(n)
k =

∑n
r=0 r

ke−λ
√
r . We obtain the following bounds on

T
(n)
k :

(1) For k ≥ 1
2λ

√
n , we have

nke−λ
√
n ≤ T

(n)
k ≤ nk+1e−λ

√
n
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(2) In any case,

T
(n)
k ≤ Tk =

∞
∑

r=0

rke−λ
√
r = O

(

k3/2
(2k

eλ

)2k)

.

To prove the above, consider the function fk(t) = tke−λ
√
t . This increases for

0 ≤ t ≤ 4k2/λ2 where it reaches a maximum of (2k/eλ)2k after which it decreases.
Thus for k ≥ 1

2λ
√
n , the largest term occurs at the end of the series, that is,

nke−λ
√
n ≤ T

(n)
k ≤ n.nke−λ

√
n.

Next, let Nk = [(2k/λ)2] so that

Tk =

∞
∑

n=1

fk(n) =

(Nk−1
∑

n=1

+

∞
∑

n=Nk+2

)

fk(n) + fk(Nk) + fk(Nk + 1)

≤
(

∫ (2k/λ)2

0

+

∫ ∞

(2k/λ)2

)

fk(t) dt+ 2
(2k

eλ

)2k

=

∫ ∞

0

tke−λ
√
t dt+ 2

(2k

eλ

)2k

=
(2k + 1)!

λ2k+2
+ 2

(2k

eλ

)2k

= O
(

k3/2
(2k

eλ

)2k)

.

Using these, we obtain

∞
∑

k=K

εknT
(n)
k

k!
=

∑

K≤k≤λ√n/2

εknT
(n)
k

k!
+

∑

k>λ
√
n/2

εknT
(n)
k

k!

≤ A
∑

K≤k≤λ√n/2

εknk
3/2

k!

(2k

eλ

)2k

+
∑

k>λ
√
n /2

εknn
k+1e−λ

√
n

k!

≤ A′εKn
∑

K≤k≤λ√n/2
kεk−Kn

( 4k

eλ2

)k

+ εKn n
K+1e−λ

√
n

∑

k>λ
√
n/2

(nεn)
k−K

(k −K)!

≤ A′′εKn
∑

0≤k≤λ√n/2
kK+1

(4kεn
eλ2

)k

+ εKn n
K+1e−λ

√
n+nεn

≤ A′′εKn

∞
∑

k=0

kK+1
(2

e

)k

+ εKn n
K+1e−(λ−µ)

√
n = O(εKn )

since εn ≤ µ/
√
n , from which the result follows.
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Note that for k = [λ
√
n ] ,

εknT
(n)
k

k!
≥ εknn

ke−λ
√
n

k!
≥ A

(nεn
k

)k

k−1/2 ≥ A

(

εn
√
n

λ

)k

n−1/4,

so that εn < λ
√
n is necessary for an asymptotic series.

Now, using the above lemma with εn = µ/
√
n (0 < µ < λ), we find that

hn
(

eµ/
√
n

)

= S
(n)
0 + S

(n)
1

µ√
n

+O
( 1

n

)

= 1 +
µ

σ
√
n

+O
( 1

n

)

= eµ/σ
√
n+O(1/n)

since S
(n)
k = Sk + O(n−A) for all A and for any fixed k while S0 = 1 and

S1 = h′(1). Thus

Jm,n ≤ hn
(

eµ/
√
n
)m
e−µ

√
n = e((µ/σ

√
n )+O(1/n))m−µ√n = e−(µ|m−σn|/σ√n )+O(1)

whenever m < σn . We can now use this bound to obtain

∑

m<σn−A√
n logn

lmJm,n = O

(

∑

m<σn−A√
n logn

lme
−µ|m−σn|/σ√n

)

= O

(

l[σn]

∞
∑

A
√
n logn

e−µk/σ
√
n+o(k/

√
n )

)

= O

(

l[σn]

∫ ∞

A
√
n logn

e−µt/2σ
√
n dt

)

= O

(

l[σn]

√
n

∫ ∞

Aµ logn/2σ

e−y dy

)

= O
(

l[σn]n
(1/2)−(Aµ/2σ)

)

