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Abstract. Let D be a domain in Rn containing D+ = {x ∈ Rn : x1 > 0} which is such
that each point of ∂D is regular for the Dirichlet problem in D . We give two criteria for |x1|
to have a harmonic majorant in D . The first one is stated in terms of harmonic measure and is
necessary and sufficient. The second one is a geometric condition on E = D \D+ .

1. Introduction

Let D be a domain in Rn containing D+ = {x ∈ Rn : x1 > 0} , where
x = (x1, . . . , xn) and n ≥ 2. We assume that each point of ∂D is regular for the
Dirichlet problem in D . When does |x1| have a harmonic majorant in D? In the
present paper, we discuss two aspects of this problem. In the first case, we give
a necessary and sufficient condition in terms of harmonic measure which answers
this question. In the second case, our starting point is a result of Gardiner which
holds in R2 .

Let B(x, r) be the open ball in Rn centered at x with radius r and let
S(x, r) = ∂B(x, r) . If ω( · , F, G) is the harmonic measure of F ⊂ ∂G in a domain
G , we introduce (cf. [2, p. 59])

βD(y′) = ω
(
y′, S(y′, 1

2
|y′|) ∩D,B(y′, 1

2
|y′|) ∩D

)
, y′ ∈ ∂D+ =: Π.

Theorem 1.1. |x1| has a harmonic majorant in D ⊃ D+ if and only if

(1.1)

∫

Π

βD(y′)

1 + |y′|n−1
dy′ <∞.

Remark M. Benedicks has solved this problem in the case when the comple-
ment CD of D is a subset of Π (cf. [2, Theorems 3 and 4]).

1991 Mathematics Subject Classification: Primary 31A05, 31B05, 31C35.
∗ Supported by a grant from the Royal Swedish Academy of Sciences. Also the first author

would like to express his gratitude to the Department of Mathematics of Uppsala University for

the hospitality.



224 Vladimir Eiderman and Matts Essén

We would like to mention the following corollary of Theorem 1.1. This time,
we consider a domain ∆ containing the unit ball ∆+ = B(0, 1) and the function

β∆(y′) = ω
(
y′, S(y′, 1

2
|e− y′|) ∩ ∆, B(y′, 1

2
|e− y′|) ∩ ∆

)
, y′ ∈ ∂∆+,

where e = (1, 0, . . . , 0).

Corollary 1.1. Let ∆ be a domain such that ∆ ⊃ ∆+ . Then the function

|1 − |x|2| · |e− x|−n has a harmonic majorant in ∆ if and only if

(1.2)

∫

∂∆+\{e}

β∆(y′)

|e− y′|n−1
dσ(y′) <∞,

where dσ(y′) denotes surface measure on ∂∆+ .

In a recent paper [12], S. Gardiner looks at the class H (U,D) of all holo-
morphic functions in the unit disc U in the plane with range contained in D and
proves the following result.

Theorem A. Let D be a simply connected domain in the plane which con-

tains D+ . Then ReF ∈ h1 for every F ∈ H (U,D) if and only if

(1.3)

∫ ∞

−∞

dist (iy, ∂D)

1 + y2
dy <∞,

where dist (iy, ∂D) denotes the distance from iy to ∂D .

We note that ReF ∈ h1 for every F in H (U,D) if and only if |Rew| has a
harmonic majorant in D .

In the present paper, we prove first Theorem 1.1. In Section 4, we discuss
the relation between Theorem 1.1 and Theorem A. Finally, we give an analogue
of Theorem A in Rn , n ≥ 3.

2. Proof of Theorem 1.1

We begin with a series of lemmas.

Lemma 2.1. Let D− = {x ∈ Rn : x1 < 0} . If y′ ∈ Π and r is a given

positive number, we define Ω = B(y′, r) ∩ D , S− = S(y′, r) ∩ D ∩ D− and

S+ = S(y′, r) ∩D+ . Then

(2.1) ω(y′, S−,Ω) ≤ ω(y′, S+,Ω).

