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UNIFORMLY QUASIREGULAR SEMIGROUPS

IN TWO DIMENSIONS
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Abstract. Let G be a semigroup of K -quasiregular or K -quasimeromorphic functions map-
ping a given open set U in the Riemann sphere into itself, for a fixed K , the semigroup operation
being the composition of functions. We prove that if G satisfies an algebraic condition, which is
true for all abelian semigroups, then there exists a K -quasiconformal homeomorphism of U onto
an open set V such that all the functions in f ◦G◦f−1 are meromorphic functions of V into itself.
In particular, if U is the whole sphere then the elements of f ◦G ◦ f−1 are rational functions. We
give an example of a semigroup generated by two functions on the sphere, each quasiconformally
conjugate to a quadratic polynomial, that cannot be quasiconformally conjugated to a semigroup
of rational functions. We give another such example of a semigroup of K -quasiconformal homeo-
morphisms. These results extend and complement a similar positive conjugacy result of Tukia and
of Sullivan for groups of K -quasiconformal homeomorphisms.

1. Introduction and results

Let U be a non-empty open set in the extended complex plane or Riemann
sphere C = C ∪ {∞} where C denotes the complex plane. In two dimensions
we may define a K -quasimeromorphic map of U (into C) by saying that f is
K -quasimeromorphic if we can write f = ϕ ◦ h where h is a K -quasiconformal
map on U (hence, by definition, a homeomorphism) and ϕ is a meromorphic
function defined on h(U) . If f never takes the value ∞ , we say that f is K -
quasiregular. The composition of two quasiregular or quasimeromorphic maps is
also quasiregular or quasimeromorphic. Hence we may talk about a semigroup of
quasiregular or quasimeromorphic maps of U into itself, the semigroup operation
being the composition of functions. A special case would be a group of quasi-
conformal maps of U onto itself. If all the elements of such a semigroup G are
K -quasiregular or K -quasimeromorphic for a fixed K ≥ 1, we say that G is a K -
quasiregular or a K -quasimeromorphic semigroup. If this is true for some K , we
say that G is a uniformly quasiregular semigroup or a uniformly quasimeromorp-
hic semigroup. A special case would be a K -quasiconformal group or a uniformly
quasiconformal group.

We shall assume throughout that each element of G is non-constant in each
component of the open set U . If U is connected and if this restriction is not
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imposed, then the subset of G consisting of non-constant functions is a subsemi-
group while any homeomorphism would conjugate the constant functions in G to
constant functions. Thus, if U is connected, our results extend immediately to
the case when G is allowed to contain constant functions.

Uniformly quasiconformal groups and uniformly quasiregular or quasimero-
morphic semigroups can certainly arise as follows. Let U and V be open sets in
C , let f be a K -quasiconformal map of U onto V , and let G′ be a group of
conformal self-mappings of V (for suitable V , this could be a group of Möbius
transformations of V onto itself), or let G′ be a semigroup of meromorphic func-
tions of V into itself. Then G = f−1 ◦ G′ ◦ f is a K2 -quasiconformal group, or
a K2 -quasiregular or a K2 -quasimeromorphic semigroup of functions taking U
onto or into itself. In particular, in the case of a semigroup rather than a group, we
could have U = V = C , and G′ could be a semigroup of rational functions (con-
taining at least one function of degree at least 2, say). Tukia [4] and Sullivan [3]
proved that any K -quasiconformal group arises in this way, and Tukia [4] showed
furthermore that if G is a K -quasiconformal group then we may take f to be
K1 -quasiconformal where K1 depends on K only and K1 ≤ K . In this note, we
shall generalize Tukia’s method so as to extend his result to K -quasiregular and
K -quasimeromorphic semigroups generated by a single function, and to certain
other suitable semigroups. We provide a counterexample to show that in case of a
semigroup generated by two functions, each of which is individually conjugate to
a quadratic polynomial, there does not have to exist a quasiconformal conjugacy
of the whole semigroup to a semigroup of meromorphic (in this case, rational)
functions.

Theorem 1. Let U be a non-empty open set in C , and let G be a semigroup

of K -quasiregular or K -quasimeromorphic functions of U into itself, generated

by a single function. Then there is a K1 -quasiconformal map f of C onto itself,

taking U onto an open set V such that every element in the semigroup f ◦G◦f−1

is a meromorphic function of V into itself. In particular, if U = C then G is

quasiconformally conjugate to a cyclic semigroup of rational functions. Here K1

depends on K only and K1 ≤ K2 .

We may take K1 =
(
√

K2 + 1/K2 + K − 1/K
)

/
√

2 ≤ min{K
√

2, K
√

2 }
(compare [4, p. 77]). This bound is obtained from Tukia’s by replacing K by K2

in his formula.

Theorem 2. There exist quadratic polynomials F1 and F2 and quasicon-

formal mappings ϕ1 and ϕ2 of C such that the functions fj = ϕj ◦ Fj ◦ ϕ−1
j ,

for j = 1, 2 , generate a uniformly quasiregular semigroup G in C , but there

is no quasiconformal homeomorphism f of C such that f ◦ G ◦ f−1 consists of

meromorphic (hence, rational) functions.

As the proof of Theorem 2 will show, the reason why Tukia’s method of proof
for groups fails for general semigroups, is, in a sense, a lack of relations between
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the elements of a semigroup. If G is a group and g, h ∈ G then there is u ∈ G
satisfying some relation involving g and h , such as g = h ◦ u or g = u ◦ h .
It appears that free (uniformly quasimeromorphic) semigroups are particularly
poor candidates for the existence of a quasiconformal conjugacy to a semigroup
of meromorphic functions. However, for a semigroup admitting sufficiently many
relations, a proof can be made to work with adequate care. There are many
results of that kind, and we provide the following example. We denote the identity
mapping of any set by Id. For any function f we denote the iterates of f by fn

so that f0 = Id and fn+1 = f ◦ fn for all n ≥ 0.

Theorem 3. Let U be a non-empty open set in C , and let G be a K -

quasimeromorphic semigroup of functions mapping U into itself. Suppose that G
has the following property :

(1.1) for all g, h ∈ G there are ϕ, ψ ∈ G ∪ {Id} such that g ◦ ϕ = h ◦ ψ.

Then there exists a K1 -quasiconformal homeomorphism f of C onto itself, taking

U onto an open set V , such that the semigroup f ◦G◦f−1 consists of meromorphic

functions taking V into itself. Here K1 depends only on K .

In particular, this holds if G is abelian, for then we may take ϕ = h and

ψ = g in (1.1) .

In Theorem 3, we get the same estimate for K1 as given after Theorem 1.
One can ask what happens if the condition g ◦ ϕ = h ◦ ψ in (1.1) is replaced

by ϕ ◦ g = ψ ◦ h . A simple modification of the proof of Theorem 3 does not yield
the desired result, basically because of the following fact: if f ∈ G and if F is any
branch of f−1 then f ◦ F = Id while we need not have F ◦ f = Id. It remains
an open question whether the conclusion of Theorem 3 still holds for some other
reason, after modifying (1.1) in this way.

