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Abstract. We give an asymptotic formula for the Taylor coefficients f, of f(z) = l(h(z))
where [(z) is analytic in the unit disc whose Taylor coefficients I,, vary ‘smoothly’ and h(z) is
analytic in a larger disc. We show that under mild conditions on h(z), fn ~ oljon) as n — o0
where o = 1/h/(1). Applications to renewal theory are also discussed.

1. Introduction

Asymptotic enumeration usually involves estimating coefficients of a generat-
ing function f(z) which satisfies some functional equation. In many cases such a
functional equation can be reduced to the form

f(z) =1(h(2)),

where the function [(z) is frequently known and its Taylor coefficients [,, are non-
negative and usually satisfy a certain regularity condition (see Bender [1], Meir
and Moon [11]). In this paper we make the following regularity condition on 1,
which occurs in many applications:

(1) btpvm] ~ In as n — oo for all A € R.

For instance, the cases [,, = 1 and [, = 1/n from renewal theory and harmonic
renewal theory respectively both satisfy (f) for which our result applies and we
will discuss the details in Theorem 2.11 at the end of the paper. It will be shown
later that for a large class of functions h(z) this is a natural choice to make and
difficulties appear if the [,, are made any larger. We note that [(z) has a radius
of convergence equal to 1 and z = 1 is a singularity (since e eV <, < efVn
follows from (f) and [, > 0). We also assume that h(1) = 1, and that h(z)
has non-negative coefficients such that |h(z)| = h(|z]) only if z is real and non-
negative. This last condition is equivalent to h(z) # 2Pk(z") for any analytic
function k(z) and any r > 2, p > 0 (see Remark 2.7(3)).

We note that many authors have considered the composite function l(h(z))
where the Taylor coefficients h,, are well-behaved, but we consider the case where
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the coefficients [,, are well-behaved. Indeed, our setting differs significantly from
the one considered by Embrechts and Omey in [4], since their ‘I(z)’ is analytic in
an open region containing the set {h(z) : |z| < 1}. In particular, I(z) would then
be analytic at z = 1.

From an analytical viewpoint we have two quite distinct cases:

(i) h(z) is analytic in a disc D(0,1+ §) for some § > 0.

(ii) h(z) is analytic in the unit disc only.
We shall first consider case (i).

Estimating the coefficients of f(z) can often be done by using the analytic
continuation of f(z) to a region

{lz2] <1+4n:|arg(z —1)| > ¢ for some n > 0and 0 < ¢ < 37}.

For instance, such methods have been used in [7] and [12]. However, we will
adopt a different approach in that we do not assume such an analytic extension,
and in this respect the techniques we use seem to be more elementary.

Our main result is

Theorem 1.1. Let f(z) = I(h(z)) where the Taylor coefficients I,, of I(z)
satisfy (1), and h(z) is analytic in |z| < 1+ 6 where § > 0, has non-negative
coefficients such that |h(z)| = h(|z|) on [0,1+ §) only and h(1) = 1. Then the
coefficients f,, of f(z) satisfy

1
L)

Jn~0lgn asn — oo where o=

We have readily the following corollary which is an extension of the theorem.

Corollary 1.2. Let f(z) = l(h(z)) with I(z) and h(z) as before, but with
h(z) analytic in |z| <~ such that h(3) =1 for some 0 < 3 < . Then

1
Bh(B)

fn~0olignB~" asn— oo where o =

The proof of the corollary follows immediately by putting F'(z) = f(8z) and
H(z) = h(Bz) so that F(z) = [(H(z)) and the conditions for the theorem are
satisfied. o

After the proof of Theorem 1.1, we will extend the theorem to cover the more
difficult case (ii) in Theorem 2.9.

I wish to thank the referee for many helpful suggestions.
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2. Proof of the theorem
We begin with the following representation of [, .

Lemma 2.1. Given a sequence (l,,),>0 of positive reals such that ln+[>\\/ﬁ] ~
l, as n — oo for all real A\, then

for some slowly-varying function s.