Proof. If

ω1(x) = ω
(
x, S(y′, r) ∩D−, B(y′, r)

)
,

ω2(x) = ω
(
x, S(y′, r) ∩D+, B(y′, r)

)
, x ∈ B(y′, r),
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we consider two functions w1 and w2 harmonic in Ω which solve the following
Dirichlet problems: for i = 1, 2, wi has boundary values ωi on ∂D∩B(y′, r) and
0 on D ∩ S(y′, r) . Then we have

ω(x, S−,Ω) = ω1(x) − w1(x), x ∈ Ω,

ω(x, S+,Ω) = ω2(x) − w2(x), x ∈ Ω.

It is clear that ω1(x) ≥ ω2(x) as x ∈ (D− ∪ Π) ∩ B(y′, r) . Hence w1 ≥ w2 on
∂D∩B(y′, r) . Since w1 and w2 are both zero on D∩S(y′, r) , it follows from the
maximum principle that w1 ≥ w2 in Ω. Since ω1(y

′) = ω2(y
′) , we conclude that

(2.1) holds.

Lemma 2.2. Let B(y′, r) and Ω be as in Lemma 2.1 . There exists a number

a ∈ (0, 1) depending only on the dimension n such that

(2.2) ω
(
y′, S(y′, r) ∩D,Ω

)
≤ 4ω

(
y′, S(y′, r) ∩ {x : x1 > ar},Ω

)
.

Proof. Let S1 = S(y′, r)∩{x : 0 < x1 < ar} and S2 = S(y′, r)∩{x : x1 > ar} ,
where a is chosen in such a way that Area (S1) = Area (S2) . Let us first prove
the inequality

(2.3) ω(y′, S1,Ω) ≤ ω(y′, S2,Ω).

Arguing as in the proof of Lemma 2.1, we consider

ω̃i(x) = ω
(
x, Si, B(y′, r)

)
, i = 1, 2

and the functions w̃i , i = 1, 2, which are harmonic in Ω with boundary values ω̃i
on ∂D ∩B(y′, r) and 0 on D ∩ S(y′, r) . Then

(2.4) ω(x, Si,Ω) = ω̃i(x) − w̃i(x), x ∈ Ω, i = 1, 2.

From Poisson’s formula, we deduce the inequality

(2.5) ω̃1(x) ≥ ω̃2(x), x ∈ Π.

The details will be given below.
Since ω̃1 and ω̃2 vanish on S(y′, r) ∩ D− , we have ω̃1 ≥ ω̃2 in B(y′, r) ∩

(D− ∪ Π) and thus w̃1 ≥ w̃2 in Ω. Since

ω̃1(y
′) = ω̃2(y

′) = σ−1
n Area (S1) = σ−1

n Area (S2),
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it follows from (2.4) that (2.3) holds. From (2.1) and (2.3), we see that

ω
(
y′, S(y′, r) ∩D,Ω

)
= ω(y′, S−,Ω) + ω(y′, S+,Ω)

≤ 2ω(y′, S+,Ω) = 2
(
ω(y′, S1,Ω) + ω(y′, S2,Ω)

)

≤ 4ω(y′, S2,Ω),

and (2.2) is proved.
It remains to prove that (2.5) holds. Without loss of generality, we assume

that r = 1 and y′ = (0, . . . , 0). Poisson’s formula (with standard notations) tells
us that

(2.6) ω̃i(x) =
1

σn

∫

Si

1 − |x|2
|x− ζ|n dσ(ζ).