Even though, in connection with semigroups, it may be of greater interest
to consider non-homeomorphic mappings, it may be worth pointing out that an
easy-to-verify counterexample can be found for semigroups of homeomorphisms.

Theorem 4. Let h be a K -quasiconformal mapping of the strip S = {x+iy :
0 ≤ x ≤ 1} onto itself that fixes every boundary point of S including each of the

prime ends at +i∞ and −i∞ . Suppose that h is not the identity mapping of S .

Define f1(z) = h(z) + 1 when z ∈ S and f1(z) = z + 1 when z ∈ C \ S . Define

f2(z) = z + 1 for all z ∈ C . Then f1 and f2 generate a K -quasiconformal

semigroup G , but G cannot be quasiconformally or even topologically conjugated

to a semigroup of conformal mappings.

Roughly speaking, if the semigroup G of Theorem 4 could be conjugated to
a semigroup of conformal mappings, then both f1 and f2 would be conjugated
to the same mapping, which is impossible if f1 6= f2 , that is, if h 6= Id. The
actual proof of Theorem 4 is not phrased exactly in this way, but a consideration
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of the elements (necessarily translations, if the point at infinity is fixed as we may
assume) of the hypothetical conjugated semigroup shows that this would be the
case.

Obviously, there are many other similar examples. For example, the function
f2(z) = z + 1 in Theorem 4 could be replaced by λz for some λ > 1, and then S
would be replaced by the annulus {z : 1 ≤ |z| ≤ λ} .

The positive results (Theorems 1 and 3) are based on the concept of a grand
orbit. If z ∈ U , we say that a point w ∈ U is in the grand orbit of z under
the semigroup G provided that w = g(z) for some g belonging to the formal
group generated by G . The elements of this formal group are obtained by com-
bining finitely many elements, each of which lies in G or corresponds to a branch
of the inverse of some element of G . More precisely, we require that there are
x1, x2, . . . , xn ∈ U , z1, . . . , zn−1 ∈ U , and h1, . . . , hn−1, h

′
1, . . . , h

′
n−1 ∈ G ∪ {Id}

such that n ≥ 2, w = x1 , z = xn , and

hi(zi) = xi and h′i(zi) = xi+1 for 1 ≤ i ≤ n− 1.

Theorem 2 shows that there are essentially more uniformly quasimeromorphic
semigroups than there are semigroups of meromorphic functions. For semigroups
of meromorphic functions, one can develop a Fatou–Julia theory analogously to the
iteration theory due to Fatou and Julia based on the concept of a normal family (for
semigroups of rational functions, see [1]). Thus, for a semigroup G defined on an
open set U , the set of normality or the Fatou set of G consists of those points z in
U that have a neighbourhood D such that the restrictions of the elements of G to
D form a normal family. Standard results for sequences of K -quasimeromorphic
mappings show that the limit function of any convergent subsequence is then a
constant (possibly infinity) or a non-constant K -quasimeromorphic function. The
Julia set would be J(G) = U \N(G) . (In unpublished lecture notes of the author
from 1989, for a course at the University of Texas at Austin, it is shown that for
the iteration of a single meromorphic function f defined in a plane domain U
without the condition that f(U) ⊂ U (for z ∈ N(G) one requires, in addition,
that all the iterates of f are defined in the neighbourhood D ), a Fatou–Julia
theory can be developed, and that the classification of the components of the set
of normality follows the same lines as in the classical case, the new cases that arise
corresponding merely to the fact that the prime ends of U need not coincide with
single topological boundary points of U .) One may ask, of course, under what
circumstances a uniformly quasimeromorphic semigroup is topologically (even if
not quasiconformally) conjugate to a semigroup of meromorphic functions. A
topological conjugacy would still preserve the structure of the dynamics.

I would like to thank the referee for his helpful remarks.

2. Proof of Theorem 1

Of course, Theorem 1 is a special case of Theorem 3, but we prefer to give
a separate proof to fix ideas that can be expanded later. Let the assumptions of
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Theorem 1 be satisfied, except that G need not be cyclic until explicitly specified,
and set k = (K − 1)/(K + 1) ∈ [0, 1). Write ∂g = ∂g/∂z and ∂g = ∂g/∂ z . For
each g ∈ G , the complex dilatation µ(z, g) = ∂g/∂g is defined a.e., is measurable,
and satisfies |µ(z, g)| ≤ k for a.e. z ∈ U . We look for an essentially bounded
complex-valued function µ defined in C with ‖µ‖∞ < 1 such that if f is a
quasiconformal homeomorphism of C onto itself with µ(z, f) = µ(z) for a.e. z
then for every g ∈ G , the function f ◦ g ◦ f−1 , defined on the open set V = f(U) ,
is meromorphic in V . This will be the case if, and only if, for each g ∈ G , we have
µ(z) = µ(z, f) = µ(z, f ◦ g) for a.e. z ∈ U . The standard formula for µ(z, f ◦ g)
[2, (5.6), p. 183] gives

(2.1) µ(z, f ◦ g) =
µ(z, g) + µ

(

g(z), f
)

e−2i arg ∂g(z)

1 + µ(z, g)µ
(

g(z), f
)

e−2i arg ∂g(z)
,

so that with µ(z, f) = µ(z) we require that

(2.2) µ(z) =
µ(z, g) + µ

(

g(z)
)

e−2i arg ∂g(z)

1 + µ(z, g)µ
(

g(z)
)

e−2i arg ∂g(z)
≡ Tg,z

(

µ
(

g(z)
))

.

Here Tg,z is the Möbius transformation of the unit disk D onto itself given by

Tg,z(w) =
a+ bw

b+ aw

where a = ∂g(z) and b = ∂g(z) . In particular, if g is the identity map Id then
Tg,z(w) ≡ w , that is, TId,z = Id, for all z . By the definitions and by the chain
rule Th◦g,z = Tg,z ◦ Th,g(z) so that T−1

h◦g,z = T−1
h,g(z) ◦ T−1

g,z .

The formula (2.1) states that

(2.3) µ(z, f ◦ g) = Tg,z

(

µ
(

g(z), f
))

.

We set µ ≡ 0 outside U . To define µ in U so as to satisfy (2.2), we recall
the ideas of Tukia [4]. Let us first ignore any problems concerning measurability
and the fact that complex dilatations are defined and formulas such as (2.2) hold
only almost everywhere.

Write B(z, r) = {w : |w − z| ≤ r} and B(r) = B(0, r) . Define for z ∈ U ,

S(z) = {µ(z, g) : g ∈ G} ⊂ B(k).

If h ∈ G then by (2.3),

S
(

h(z)
)

=
{

µ
(

h(z), g
)

: g ∈ G
}

=
{

T−1
h,z

(

µ(z, g ◦ h)
)

: g ∈ G} ⊂ T−1
h,z

(

S(z)
)
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and so

(2.4) Th,z

(

S
(

h(z)
))

⊂ S(z).