Proof. The result will follow once we can show that [,,1 ~ [, as n — oco.
For then l,,ym, ~ I, as n — oo for all integers m, so by letting s(z) = l[10g2)?]
we observe that

s(A\x) ~ s(x) as x — oo forall A >0,

i.e., s is slowly-varying.
To show that l,41 ~ l,, consider n,(\) = [A/n]+ [-Ay/n+ [Ay/n]] for
various A > 0. By (f), we have [, 1, (n) ~ . Taking A = v2 and A = 2 in turn,

one finds that 7, (v/2) = —2 and 7,,(2) = —3 for all n except when |2n —m?| or
|4n — m?| < some constant A.

If this happens, let k =n+ [uy/n] for some 0 < u < 1. Then 2k and 4k are
bounded away from perfect squares and hence l;_o ~ [;_3 ~ [ from which it will
be seen that [, o ~ [,_3 as required. o

Note that the converse holds trivially, so that we have an equivalence.
Slowly-varying functions have been studied in great detail (see Bingham et

al. [3] or Feller [5]) and it is well known that they can be represented as follows:
If s(z) is slowly-varying, then

s(z) = c(z) exp{/w @ dt}

where ¢(z) — ¢ >0 and g(x) — 0 as x — 0.
Using this, we easily obtain

Lemma 2.2. If [, 1y, /z) ~ ln as n — oo for all real A, then
-
l, = cnexp{z —m}
m=1 \/E

where ¢, — ¢ >0 and 9,, — 0 as n — oc0.
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Proof. Since I, = s(e¥V™), we have

I, = c(eV™) exp{/jﬁ @ dt} = ¢, exp{/on % ds}

by putting ¢ = eV® | n(s) = Le(eV®) and ¢, = ¢(eV™). This gives us
2

o3 2]

m=1

where .
nim+t—1)

1+(t—1)/m

Om =

which tends to 0, as desired. o

This lemma gives us a corollary which will be useful in the proof of the
theorem.

Corollary 2.3. For n and n+ k — o0,

s = tesofo( 1) o)},

Proof. Without loss of generality take k > 0. We have

Lotk Cn—!—k Z m—|—n
Ly vm—+n
Now ¢pix ~ ¢, and ’Zlg Omtn/Vm + n’ < 0k/+/n as required. o
We are particularly interested in the case when ay/n < |k| < Ay/n logn for
some constants a and A in which case the o(1) term becomes superfluous.

We are now in a position to prove the theorem.
Proof. We have by Cauchy’s integral formula,

) oo L[ e
= d Im d
Jn = i . zntl = i . z”+1 Z zntl §

where ~ is inside the unit disc. Thus

(1) fn = Z lme,n
m=0
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where
I 1 h(z)™

= — dz
’ 2mi J., zntl

is the coefficient of 2™ in the expansion of h(z)™. Suppose h,,, is the first non-zero
coefficient of h(z). Then J,,,, =0 for m > n/my. (If mg =0, J,, n, > 0 always.)
The proof basically involves estimating J,, ,, for m > 0. We will show that J,, ,
is largest when m is close to on. Recall that o = 1/h/(1). In fact, (1/0)Jmn
behaves like a normal distribution with mean on and deviation ov/207n where
7 is some positive constant dependent on h(z). Note that h'(1) = >°7° nh, >
mo anoo hy, = mg, so that on lies in the non-zero range of .J,, ,,. The special case
where h,, = 0 for all n > mg so that h'(1) = mg gives h(z) = hp,2"° which is
not allowed.
We first find bounds for J,,,, when |m —on| is ‘large’.

Lemma 2.4. (1) For 0 <m < %an and m > 3on, we have

Imon < e e~n'm respectively for some 1,1 > 0.

(2) For 3on <m < on—20y/nlogn and on+ 20+/n logn < m < 3on, we
have
Imn < Ae~lm=onl/ovn g1 some A.