= o(l[σn])

if A is sufficiently large, for example A = 2σ/µ . As stated earlier, Lemma 2.4
is still valid for m > σn , so now we only need to consider the range |m − σn| =
O(

√
n logn) . Looking at Lemma 2.5, we find that we only used the fact that

for θ real and small, h(eiθ) = e(iθ/σ)−τθ2+O(θ3) . It is not difficult to show that
this follows from

∑

n3hn < ∞—which is certainly true in our case. Also, the
bound |m − σn| < 2σ

√
n logn can be replaced by O(

√
n log n) as only this fact

was used in the proof. Hence Lemma 2.5 may be applied and the arguments
following Remark 2.6 remain valid until we get to the sum

∑∞
m=0 Jm,n , which is

the coefficient of zn in the expansion of 1/1 − h(z) . But by the Erdős–Feller–
Pollard theorem [6], this tends to σ as desired. Thus we have the more general
theorem as follows:
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Theorem 2.9. Let f(z) = l
(

h(z)
)

where the Taylor coefficients ln of l(z)

satisfy (†) , and h(z) =
∑∞

0 hnz
n has 0 ≤ hn ≤ Ae−λ

√
n (some λ > 0) and is not

of the form k(zr) for any r > 1 with h(1) = 1 . Then the coefficients fn of f(z)
satisfy

fn ∼ σl[σn] as n→ ∞ where σ =
1

h′(1)
.

Remark 2.10. If we have hn 6= O
(

e−λ
√
n
)

, and we want to obtain some
asymptotic result for fn , then it seems we need to cut down the growth rate of ln .
We note that the theorem can be extended to the case where ln = s(eψ(n)) with
logn ≺ ψ(n) ≤ √

n given that hn = O(e−λψ(n)) for some λ > 0. We will discuss
the details in a separate paper. The case where ln is regularly-varying has been
considered by Embrechts et al. ([4], [5]) and Grubel ([8], [9]), particularly for its
connection with (generalised) renewal theory.

Our method in deriving the Tauberian theorem can also be applied to study
generalized renewal theory.

Given a continuous probability distribution η: (−∞,∞) → [0, 1] with η(0) =
0 and a sequence (ln)n≥1 of positive numbers, a generalized renewal process is
defined to be

(2) φ(t) =
∞
∑

n=0

lnη
∗n(t)

where η∗n(t) is the n -fold convolution of η(t) . The special case where ln = 1 for
all n is the renewal process treated in [6]. In [5] and [10], Embrechts, Maejima
and Omey obtained the asymptotic behaviour of φ(t + k) − φ(t) as t → ∞ for
fixed k > 0, given that ln varies regularly. We obtain a more general result
under the assumption that ln = s(e

√
n ) where s is slowly-varying, given certain

convergence conditions on η(t) . We note that (2) has the form similar to (1)
where we had fn =

∑∞
m=0 lmh

∗m
n . To make this connection more explicit, we let

h(z) =
∫ ∞
0
e−tz dη(t) and l(z) =

∑∞
n=0 lnz

n , from which it follows formally that

f(z)
def
=

∫ ∞

0

e−tz dφ(t) =

∞
∑

n=0

ln

∫ ∞

0

e−tz dη∗n(t) =

∞
∑

n=0

lnh(z)
n = l

(

h(z)
)

.

Theorem 2.11. We have

φ(t+ k) − φ(t)

k
∼ σl[σt] as t→ ∞

where 1/σ = −h′(0) under the following conditions:

(i) h(z) is analytic in Re(z) > −δ for some δ > 0 ,

(ii)
∫ ∞
A

(|h(c± ix)|/x) dx converges for every c > −δ (where A > 0), and

(iii) ln = s
(

e
√
n
)

for some slowly-varying function s .
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Condition (iii) allows us to make ln significantly larger than those considered
in [5] and [10], where ln is regularly-varying. By the Riemann–Lebesque theorem,
we have |h(c+ ix)| → 0 as x→ ±∞ through real values for any given c > −δ , so
that condition (ii) is not very restrictive.