The above considerations are valid in any semigroup. Let us now assume
that G is generated by a function γ . Thus G = {γn : n ≥ 1} or possibly
G = {γn : n ≥ 0} . We may assume that γ 6= Id, for otherwise there is nothing to
prove. It clearly suffices to conjugate γ to a meromorphic function.

If G were a group, then we would have the equality Th,z

(

S
(

h(z)
))

= S(z)
instead of (2.4). This would allow us to continue along the lines of Tukia and
complete the proof. In general, equality need not hold here even if G is a cyclic
semigroup. In this case, if G contains the identity mapping, we have S(z) =
Th,z

(

S
(

h(z)
))

∪ {0} , and usually we need not have to have 0 ∈ Th,z

(

S
(

h(z)
))

. If
G is cyclic and does not contain the identity mapping then again usually S(z) \
Th,z

(

S
(

h(z)
))

consists of one point (and in any case contains at most one point).
Therefore the set S(z) needs to be replaced by another set with the required
invariance property. It is hard to see how this could be done except by replacing
S(z) by a larger set. This then means that the larger set might no longer be a
subset of B(k) . We can only hope that the larger set will be contained in B(k1)
for some fixed k1 < 1. The general principle is that one needs to add to S(z) the
complex dilatations of all the functions (“words”) in the “group” generated by the
elements of the semigroup and by the locally defined branches of their inverses. To
ensure that all such dilatations lie in some B(k1) , one should know, for example,
that only words of a fixed length in this group are needed to cover all words. For
a general semigroup (for example, a free semigroup with at least two generators),
it is not true for any finite N that only words of length at most N will suffice to
ensure the required complete invariance of the enlarged S(z) . If there are relations
in the group then some fixed N may suffice, and this is what will happen in the
proof of Theorem 3. Even if all words are needed, it could happen by coincidence,
in some special case, that the enlarged set still lies in some fixed B(k1) . For
more discussion and examples, see the remarks after the statement of Lemma 1 in
Section 4, and the proof of Theorem 3.

In the case of a cyclic group, we add to S(z) all complex dilatations that
would be there if G were a group generated by γ . Thus we let S1(z) consist of the
complex dilatations at z of all mappings g of the form γn where n ≥ 0, or a branch
of γ−n for some n ≥ 1 whenever such a branch is defined in a neighbourhood of z ,
or of the form γ−m ◦γn where m,n ≥ 0. Clearly S(z) ⊂ S1(z) . We proceed for a
while without worrying about the question of for which points z , the set S1(z) is
well defined, with all branches of all inverses being defined in some neighbourhood
of z (depending on the branch, of course).

Pick z ∈ U and h ∈ G . As g goes through all maps considered in the
definition of S1

(

h(z)
)

, the maps g ◦h go through exactly all the maps considered
in the definition of S1(z) . As the γn and the branches of their inverses are locally



Uniformly quasiregular semigroups in two dimensions 211

quasiconformal, the formula (2.3) still applies, and we see that (2.4) holds with
equality.

We note that each inverse branch of any γn is K -quasiconformal since γn

is K -quasimeromorphic. Hence any function γ−m ◦ γn is K2 -quasimeromorphic.
Thus S1(z) ⊂ B(k1) where k1 = (K2 − 1)/(K2 + 1) < 1. So in the cyclic case,
S(z) can be enlarged without having to enlarge the hyperbolically bounded set
B(k) that is guaranteed to cover every (S(z) and here also) S1(z) to more than
this B(k1) .

We now complete the proof of Theorem 1 following Tukia’s method. For
each S1(z) , there is a unique point P (z) such that among all hyperbolic disks
(in the hyperbolic metric of the unit disk) containing S1(z) , there is one centred
at P (z) with the smallest possible hyperbolic radius [4, p. 75]. Since Möbius
transformations such as Th,z that map the unit disk onto itself, preserve hyperbolic
distances and hyperbolic disks, it follows from (2.4) with equality that P (z) =
Th,z

(

P
(

h(z)
))

. Thus defining µ(z) = P (z) , we find a function µ satisfying (2.2).
The estimate for K1 follows directly from Tukia’s paper according to our reference,
since S1(z) ⊂ B(k1) .

We finally have to address the question of definability and measurability of µ .
The set that formally contains G and, for each element of G , its at most countably
many inverse branches, is countable. Each γn can be written as γn = ϕn ◦ hn ,
where hn is a quasiconformal homeomorphism and ϕn is meromorphic in hn(U) .
Hence, for each n , there are only countably many points z ∈ U at which some
branch of the inverse of γn has a branch point (preventing us from defining a
single-valued branch of the inverse in some neighbourhood of z ). For a.e. z ∈ U
it is therefore true that the sets S(z) and S1(z) are completely well defined, that
is, all conceivable inverse branches can be considered and all functions involved
have a well defined complex dilatation at z . It follows as in Tukia’s paper that
the function µ defined above is measurable. Thus we have the estimate on |µ(z)|
for almost every z , giving rise to the cited upper bound for K1 . In view of the
remarks made at the beginning of Section 2, this completes the proof of Theorem 1.

3. Proof of Theorem 3

We first dispose of some technicalities. We proceed to define a complex dilata-
tion by following a variant of Tukia’s method. This leads to a measurable function
provided that we are dealing with countably many elements, including the ele-
ments of the semigroup and branches of their inverses. This situation arises when
the semigroup itself is countable. Suppose that the case of a countable semigroup
has been dealt with.

Let then G be any semigroup satisfying the assumptions of Theorem 3. As
quasimeromorphic mappings belong locally to certain Sobolev spaces that are sep-
arable, it follows that G has a countable dense subset L . So for any g ∈ G there
is a sequence hn ∈ L such that hn → g locally uniformly on U with respect to
the spherical metric. Now L generates a countable semigroup 〈L〉 . If 〈L〉 does
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not satisfy the assumptions of Theorem 3, then set L0 = 〈L〉 . Suppose that Ln is
a countable subsemigroup of G , and let Mn consist of all elements of Ln and all
the elements ϕ, ψ of G that would have to be added to Ln so as to satisfy (1.1)
for any pair of functions g, h ∈ Ln . Define Ln+1 to be the semigroup generated
by Mn . Then Ln+1 is a countable subsemigroup of G . Set L∞ =

⋃∞
n=0 Ln . Then

L∞ is a countable subsemigroup of G that satisfies the assumptions of Theorem 3.
Thus, by our assumption concerning the countable case, there is a quasiconformal
homeomorphism f of C mapping U onto an open set V such that f ◦L∞ ◦ f−1

consists of meromorphic functions mapping V into itself. But then, if g ∈ G ,
hn ∈ L ⊂ L∞ , and hn → g locally uniformly on U , the functions f ◦hn ◦ f−1 are
meromorphic and tend to f ◦ g ◦ f−1 locally uniformly in V . Hence f ◦ g ◦ f−1

is meromorphic in V , as required, and the proof of Theorem 3 will be complete
after dealing with the countable case.