Proof. (1) Consider first 0 < m < %an. We have

for any 0 < r < 149 since |h(2)| < h(]z]|). Take r = e® where € > 0 is chosen
such that
h(es) < 626/0.

This is possible because h(e') =1+ (t/0) + O(t*) = exp((t/0) + O(t?)) as t — 0.
Then
Jom < 8(25m/0')—5n < 6—5n/3
as required. For m > 3on, take r = e~ ° where ¢ > 0 is chosen such that
h(e™®) < e¢~¢/29  Then again Jy, , < g~ (em/20)ten < o—em/6o
(2) For the range on < m < on — 20\/n logn take r = e!/V™ in the above
inequality. Then

mn < h(eV/VA) eV = o(/oVIIHOW MMV _ o~ (jm=on|/oyT)+O()

If on+20+/n logn < m < 3on take r = e~ /v and the result follows similarly. o
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Let S ={m | fon < m < 3on and |m — on| > 20/n logn}. Then from
these bounds, we find that

Z lme,n - Z lme,n + Z lme,n
S

m—on|>20+/n logn 0<m<on/3, m>3on
’
<e M E Iy + E l,e” T
0<m<on/3 m>3on

+ AN peimelonll/ova
S

<en'n 4 2Al[op] Z e k/ovntolk/yvn)
k>20+/n logn

by putting k¥ = m — [on] and using Corollary 2.3 and the fact that I, = e®vV7) .
The last sum is bounded for all large n by

o 20
e t/2oVn gy = 22
/QUﬁlogn \/ﬁ

Hence

_of len
> szm,n_o<\/ﬁ).

|m—on|>20+/n logn

Now it only remains to consider the range |m — on| < 20+/n logn. Here Jp,
behaves as follows:

Lemma 2.5. For |m — on| < 20+/n logn, we have

B 1 (m — on)? (logn)?
Jmin = o/morn ¥ {_ do3Tn } * O( n )

where 7 = £ (h'(1) + h”(1) — h'(1)?) > 0 by Remark 2.6.
Proof. We have

1 h(z)m 1 o —nif i0\m
Jmnz—.[Y s dz:%o e " h(e™)™db.

Let 6, = v/2logn/omn with 7 as before. Then

_/ e—nwh(ew)m d@’ < sup |h(819)|m — |h(eiu‘5n)|m
on

2 5, <O<27m—6pn
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for all n sufficiently large, since |h(e?’)| decreases near 0 and 27 where it is
maximal. But

h(e) = h(1+i0 — 307+ O(0%)) =1+ 1 (1)if — 3 (W' (1) + 1" (1))6% + O(6)
= exp(ge - 7'92 + 0(93)>

so that |h(et?n)|™ = exp(—m7d2 + O(mé3)) = O(n=2). Hence

1 o

T aﬂwua%md9+o(%ﬂ.

a 2 —5,

In the range |6| < 6, , we have
—nif i0\ym __ i mi _ 2 3
e "h(e"”)™ = exp(—nifd + —0 — m76= + O(mb°?)
o

— 2
= exp{m Uanw — otnb? + O<(10\g/g) )}

:exp{nlgomfg—wﬂWWQ}(l+T)(UT%?2))

by using m = on + O(y/nlogn). Thus

1o : logn)? [ 1
Jo = e(m—anze/a)—a'rnez do + O(( og ’I’L) / e—JTn92 de) 4+ O<_2>
n

" 2w ), v Jos,
\/2logn 5 ' 1 2
e—¢ +(m—on)i¢p/o\/otn d(b + O<( 0og n) /

eyl
2m\/oTn —\/2logn n —o0

1 2,43 o . 2
_ —(m—on)?/4c°Tn —(¢p—i(m—on)/20+/oTn) d
27n/07n6 /_OO c ¢

+o(=5) +O(M>

n2 n

oo

e‘¢2d¢)

2

= sy ool ro (M)

since

2@f&d¢:o&%>u

1 /OO
< -
‘/¢>\/210gn N \/210gn \/2logn

Remark 2.6. Note that 7 > 0. This is because > o hyn Y o n?h, >

(Zgo nhn)2 by Cauchy—Schwarz. Equality occurs only if h, = 0 for all n ex-
cept perhaps for one value of n but this case has already been ruled out.