Proof (main steps). First, by the Laplace inversion formula, we have

η∗n(t) =
1

2πi

∫ c+i∞

c−i∞

etz − 1

z
h(z)n dz

for any c > −δ . (Here
∫ c+i∞
c−i∞ = limT→∞

∫ c+iT

c−iT .) Again, we want to estimate
In(t) = η∗n(t+k)−η∗n(t) as t→ ∞ for various n . As in Lemma 2.4 we find that

In(t) =

{

O(e−ηt), O(e−η
′n) for n ≤ 1

3σt and n ≥ 3σt respectively,

O
(

e−|n−σt|/σ
√
t
)

for |n− σt| ≥ 2σ
√
t log t and 1

3
σt < n < 3σt

while for |n− σt| < 2σ
√
t log t , we have, as in Lemma 2.5,

In(t) =
k

2
√
πστt

exp
{

−(n− σt)2

4σ3τt

}

+O
( (log t)2

t

)

where τ = 1
2

(

h′′(0) − h′(0)2
)

> 0 by Cauchy–Schwarz.

For example, for n ≤ 1
3σt , choose (−δ <) c < 0 such that h(c) ≤ e−2c/σ ,

which is possible since h(z) = e−(z/σ)+τz2+O(z3) as z → 0. Hence

|In(t)| =

∣

∣

∣

∣

1

2π

∫ ∞

−∞

et(c+ix)(ek(c+ix) − 1)

c+ ix
h(c+ ix)n dx

∣

∣

∣

∣

≤ 1

π
etch(c)n−1

∫ ∞

−∞

|h(c+ ix)|√
c2 + x2

dx since |h(c+ ix)| ≤ h(c)

= O(etc−2cn/σ) = O(ect/3) by condition (ii)

as desired (note that c < 0).
For the ranges 1

3σt < n ≤ σt − 2σ
√
t log t and σt + 2σ

√
t log t ≤ n < 3σt ,

take c = −1/
√
t and 1/

√
t respectively. We deform the integrals into

∫ c+i∞

c−i∞
=

∫ c+iπ

c−iπ
+

∫ iπ

c+iπ

+

∫ i∞

iπ

+

∫ c−iπ

−iπ
+

∫ −iπ

−i∞
.

Call these last four integrals
∫

γi

(i = 1 to 4) respectively. For
∫ c+iπ

c−iπ we proceed
as in the proof of the main theorem, while on γ1 we use the following estimate:

∣

∣

∣

∣

∫

γ1

∣

∣

∣

∣

≤ etc(ekc + 1)|c|
2π2

sup
0≤x≤c

|h(x+ iπ)|n
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where c = 1/
√
t (and similarly for c = −1/

√
t). But |h(iπ)| < h(0) = 1, (since

|h(z)| ≤ h(Re z) with equality occuring if and only if z is real) so that sup < 1
for all |x| sufficiently small, i.e., for all t sufficiently large. Hence

∣

∣

∫

γ1

∣

∣ = O(A−n)

for some A > 1. For
∫

γ2
we use a similar trick and the fact that |h(ix)| → 0 as

x→ ∞ to obtain
∣

∣

∫

γ2

∣

∣ = O(A−n) for some A > 1.

Applying the same arguments following Remark 2.6 to
∑∞
n=0 lnIn(t) , we ob-

tain
∞
∑

n=0

lnIn(t) ∼ l[σt]

∞
∑

n=0

In(t) ∼ kσl[σt],

which gives
φ(t+ k) − φ(t)

k
∼ σl[σt] as t→ ∞.

For the special cases ln = 1 and ln = 1/n of renewal theory and harmonic
renewal theory respectively, we thus obtain

φ(t+ k) − φ(t) → kσ as t→ ∞

and

φ(t+ k) − φ(t) ∼ k

t
as t→ ∞,

which agree with the known results.
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[9] Grübel, R.: On subordinated distributions and generalised renewal measures. - Ann.
Probab. 15:1, 1987, 394–415.

[10] Maejima, M., and E. Omey: A generalised Blackwell renewal theorem. - Yokohama
Math. J. 32, 1984, 123–133.

[11] Meir, A., and J.W. Moon: On an asymptotic method in enumeration. - J. Combin.
Theory Ser. A 51, 1989, 77–89.

[12] Odlyzko, A.M.: Asymptotic enumeration methods. - Handbook of Combinatorics,
preprint, 1992.

Receoived 22 November 1994