Suppose then that G is countable and satisfies the assumptions of Theorem 3.
Consider finite words of the form g1◦g2◦· · ·◦gn where each gj is either an element
of G , or the identity mapping (in case Id /∈ G), or is a branch of the inverse of
some element of G . For almost every z ∈ U , it is true that for every such word,
with the exceptions to be described below, there is a neighbourhood of z in which
we may define the function described by this word, no matter how we choose
the branches of the inverse functions at the appropriate points, and furthermore,
each component function gj is locally homeomorphic and quasiconformal at the
appropriate points and has, at these points, a well defined complex dilatation.
Thus the complex dilatation of each such word can be defined at z . We take S(z)
to be the set of all such complex dilatations at z .

There are exceptions that may occur when h(U) is a proper subset of U
for some h ∈ G . For example, if the word is h−1 ◦ g where g, h ∈ G and if
g(z) /∈ h(U) , then (h−1 ◦ g)(z) is not defined. For each z , we simply ignore all
such words, depending on z . Also, even if g(z) ∈ h(U) , for certain z there may
be more branches of h−1 defined and locally homeomorphic at g(z) than for other
values of z , and for each z , we simply use all branches that are defined and locally
homeomorphic at g(z) . The same principles apply to all words in an obvious way.
This completes the definition of S(z) .

For a.e. z ∈ U it is the case that S(z) is well defined at every point on the
grand orbit of z under G , where the grand orbit of z under G is the set of all
points of the form (g1 ◦ g2 ◦ · · · ◦ gn)(z) for all words described above. Using (2.3),
it is easily checked that for a.e. z ∈ U it is true that S(z) = Th,z

(

S
(

h(z)
))

for all
h ∈ G . This construction can be performed for any semigroup G , and makes sense
and has the above invariance property for a.e. z ∈ U whenever G is countable.

We shall now prove that under the special conditions of Theorem 3, there is a
number k1 < 1 such that S(z) ⊂ B(k1) for a.e. z . Then we can define P (z) and
µ(z) as in the proof of Theorem 1, and the rest goes through in the same way as
there. In particular, K1 will depend only on K provided that k1 depends only
on K .
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Suppose that (1.1) of Theorem 3 holds. The function represented by a word
g1◦g2◦· · ·◦gn is not changed if the word is normalized in such a way that n is even
with n ≥ 2, gj ∈ G∪{Id} whenever j is even, and gj is the branch of the inverse
of an element of G∪{Id} denoted by hj if j is odd. So we assume that we consider
a normalized word, and claim that the function it represents can be written in the
form u ◦ v where v ∈ G ∪ {Id} while u is the branch of the inverse of an element
of G ∪ {Id} . We prove this claim by induction on the even integer n ≥ 2. The
claim is clearly true for n = 2 by definition of the normalization. Suppose that
it is true for a certain n ≥ 2. Consider a normalized word g1 ◦ g2 ◦ · · · ◦ gn+2 as
above. By the induction assumption, in some neighbourhood of z , the function
g3 ◦ g4 ◦ · · · ◦ gn+2 is equal to u ◦ v where v ∈ G ∪ {Id} while u is the branch of
the inverse of an element b of G ∪ {Id} . Also there is h1 ∈ G ∪ {Id} such that
g1 is a branch of h−1

1 in some neighbourhood of an appropriate point. By (1.1),
there are ϕ, ψ ∈ G ∪ {Id} with ϕ ◦ g2 = ψ ◦ b . (Note that (1.1) can be trivially
satisfied if g = Id or h = Id in (1.1).) It follows that ϕ ◦ g2 ◦ u = ψ ◦ b ◦ u = ψ .
Thus ψ ◦v = ϕ◦g2 ◦u◦v = ϕ◦h1 ◦g1 ◦g2 ◦u◦v . Now define Ψ = ψ ◦v ∈ G∪{Id}
and Φ = ϕ ◦ h1 ∈ G ∪ {Id} . We see that

Ψ = Φ ◦ (g1 ◦ g2 ◦ u ◦ v) = Φ ◦ (g1 ◦ g2 ◦ · · · ◦ gn+2).

This shows that for a suitably chosen branch of Φ−1 in some neighbourhood of
an appropriate point, which branch we simply denote by Φ−1 , we have

g1 ◦ g2 ◦ · · · ◦ gn+2 = Φ−1 ◦ Ψ,

as was to be proved.
Now, since Φ−1 and Ψ above are both locally K -quasiconformal, so that

Φ−1◦Ψ is locally K2 -quasiconformal, it follows that the element of S(z) generated
by the word considered lies in B(k1) , where k1 = (K2−1)/(K2+1). This together
with what has been said before, completes the proof of Theorem 3.

4. Proof of Theorem 2

4.1. To keep the calculations manageable, we construct a simple counterex-
ample. However, it is clear from the principles involved that there are many other
similar examples. We first describe what the example is going to be. Choose
positive numbers δ and ε smaller than, say, 10−2 . We also require that 6

√
δ < ε

and that

(4.1) (1 + ε)2
N

= 2 + ε+ 1
2

(
√
δ − δ

)

for some integer N ≥ 2. We can take N as large as we like; such a choice
would merely require us to choose sufficiently small numbers ε and δ . Set ω =
exp

(

πi/(2N − 1)
)

and a = 2 + ε . Thus

ω1+2+···+2N−1

= ω2N−1 = −1
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and so the N th iterate of the function z 7→ ωz2 is z 7→ −z2N

. By choosing N to
be large enough, we can make | argω| as small as we like. Define F1(z) = z2 and
F2(z) = a + ω(z − a)2 . Define a 2-quasiconformal mapping ϕ1 of C by taking
ϕ1(z) = z|z|/δ if |z| < δ and ϕ1(z) = z if |z| ≥ δ . Define a 2-quasiconformal
mapping ϕ2 of C by taking ϕ2(z) = a + (z − a)|z − a|/δ if |z − a| < δ and
ϕ2(z) = z if |z − a| ≥ δ . Then ϕ−1

1 (z) = z
√

δ/|z| if |z| < δ and ϕ−1
1 (z) = z if

|z| ≥ δ . We have ϕ2(z) = a + ϕ1(z − a) and ϕ−1
2 = a + ϕ−1

1 (z − a) . Finally, set
fj = ϕ−1

j ◦Fj ◦ϕj for j = 1, 2. Let G be the semigroup generated by f1 and f2 .
We shall prove that G has the required properties.

A calculation shows that f1(z) = z2 when |z| ≥
√
δ , that f1(z) = z2/

√
δ

when |z| ≤ δ , and that f1(z) = (z2
√
δ )/|z| when δ < |z| <

√
δ . Similarly, we

have f2(z) = a + ω(z − a)2 when |z − a| ≥
√
δ , f2(z) = a + ω(z − a)2/

√
δ when

|z− a| ≤ δ , and f2(z) = a+
(

ω(z− a)2
√
δ
)

/|z− a| when δ < |z− a| <
√
δ . Thus

f2(z) = a+ωf1(z−a) for all z ∈ C . The complex dilatation µ1(z) of f1 vanishes
when |z| < δ or |z| >

√
δ , and is given by µ1(z) = −1

3 (z/z) when δ < |z| <
√
δ .