196 Titus Hilberdink

To finalize the proof of the theorem, we must consider the sum ) I, Jm.n
over the range |m — on| < 20/n logn.
First we have

(logn)? (logn)?
Lin -1 o(|klv/n)
> S >, e

n
m—on|<20+/n logn |k|<20+/n logn

1 20+/nlogn
=0 (l[o’n] (log n)” /o et/ VI dt)

:<>ahﬂnf“/”+€>

where € and ¢’ are arbitrarily small. Now choose an arbitrary A > 0. Then we

have ) / ,
— m—on 2 0'37'n
D L A aED DD D

|m—on|<20+/n logn

where 3 is over the range |m —on| < Ay/n and 3" is over Ay/n < |m—on| <
204/n logn. For Y  we have

Z” _lom 3 o~ (k2 /40 7n) +o(|K] /v/m)
2\/mot™n

A/n<|k|<20+/n logn

20+/nlogn
-0 l[“”]/ ® 8—(t24037n)+o(t/\/ﬁ)dt
n

Avn
=0 (l[an] / e~ (V7 /45°7)+o(y) dy) where t = yv/n
A
€(A>l[an]
where £(A) — 0 as A — oco.
Lastly
/
Z ~ lgn] Z Iimn by virtue of (})
|m—on|<Ayn
= l[an] Z Jm,n(1 + 5n(A))
m=0

where, as before, |0,(A)] < §(4) — 0 as A — oo by using the previous known
bounds on J,, . But

00 1 .
Z Jmn = i (1 — h(Z))z”‘H dz=0+0(a™)

m=0
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for some a > 1, by choosing 7 so that it contains the simple pole of 1/1 — h(z)
at 1. So letting A — oo, (1) gives

fn ~ UZ[Un]

as desired. o

Remark 2.7. (1) The result is ‘best possible’ in the sense that if we increase
the growth rate of [,, it becomes false. In particular, by the same methods one
can prove that if [, = r(e\/ﬁ) where r is a regularly-varying function with index
p, then
o31p%/4

n ~ Olignie as n — oo.
[on]

(Lemma 2.4 would have to be improved to J,, = O(e_(m_””)2/4”3T”) for
Im — on| = O(n?/3). This is done by taking r = e~ (m=9m)/20"7n i the proof.)

Also, if the I, are made larger than e4v™ (any A), then the arguments
following Lemma 2.4 and Remark 2.6 fail and only with very precise knowledge
of the behaviour of l{;)4m/l[jon) @s m varies, can we obtain a simple asymptotic
formula for f, .

(2) The proof of the theorem would in many cases be substantially easier if we
did not allow the [,, to be quite so large. For example, if [,, was regularly-varying
(which satisfies (1)), we only need Lemma 2.4 after which

o0

Z lme,n ~ l[o-n] Z Jm,n ~ l[an] Z Jm,n ~ Ul[an]
m=0

|m—on|<20+/n logn |m—on|<20+/n logn

follows immediately. Also, with a little extra work, we can usually find an asymp-
totic expansion for f,, given that [,, has one.

(3) The original condition on h(z) was that |h(z)| = h(]z]) on [0,14 ) only.
As stated earlier this is equivalent to saying that h(z) is not of the form 2zPk(z")
for any analytic k(z) and p > 0, » > 2. On the other hand, if h(z) = 2Pk(z"),
then consider ged(p,r) > 1 and = 1. In the former case, the theorem fails since
fn=0if d fn. In fact, if ged(p,r) = d > 2 then h(z) = k1(2?) some k; analytic
which is equivalent to the case p = 0. If however ged(p,7) = 1, the result is,
surprisingly enough, still true. Lemma 2.4 will hold as before but a change occurs
in Lemma 2.5. Here we have

1 2
e—(m—an)2/403’rn + O(< og n) > if pm=n (mod 7’),

r
Jmn = { 2/ moTn
0

otherwise.

A little elementary number theory will be needed in the later stages of the proof.
Thus the result stands true for all hA(z) not of the form k(z") as long as there is
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a (0 > 0 within its radius of convergence such that h(8) = 1. If h(z) = k(z")
with r > 2 maximal, § =1, then f(z) = F(z") with F(z) =Y, F,2z" and the
theorem applies to F(z), i.e., F,, ~ 70lj4n). The result now covers all possible
forms of h(z).

In case (ii), where h(z) is analytic in the unit disc only, we cannot use the
arguments of Lemma 2.4 (for the case m < on) so other methods are needed to
provide the bounds we want, viz.

Imon = O(e"“m_‘m'/\/ﬁ) for some A > 0.

For the result f,, ~ ol{sy,) to hold, we clearly need some bound on h, (given that
we still allow [,, to be large). For example, if h,, # O(e‘A\/ﬁ) for any A > 0, we

can always find an I, = s(eV™) such that ligny] = 0(hy, ) along some sequence
nir — oo. Then since f, > Il1h, the theorem cannot hold.

However, if h, = O(e‘A\/ﬁ) for some A > 0, the theorem still holds. The
trick is to use an approximation to h(z), namely h,(z) = >.'_,h,2", and to
observe that J,, ., is still the coefficient of 2™ in the expansion of h,(z)™. Thus
we can use Cauchy’s inequality Jy, , < h,(r)™r~" with any r > 0. For r close
to 1 this is useful, provided we know how h,(r) varies. Whence the following
lemma.

Lemma 2.8. Suppose h,(z) = Y.r_, hy2" with h, = O(e”*V") for some
A > 0. Then for 0 < &, < u/y/n with p <X\,

€ glrfLSI(cn) K
ha(e™) = 3 =+ O(ef)
k=0 ’

for any K > 1 where S,gn) =>" o hert.
Proof. We have

() e =3 hert =Y oh, Y
r=0 k=0

r=0 =

© LN © L aln)

_ €n k __ gnSk

=D et =)
k=0 =0 k=0

and for each k fixed, S,(Cn) — S, = Z:O:O h,r* as n — oco. Note that if the radius

of convergence of Y h,z™ is 1 then hy,(e®) = > 72, 5’“S,E;n)/k! converges for all
n and € > 0, but this is unbounded as n — oo so the series cannot possibly be
an asymptotic series. To prove the lemma we must estimate the right hand side

in (x). To do this let T,gn) =", rke=?V7 | We obtain the following bounds on
T,gn) :
(1) For k > Ay/n, we have

nke=Avn < Tén) < nktle=Avn
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(2) In any case,

T(n)<T —Zr e AWV = O(k?’/Q(ii) )

To prove the above, consider the function fi(t) = tke=AVT_ This increases for

0 <t < 4k?/)? where it reaches a maximum of (2k/e))?* after which it decreases.

Thus for k > %)\\/ﬁ, the largest term occurs at the end of the series, that is,
nke=AVn < T,gn) < n.nfe=AVn,

Next, let Ny = [(2k/))?] so that

oo Ng—1
Tp =Y fr(n) (Z Z ) n) + fe(Nk) + fr(Ng + 1)

(2k/2)? 00 2k 2k
< —I—/ ) t)dt+2( —
<A (2k/N)? fk( ) (6)\)
e 2k
= [ the Mgt 42
/0 di+ (e/\>

=S () =o(n(5)”)

Using these, we obtain

$ AT e
1 ! |
= P K<k<AVn/2 & k>Ay/n/2 &
k1.3/2 ok ko, k+1,—X\/n
exk 2k ern e
<4 ), (5) D Dl
K<k<Ay/n/2 k> /2
4k (ne
< AleK Z kék_K<—) + eKpKtle—Avn Z n)
— n n 2
K<k<\y/n/2 eA k>>\\/_/2 )
4ke
< AVK Z kK-H( n) 1 K KL= tne,
— n 2 n
0<k<A/n/2 e