For the complex dilatation µ2(z) of f2 , we have µ2(z) ≡ µ1(z − a) . Hence each
of f1 and f2 is 2-quasimeromorphic in C . We set A1 = {z : δ < |z| <

√
δ }

and A2 = {z : δ < |z − a| <
√
δ } . Thus, apart from a set of zero area, µm(z) is

non-zero only if z ∈ Am , for m = 1, 2.

To see that G is a 2-quasiregular semigroup (in C , and 2-quasimeromorphic
in C), consider an element g = gn ◦ gn−1 ◦ · · · ◦ g1 of G , where each gj is equal
to f1 or f2 , in a small neighbourhood D of some point z ∈ C . If the complex
dilatation of g does not vanish identically in D then there is a smallest j such
that (gj ◦ · · · ◦ g1)(D) intersects Am and gj+1 = fm where m = 1 or m = 2
(this includes the case j = 0, in which case we interpret gj ◦ · · · ◦ g1 = Id). By
symmetry, we may assume that m = 1. As we are looking at the fixed function
g and are only interested in what happens at z , we may take D so small that
(gj ◦ · · · ◦ g1)(D) ⊂ B

(

2
√
δ
)

. Suppose that gl = f1 for j + 1 ≤ l ≤ j + q for some
q ≥ 1 while either j+q = n or gj+q+1 = f2 . The maximal dilatation of gj ◦· · ·◦g1
restricted to D is 1, and the maximal dilatation of gj+q ◦ · · · ◦ gj+1 = f q

1 does not
exceed 2. (Note that if w ∈ A1 then |fp

1 (w)| < δ for all p ≥ 1.) If j + q = n ,
there is nothing more to prove. Suppose that j + q < n and that gj+q+1 = f2 .

Now gj+q ◦ · · · ◦ gj+1 maps B
(

2
√
δ
)

into itself. If w ∈ (gj+q ◦ · · · ◦ g1)(D)

then |w − a| ≥ 2 + ε − 2
√
δ > 2 + 2ε/3. Thus |f2(w) − a| > 4 + 8ε/3 and so

|f2(w)| > 2 + 5ε/3 > a+ 2
√
δ . Now f2 is conformal at w , and each of f1 and f2

is conformal at f2(w) . Furthermore, applying either f1 or f2 at f2(w) increases
the modulus so much that after this, no matter which elements of G are then
applied, we are dealing with only locally conformal mappings. This shows that
the maximal dilatation of any g ∈ G cannot be more than 2 in any sufficiently
small neighbourhood of z . Thus G is a 2-quasimeromorphic semigroup in C .

4.2. The proof that G cannot be conjugated by a quasiconformal mapping
to a semigroup of rational functions is based on the following lemma.
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Lemma 1. Suppose that G is a uniformly quasimeromorphic semigroup act-

ing on an open set U in C such that for some K -quasiconformal homeomorphism

f , the semigroup f ◦ G ◦ f−1 consists of meromorphic functions. If z ∈ U and

if g = g1 ◦ g2 ◦ · · · ◦ gn is a function defined in a neighbourhood of z , where each

gj is an element of G or a branch of the inverse of some element of G defined in

a neighbourhood of an appropriate point, then the maximal dilatation of g does

not exceed K2 .

Remark 1. Lemma 1 also shows that if G is a uniformly quasimeromorphic
semigroup that can be quasiconformally conjugated to a semigroup of meromorphic
functions, then the set S(z) considered in the proof of Theorem 3 is uniformly
bounded for all z for which it is well defined (that is, for almost every z , we
have S(z) ⊂ B(k1) for some fixed k1 < 1). Hence, if it is possible to prove that
a quasiconformal conjugacy exists at all, then, in a sense, it must be possible to
obtain such a conjugacy by the extension of Tukia’s method given in the proof
of Theorem 3. However, even if this were theoretically possible for a given G , it
need not be the case that it is clear from the algebraic structure of G that the
sets S(z) are relatively compact in the unit disk D . For example, if G′ is a free
semigroup of rational functions and if f is a quasiconformal self-map of C then
G = f−1 ◦ G′ ◦ f is a free uniformly quasimeromorphic semigroup which can be
quasiconformally conjugated to a semigroup of rational functions. However, the
fact that the sets S(z) are relatively compact in D for this G , is by no means
clear from the algebraic properties of G , and to see in some way that the S(z)
are bounded away from the unit circle (which they are), it would be necessary to
have some different type of information concerning the complex dilatations of the
elements of G .

Remark 2. Theorem 3 gives a sufficient condition on the algebraic structure
of G that forces Tukia’s method to work. From the proof of Theorem 3 we see that
another sufficient condition can be given as follows: there exists a fixed positive
integer N such that the function corresponding to any word g1 ◦ · · · ◦ gn , for any
n ≥ 1, where each gj is an element of G∪{Id} or a branch of the inverse of such an
element, can also be represented by a word of this type with n ≤ N (this obviously
guarantees that we find a suitable k1 < 1 depending only on K and N ). In the
proof of Theorem 3 we saw that this is true with N = 2 when the assumptions
of Theorem 3 are satisfied. However, this assumption, when formulated as above
for an arbitrary N with no other connection to the algebraic structure of G , even
if it is more general than the assumption of Theorem 3, seems to be less natural
than the condition (1.1) of Theorem 3.

4.3. Proof of Lemma 1. Let the set-up be as in the assumptions of
Lemma 1. For each j , write hj = gj if gj ∈ G , and otherwise let gj be a branch of
the inverse of hj ∈ G . There are meromorphic functions pj ∈ f ◦G◦f−1 such that
pj = f◦hj◦f−1 . Hence we may locally write gj = f−1◦p−1

j ◦f when gj is an inverse

of hj . Note that under these circumstances we are considering a branch of p−1
j
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which is meromorphic in the small neighbourhood where it is defined. If gj ∈ G
then gj = hj = f−1 ◦pj ◦f . We see that g = g1 ◦g2 ◦ · · ·◦gn = f−1 ◦p◦f for some
meromorphic function p defined in a small neighbourhood of f(z) . This shows
that the maximal dilatation of g in a neighbourhood of z does not exceed K2 .
Lemma 1 is proved.

4.4. We return to the proof of Theorem 2. To complete the proof, we only
need to show that for any k1 < 1, no matter how close to 1, there exists a word g
generated by the elements of our particular semigroup G and their locally defined
inverses, and a point z ∈ C such that the complex dilatation of g has modulus at
least k1 in some small neighbourhood of z . We choose η1 ∈ (0, 10−2) , say, and
take z ∈ B(η1, η

2
1) . Then for all z ∈ B(η1, η

2
1) , we have | arg z| < η1/(1 − η1) <

2η1 . We consider words g = gn ◦ · · · ◦ g1 where each gj is of the form

gj = f1 ◦ fN
2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2

for some large positive integers q1 and q2 depending on and varying with j . The
main idea is that each individual complex dilatation will be of the form −1

3 (z/z) ,
or such a number multiplied by several factors of the form z/z . Here all the
numbers z occurring are almost real so that any factor z/z is very close to 1.
When we calculate complex dilatations for composite functions we are therefore
applying the formula (2.1) to numbers that are very close to −1

3
. Unlimited

composition leads to a sequence of numbers tending to the unit circle (if all the
individual complex dilatations involved were equal to −1

3
, the sequence would

tend to −1). This shows that the complex dilatations will not remain in a fixed
disk B(k1) for any k1 < 1.

4.5. The function f2 has the circle {z : |z − a| = 1} as its Julia set J(f2) ,
so that for some sufficiently large integer q , a suitable branch of f−q

2 maps any
preassigned disk outside this circle, such as the disk B(η1, η

2
1) , into a prescribed

neighbourhood of the point a−1 = 1+ε ∈ J(f2) . We choose q = q1 so large that
for all z ∈ B(η1, η

2
1) , for such a branch of f−q

2 , we have | arg f−q
2 (z)| < η2 and

|f−q
2 (z) − (a− 1)| < η2 for some η2 > 0 to be determined later. Since by (4.1),

fN
1 (a− 1) = 2 + ε+ 1

2

(
√
δ − δ

)

= a+ 1
2

(
√
δ − δ

)

≡ b,

it follows that if η3 > 0 is given, we may choose η2 so that
∣

∣fN
1

(

f−q
2 (z)

)

− b
∣

∣ < η3
and

∣

∣arg
(

fN
1

(

f−q
2 (z)

)

− a
)
∣

∣ < η3 for all z ∈ B(η1, η
2
1) . We certainly take η3 <

1
2

(
√
δ− 3δ

)

, so that δ <
∣

∣fN
1

(

f−q
2 (z)

)

− a
∣

∣ <
√
δ , and possibly take η3 to be even

smaller. Then for all z ∈ B(η1, η
2
1) , the point fN

1

(

f−q
2 (z)

)

lies in the region where
the complex dilatation of f2 has modulus 1

3 . Also

∣

∣arg
(

f2
(

fN
1

(

f−q
2 (z)

))

− a
)

− argω
∣

∣ < 2η3
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for all z ∈ B(η1, η
2
1) . We next take a suitable branch of f−q2

1 to ensure that
it maps the set (f2 ◦ fN

1 ◦ f−q
2 )

(

B(η1, η
2
1)

)

into a small neighbourhood of the
point 1 = a − (1 + ε) , consequently with a very small spread in the argument.
Then we apply fN

2 and map the resulting set into a small neighbourhood of
a −

(

2 + ε + 1
2

(
√
δ − δ

))

= −1
2

(
√
δ − δ

)

. Now δ < 1
2

(
√
δ − δ

)

<
√
δ since δ is

small. Applying next f1 we operate in a set where the complex dilatation of f1
has modulus 1

3 . We end up in a set which is contained in a small neighbourhood of

the point ( 1
2
δ)

(

1−
√
δ
)

≈ 1
2
δ , with a very small spread in the argument, and hence

also in a small neighbourhood of the origin (this neighbourhood of ( 1
2δ)

(

1 −
√
δ
)

is, in a sense, comparable to the disk B(η1, η
2
1)), and we are ready to apply a

similar word gj . We have now described the operation of one word gj . We next
calculate the derivatives with respect to z and z of such a word gj , say g1 , at a
point z ∈ B(η1, η

2
1) . A similar result is obtained for a subsequent word gj at any

point z in a suitable neighbourhood of (1
2
δ)

(

1 −
√
δ
)

.

4.6. We introduce some notation. We write w0 = z ≈ η1 ≈ 0, w1 =
f−q1

2 (z) ≈ 1 + ε , w2 = fN
1 (w1) ≈ a , w3 = f2(w2) ≈ a , w4 = f−q2

1 (w3) ≈
1, w5 = fN

2 (w4) ≈ 0, and w6 = g1(z) = g1(w0) = f1(w5) ≈ 0. We have
| arg(w3 − a) − argω| < 2η3 , and | argw3 − arg c| < 3η3 , say, where

(4.2) c = a+ ω
√
δ 1

2
(
√
δ − δ) = a+ 1

2
ωδ

(

1 −
√
δ
)

.

For 0 ≤ j ≤ 6 with j 6= 3, both wj and wj −a have argument very close to either
0 or π , with π occurring exactly for w0 − a , w1 − a , w4 − a , w5 − a , w6 − a ,
and w5 . Next, note that

(f q1

2 )′(w1) = ω2q1−12q1(w1 − a)2
q1−1 = 2q1(w0 − a)/(w1 − a),

(fN
1 )′(w1) = 2N (w1)

2N−1 = 2Nw2/w1,

(f q2

1 )′(w4) = 2q2w3/w4, and

(fN
2 )′(w4) = −2N (w4 − a)2

N−1 = 2N (w5 − a)/(w4 − a).

We have µ2(w2) = −1
3
(w2 − a)/(w2 − a) and µ1(w5) = −1

3
(w5/w5) . For 0 ≤ j ≤

6, we set bj = wj/wj .
To make the absolute value of the argument of every one of the points w1 ,

w2 , w4 , w5 , w1 − a , w2 − a , w4 − a , w5 − a small, we only need to choose q1
and q2 sufficiently large. This can be done for any initially given η1 , even though
the precise choice of q1 and q2 will then depend on (an upper bound for) η1 . The
magnitude of | arg z| = | argw0| and of | arg(w0 − a)| is controlled by the choice
of η1 . If we perform the same estimate for a function gj other than g1 then the
role of w0 is taken by a point of the form w6 arising from a previous calculation,
and we can get | argw6| and | arg(w6 − a)| to be as small as we like by taking the
previous q1 and q2 sufficiently large. To handle this, we may choose for q1 and
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q2 values that increase to infinity with j . Thus we may consider all of the above
arguments to be o(1) as j → ∞ , and the rate of convergence to zero implied by
the o(1)-notation can be as fast as we like. Similarly, argw3 = arg c + o(1) so
that with c3 = c/c , we have b3 = c3

(

1 + o(1)
)

.

4.7. Define f = f1 ◦ fN
2 ◦ f−q2

1 and g = f2 ◦ fN
1 ◦ f−q1

2 . Then f ◦ g =
f1 ◦ fN

2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 is the function we are looking at, one of the gj . We
have

∂f2(w2) = 3
2
ω
√
δ
w2 − a

|w2 − a| , ∂f2(w2) = −1
2
ω
√
δ

(w2 − a)3

|w2 − a|3 .