< AVl ZkK+1(2) +efnf e oV = oK)
€
k=0

since &, < p/+/n, from which the result follows. o
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Note that for k = [Ay/n],

k(n) k. k,—A/n k
enly S eyn’e vn ZA(%)kk_l/QZA(#) n—1/47

k! k!

so that e, < A\y/n is necessary for an asymptotic series.
Now, using the above lemma with &, = u/y/n (0 < p < \), we find that

B (/V7) :Sé”)+5§”)%+0(%) —1+ f+0< ) = er/evmon/n

since S,(Cn) = S, + O(n=4) for all A and for any fixed k while S; = 1 and
S; = h/(1). Thus

T < b (€2 V) =iV = (/o V/R)+OQ/m)m—p/i _ o~ (ulm—onl/o/7)+0(1)

’

whenever m < on. We can now use this bound to obtain

Z lndm.n = O( Z lme—ulm—am/a\/ﬁ)

m<on—Ay/n logn m<an—A\/_ logn

O

Lo —uk/aﬁ+o<k/ﬁ>)
A\/_logn

(l —,ut/QU\/ﬁ dt)
Av/n logn

lon] V10 eV dy)
Aplogn/2o

1/2 Ap/20
o([ /D= (A >>:0(l[m])

I
)

O

if A is sufficiently large, for example A = 20/u. As stated earlier, Lemma 2.4
is still valid for m > on, so now we only need to consider the range |m —on| =
O(y/nlogn). Looking at Lemma 2.5, we find that we only used the fact that
for 6 real and small, h(e?) = e(#0/0)=m0*+0(0%) " Tt is not difficult to show that
this follows from > n3h, < oco—which is certainly true in our case. Also, the
bound |m — on| < 20+/n logn can be replaced by O(y/n logn) as only this fact
was used in the proof. Hence Lemma 2.5 may be applied and the arguments
following Remark 2.6 remain valid until we get to the sum Y °_, Jy,.n, which is
the coefficient of 2" in the expansion of 1/1 —h(z). But by the Erdds—Feller—
Pollard theorem [6], this tends to o as desired. Thus we have the more general
theorem as follows:
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Theorem 2.9. Let f(z) = I(h(z)) where the Taylor coefficients l,, of I(z)
satisfy (1), and h(z) = 30 hyp2" has 0 < h, < Ae=*V" (some X\ > 0) and is not
of the form k(z") for any r > 1 with h(1) = 1. Then the coefficients f,, of f(z)

satisfy
1

(1)

Remark 2.10. If we have h, # O(e_k\/ﬁ), and we want to obtain some
asymptotic result for f,,, then it seems we need to cut down the growth rate of ,,.
We note that the theorem can be extended to the case where I, = s(e?(™) with
logn < ¢(n) < /n given that h, = O(e" ™) for some A > 0. We will discuss
the details in a separate paper. The case where [,, is regularly-varying has been
considered by Embrechts et al. ([4], [5]) and Grubel ([8], [9]), particularly for its
connection with (generalised) renewal theory.

Jn ~ 0lign) as n — oo where o =

Our method in deriving the Tauberian theorem can also be applied to study
generalized renewal theory.

Given a continuous probability distribution 7: (—oo, 00) — [0, 1] with n(0) =
0 and a sequence (l,)n>1 of positive numbers, a generalized renewal process is

defined to be

(2) $(t) = > L™ (t)
n=0

where n*"(t) is the n-fold convolution of 7(t). The special case where [,, = 1 for
all n is the renewal process treated in [6]. In [5] and [10], Embrechts, Maejima
and Omey obtained the asymptotic behaviour of ¢(t + k) — ¢(t) as t — oo for
fixed k£ > 0, given that [, varies regularly. We obtain a more general result
under the assumption that [,, = s(e\/ﬁ) where s is slowly-varying, given certain
convergence conditions on n(t). We note that (2) has the form similar to (1)
Where we had f, =Y °_l,m,hi™. To make this connection more explicit, we let

fo et dn(t) and I(z) =, ° ,1,2", from which it follows formally that

£(2) déf/o et dg(t) Zz / e dy(t) = Y Lah(2)" = U(h(2)).