Thus

∂g(z) = (∂f2)(w2)
(fN

1 )′(w1)

(f q1

2 )′(w1)
= 3

2ω
√
δ
w2 − a

|w2 − a|2
N−q1

w2

w1

w1 − a

w0 − a

and

∂g(z) = (∂f2)(w2)
(fN

1 )′(w1)

(f q1

2 )′(w1)
= −1

2 ω
√
δ

(w2 − a)3

|w2 − a|3 2N−q1
w2

w1

w1 − a

w0 − a
.

Further, we have

∂f
(

g(z)
)

= (∂f1)(w5)
(fN

2 )′(w4)

(f q2

1 )′(w4)
= 3

2

√
δ
w5

|w5|
2N−q2

w5 − a

w4 − a

w4

w3
,

∂f
(

g(z)
)

= (∂f1)(w5)
(fN

2 )′(w4)

(f q2

1 )′(w4)
= −1

2

√
δ
w3

5

|w5|3
2N−q2

w5 − a

w4 − a

w4

w3
.

Hence

∂(f1 ◦ fN
2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 )(z) = ∂(f ◦ g)(z)
= ∂f

(

g(z)
)

∂g(z) + ∂f
(

g(z)
)

∂g(z)

= 3
2

√
δ
w5

|w5|
2N−q2

w5 − a

w4 − a

w4

w3

3
2ω

√
δ
w2 − a

|w2 − a|2
N−q1

w2

w1

w1 − a

w0 − a

+ −1
2

√
δ
w3

5

|w5|3
2N−q2

w5 − a

w4 − a

w4

w3

−1
2 ω

−1
√
δ

(w2 − a)3

|w2 − a|3 2N−q1
w2

w1

w1 − a

w0 − a

= 9
4ωδ2

2N−q1−q2
w5

|w5|
w2

w1

w1 − a

w0 − a

w5 − a

w4 − a

w4

w3

w2 − a

|w2 − a|

×
(

1 + 1
9ω

−2 w2
5

|w5|2
w5 − a

w5 − a

w4 − a

w4 − a

b3
b4

(w2 − a)4

|w2 − a|4
)

= 9
4
ω
|c|
c
δ22N−q1−q2

|w2|
|w1|

|w1 − a|
|w0 − a|

|w5 − a|
|w4 − a|

|w4|
|w3|

(

1 + 1
9
ω−2c3

)(

1 + o(1)
)
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since ∂g(z) = ∂g(z). Also

∂(f1 ◦ fN
2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 )(z) = ∂(f ◦ g)(z)
= ∂f

(

g(z)
)

∂g(z) + ∂f
(

g(z)
)

∂g(z)

= 3
2

√
δ
w5

|w5|
2N−q2

w5 − a

w4 − a

w4

w3

−1
2 ω

√
δ

(w2 − a)3

|w2 − a|3 2N−q1
w2

w1

w1 − a

w0 − a

+ −1
2

√
δ
w3

5

|w5|3
2N−q2

w5 − a

w4 − a

w4

w3

3
2
ω−1

√
δ
w2 − a

|w2 − a|2
N−q1

w2

w1

w1 − a

w0 − a

= −3
4 ωδ2

2N−q1−q2
w5

|w5|
w2

w1

w1 − a

w0 − a

w5 − a

w4 − a

w4

w3

(w2 − a)3

|w2 − a|3

×
(

1 + ω−2 w2
5

|w5|2
w5 − a

w5 − a

w4 − a

w4 − a

b3
b4

(w2 − a)4

|w2 − a|4
)

= −3
4 (1 + ω−2b3)ω

|w3|
w3

δ22N−q1−q2
|w2|
|w1|

|w1 − a|
|w0 − a|

|w5 − a|
|w4 − a|

|w4|
|w3|

(

1 + o(1)
)

.

Note that (1 + ω−2b3)ω|w3|/w3 = 2 Re(ω|w3|/w3) is real and positive.
We conclude that

arg ∂(f1 ◦ fN
2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 )(z) = arg
(ω

c
+
ω

9c

)

+ o(1)

and
arg ∂(f1 ◦ fN

2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 )(z) = π + o(1).

Further, we have

∂(f1 ◦ fN
2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 )(z)

= 9
4
ωδ22N−q1−q2

b2

(1 + ε)2cκ

(

1 + 1
9
ω−2c3

)(

1 + o(1)
)

= AC1

(

1 + o(1)
)

,

say, where A > 0 and |C1| = 1 with ReC1 > 0, since a− 1 = 1 + ε , and since in
subsequent applications the role of |w0 − a| is taken by |w6 − a| which stabilizes
to

a− 1
2δ(1 −

√
δ) ≡ κ.

Also
∂(f1 ◦ fN

2 ◦ f−q2

1 ◦ f2 ◦ fN
1 ◦ f−q1

2 )(z)

= −3
4 (1 + ω−2c3)ωδ2

2N−q1−q2
b2

(1 + ε)2κc

(

1 + o(1)
)

= BD1

(

1 + o(1)
)

,
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say, where B > 0 and |D1| = 1, in fact, D1 = −1. We have now obtained
estimates applicable to ∂gj and ∂gj . The terms denoted by o(1) in these estimates
can be made arbitrarily small as j → ∞ . Hence we may assume in subsequent
calculations that these terms are made so small as to make the resulting estimates
for gj ◦ · · · ◦ g1 sufficiently accurate for our purposes.

4.8. We use again the formulas ∂(f ◦ g)(z) = ∂f
(

g(z)
)

∂g(z)+∂f
(

g(z)
)

∂g(z)

and ∂(f ◦ g)(z) = ∂f
(

g(z)
)

∂g(z) + ∂f
(

g(z)
)

∂g(z) , replacing f and g by gj and

gj−1◦· · ·◦g1 . We write ∂(gj−1◦· · ·◦g1)(z) = Aj−1Cj−1

(

1+o(1)
)

so that A1 = A ,

and ∂(gj−1 ◦ · · · ◦ g1)(z) = Bj−1Dj−1

(

1 + o(1)
)

so that B1 = B . We obtain

AjCj

(

1+o(1)
)

= ∂(gj ◦ · · · ◦ g1)(z) = (AC1Aj−1Cj−1 +BD1Bj−1Dj−1 )
(

1+o(1)
)

and

BjDj

(

1+o(1)
)

= ∂(gj ◦· · ·◦g1)(z) = (Bj−1Dj−1AC1 +BD1Aj−1Cj−1 )
(

1+o(1)
)

.

Thus we define Aj , Bj , Cj , and Dj by the formulas

AjCj = AC1Aj−1Cj−1 +BD1Bj−1Dj−1,

BjDj = Bj−1Dj−1AC1 +BD1Aj−1Cj−1

and the requirement that |Cj | = |Dj | = 1 while Aj ≥ 0 and Bj ≥ 0. Next
define A′

j = Aj/A
j and B′

j = Bj/A
j , and set ρj = Bj/Aj = B′

j/A
′
j . We have

ρ1 = B/A , which can be made as close to 3
5

as we like. Further, set αj = 1 − ρ2
j

and βj = (2 − αj)/αj . We have

(4.3)

|µ(z, gj ◦ · · · ◦ g1)| =
∣

∣

∣

∂(gj ◦ · · · ◦ g1)(z)
∂(gj ◦ · · · ◦ g1)(z)

∣

∣

∣
=
Bj

Aj

(

1 + o(1)
)

=
B′

j

A′
j

(

1 + o(1)
)

= ρj

(

1 + o(1)
)

< 1

so that we may assume that ρj < 1 for all j ≥ 1. Thus 0 < αj ≤ 1 and βj ≥ 1
for all j ≥ 1.

We set θj = C1CjDj so that |θj| = 1, and write λj = −Re θj ∈ [−1, 1] . A
calculation now shows that (since D1 = −1)

A′
jCj = A′

j−1C1Cj−1 − ρ1B
′
j−1Dj−1,(4.4)

B′
jDj = B′

j−1C1Dj−1 − ρ1A
′
j−1Cj−1,(4.5)

so that

A′
j
2

= |A′
jCj |2 = (A′

j−1)
2 + ρ2

1(B
′
j−1)

2 + 2ρ1A
′
j−1B

′
j−1λj−1,

B′
j
2

= (B′
j−1)

2 + ρ2
1(A

′
j−1)

2 + 2ρ1A
′
j−1B

′
j−1λj−1.
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This gives, by induction,

A′
j
2
αj = A′

j
2
(1 − ρ2

j ) = A′
j
2 −B′

j
2

= (1 − ρ2
1)

(

(A′
j−1)

2 − (B′
j−1)

2
)

= (1 − ρ2
1)

j−1(A′
1
2 −B′

1
2
) = (1 − ρ2

1)
j−1(1 − ρ2

1) = (1 − ρ2
1)

j = αj
1

so that A′
j > 0, and

(4.6) A′
j
2

+B′
j
2

= (1 + ρ2
1)

(

(A′
j−1)

2 + (B′
j−1)

2
)

+ 4ρ1A
′
j−1B

′
j−1λj−1.

Noting that 1 + ρ2
j = 2 − αj and applying A′

j
2
αj = αj

1 in (4.6) we obtain, after

dividing through by αj−1
1 and recalling the definition of βj , that

(4.7) βj = β1βj−1 + 4ρ1ρj−1λj−1/(α1αj−1).

We shall show that λj ≥ 0 for all j ≥ 1. Then (4.7) yields βj ≥ β1βj−1 , so that

by induction, βj ≥ βj
1 . Since β1 ≈ 17/8 > 1, we then have βj → ∞ as j → ∞ .

We deduce that as j → ∞ , we also have αj → 0 and thus ρj → 1, and hence by
(4.3), |µ(z, gj ◦ · · · ◦ g1)| → 1 for z ∈ B(η1, η

2
1) , as required. This then completes

the proof of Theorem 2.
To prove that λj ≥ 0 for all j ≥ 1 by induction on j , first note that λ1 =

Re(C2
1) ≥ 1 − E/N for some positive absolute constant E , since

C1 = ω
|c|
c

1 + {c/(9ω2c)}
|1 + {c/(9ω2c)}|

where c is as in (4.2). Thus λ1 > 0 if N is large enough. We also have | Im(C2
1 )| ≤

E/N if E is suitably chosen.
Suppose that j ≥ 2 and that λj−1 ≥ 0. Multiplying the product of (4.4) and

(4.5) by C1 we obtain

A′
jB

′
j(A

′
j−1)

−2θj = C2
1

{

ρj−1

(

θj−1 + ρ2
1θj−1

)

− ρ1(1 + ρ2
j−1)

}

= C2
1

{

−ρj−1(1 + ρ2
1)λj−1 − ρ1(1 + ρ2

j−1) + iρj−1(1 − ρ2
1) Im θj−1

}

so that

(4.8)

A′
jB

′
j(A

′
j−1)

−2λj =
(

Re(C2
1 )

){

ρj−1(1 + ρ2
1)λj−1 + ρ1(1 + ρ2

j−1)
}

+
(

Im(C2
1 )

)

(Im θj−1)ρj−1(1 − ρ2
1)

≥ (1 −E/N)ρ1(1 + ρ2
j−1) − (E/N)ρj−1(1 − ρ2

1).

Here we have used the assumption that λj−1 ≥ 0 and the fact that Re(C2
1 ) > 0

while Im θj−1 ∈ [−1, 1] .
The rightmost expression in (4.8) is positive provided that

(4.9)
1 + ρ2

j−1

ρj−1
>

E

N − E

1 − ρ2
1

ρ1
.

Since (1 + ρ2
j−1)/ρj−1 ≥ 2 and ρ1 ≈ 3

5 , it follows that (4.9) holds provided that

N is large enough. Thus A′
jB

′
j(A

′
j−1)

−2λj > 0. This also shows that B′
j 6= 0 (we

have already seen that A′
j 6= 0). Since A′

j > 0 and B′
j > 0, we now deduce from

(4.8) that λj > 0. This completes the induction proof that λj ≥ 0, and hence the
proof of Theorem 2 is also complete.
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5. Proof of Theorem 4

Let the assumptions of Theorem 4 be satisfied. Every element of G is a com-
position of finitely many functions, each being f1 or f2 . When applying such a
function at some z ∈ C , we apply the translation z+1 every time, except that at
most once, we apply h . Thus every element of G is K -quasiconformal. Let G′ be
the group generated by f1 and f2 . By Lemma 1, G is quasiconformally conjugate
to a semigroup of conformal mappings if, and only if, G′ is quasiconformally con-
jugate to a group of conformal mappings. Suppose that there is a quasiconformal
mapping f of C such that f ◦G′◦f−1 is a Möbius group. (Of course, even without
reference to Lemma 1, one can observe that the group generated by a semigroup
of Möbius transformations, consists of Möbius transformations only.) Let ϕ be a
conformal mapping of f(S) onto S . Since h is the restriction of f−1

2 ◦ f1 to S ,
it follows that f ◦ h ◦ f−1 is a conformal mapping of f(S) onto itself. Thus with
F = ϕ ◦ f , the map F ◦ h ◦ F−1 is a conformal mapping of S onto itself. But
F (∂S) = ∂S and h|∂S = Id. Thus F ◦ h ◦ F−1 = Id and so h = Id, which is a
contradiction. Hence, when h 6= Id, the semigroup G cannot be quasiconformally
conjugate to a semigroup of conformal mappings.

The same argument works if f is just a homeomorphism of C onto itself,
including an obvious extension of Lemma 1 to this particular situation, where the
fact that f is merely a homeomorphism, not necessarily quasiconformal, is com-
pensated for by the greatly simplifying fact that all the elements of the semigroup
f ◦G ◦ f−1 are Möbius transformations in C . This proves Theorem 4.
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