Theorem 2.11. We have

ot + k) — ¢(t)
k

where 1/0 = —h'(0) under the following conditions:
(i) h(z) is analytic in Re(z) > —6 for some ¢ > 0,
(i) [ (|h(c £ iz)|/x)dz converges for every ¢ > —& (where A > 0), and

~ Ol[gy) as t— oo

(iii) 1, = s(e\/ﬁ) for some slowly-varying function s.
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Condition (iii) allows us to make [,, significantly larger than those considered
in [5] and [10], where [,, is regularly-varying. By the Riemann—Lebesque theorem,
we have |h(c+iz)| — 0 as © — Foo through real values for any given ¢ > —¢, so
that condition (ii) is not very restrictive.

Proof (main steps). First, by the Laplace inversion formula, we have

(t) = / ey de

270 J oo z

for any ¢ > —d. (Here fccjf; = limp_ fccj—:;) Again, we want to estimate

I,(t) =n*"(t+k)—n*"(t) as t — oo for various n. As in Lemma 2.4 we find that

L(t) = O(e™™),0(e="™)  for n < $ot and n > 3ot respectively,
e O(e_‘”_”“/‘”/g) for |n — ot| > 20/t logt and %at <n <30t

while for |n — ot| < 20/t logt, we have, as in Lemma 2.5,

k — ot)? log t)?
_ 7exp{_u} +O(<0g ) )
2/mort do37t t
where 7 = £ (h”(0) — #'(0)?) > 0 by Cauchy—Schwarz.
For example, for n < 1ot, choose (—6 <) ¢ < 0 such that h(c) < e=2¢/7,
which is possible since h(z) = e~ (*/9)+7=°+0G") a5 » — 0. Hence

I(t)

1 /oo et(c—H'ac) (ek(c+ix) _ 1) h(c N Z-x)n "

2

[In(8)| =

oo c+x

VAN

L, 1 [T [h(e i) . .
_ (& n <
e h(c) /_OO o dx since |h(c+ix)| < h(c)

= O(e*727/7) = O(e*/?) by condition (ii)

as desired (note that ¢ <0).
For the ranges %O’t <n < ot—20t logt and ot + 20/t logt < n < 3ot,

take ¢ = —1/v/t and 1/+/t respectively. We deform the integrals into

c+1i0c0 c+im % 100 c—1iT —iT
c—100 c—iT ct+im LT —T —1300

Call these last four integrals fv' (i =1 to 4) respectively. For ch::T we proceed
as in the proof of the main theorem, while on v; we use the following estimate:
J,

te( ke 1
SM sup |h(z + im)|"
272 0<z<c
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where ¢ = 1/4/t (and similarly for ¢ = —1/+v/t). But |h(im)| < h(0) = 1, (since
|h(2)| < h(Rez) with equality occuring if and only if z is real) so that sup < 1
for all |z| sufficiently small, i.e., for all ¢ sufficiently large. Hence ‘ f%‘ =0(A™™)

for some A > 1. For fw we use a similar trick and the fact that |h(iz)] — 0 as
x — 0o to obtain }f%} = O(A™"™) for some A > 1.

Applying the same arguments following Remark 2.6 to Y 1,1, (t), we ob-
tain

D lnn(t) ~ gy Y Tn(t) ~ koljgy,
n=0 n=0

which gives

ot + k) — ¢(t)
k

~ Ol ast — 00.0

For the special cases l,, = 1 and [, = 1/n of renewal theory and harmonic
renewal theory respectively, we thus obtain

ot +k)—o(t) — ko as t — oo

and

ot + k) — o(t) ~

as t — oo,

k
t

which agree with the known results.
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