Let ζ = (h, ζ2, . . . , ζn) be a point on S(y′, 1) ∩ D+ . If ζ∗ = (h,−ζ2, . . . ,−ζn) ,
ζ ′ = (0, ζ2, . . . , ζn) and x ∈ Π, we have

x · ζ ′ = |x|
√

1 − h2 cosϕ,

and

|x− ζ|−n + |x− ζ∗|−n = (h2 + |x− ζ ′|2)−n/2 + (h2 + |x+ ζ ′|2)−n/2

= (1 − 2|x|
√

1 − h2 cosϕ+ |x|2)−n/2

+ (1 + 2|x|
√

1 − h2 cosϕ+ |x|2)−n/2.

For ϕ fixed, this expression decreases as h increases from 0 to 1. From the
formula

ω̃i(x) =
1

2σn

∫

Si

(1 − |x|2)
(

1

|x− ζ|n +
1

|x− ζ∗|n
)
dσ(ζ)

it is easy to see that ω̃1(x) ≥ ω̃2(x) if x ∈ Π: approximate by Riemann sums, take
slices parallel to Π and move them successively. This finishes the proof of (2.5).

We can now prove the necessity of condition (1.1). Let h0 be the least har-
monic majorant of |x1| in D . Then the function ψ(x) = h0(x)+x1 is non-negative
in D and vanishes on ∂D . Let

Sy′ = S(y′, 1

2
|y′|) ∩ {x : x1 > a 1

2
|y′|}.

It follows from the maximum principle that

ψ(y′) ≥ ω
(
y′, Sy′ , B(y′, 1

2
|y′|) ∩D

)
min{ψ(x) : x ∈ Sy′}.
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We note that
ψ(x) > 2x1 > a|y′|, x ∈ Sy′ .

Combining this estimate with Lemma 2.2, we obtain

ψ(y′) ≥ 1

4
aβD(y′)|y′|.

Since ψ is a positive harmonic function in D+ , the theorem of Herglotz and
F. Riesz implies that ∫

Π

ψ(y′)

1 + |y′|n dy
′ <∞.

It follows that (1.1) holds and we have finished the first part of the proof.

To continue, we need the following observation which we state as

Lemma 2.3. |x1| has a harmonic majorant in D if and only if there exists

a positive harmonic function h in D vanishing on ∂D and such that

lim
t→∞

h(te)/t > 0

(we recall that e = (1, 0, . . . , 0)).

Proof. Assume that h0 is the least harmonic majorant of |x1| in D . Then h
defined by

h(x) = h0(x) + x1, x ∈ D,

is a positive harmonic function in D vanishing on ∂D . According to a classical
theorem of Herglotz and F. Riesz, we have

(2.7) h(x) = αx1 + Ph(x), x ∈ D+,

where α is a nonnegative constant and Ph is the Poisson integral of h|Π . Since
h(x) ≥ 2x1 , it follows that

α = lim
t→∞

h(te)/t ≥ 2,

which proves the necessity of the condition in the lemma.
Conversely, if h is a minimal harmonic function in D such that (2.7) holds

in D+ with α > 0, it is easy to see that

h1(x) =
2

α

(
h(x) − α

2
x1

)

is a harmonic majorant of |x1| in D which proves Lemma 2.3.
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We have proved that the convergence of the integral in Theorem 1.1 is a
necessary condition for |x1| to have a harmonic majorant in D . To prove that
(1.1) is a sufficient condition, we shall now assume that (1.1) holds and that |x1|
does not have a harmonic majorant in D and deduce a contradiction.

Let x0 ∈ D+ be fixed. By Harnack’s inequality, there is a sequence {Rm}∞1
increasing to infinity such that the limit

(2.8) lim
m→∞

ω
(
x, S(0, Rm) ∩D,B(0, Rm) ∩D

)

ω
(
x0, S(0, Rm) ∩D,B(0, Rm) ∩D

) , x ∈ D,

exists. The limit is a positive harmonic function ψ0 in D which is such that
ψ0(x0) = 1. We define

ψ(x) =

{
ψ0(x), x ∈ D,
0, x /∈ D,

and obtain a subharmonic nonnegative function in Rn (cf. Lemma 2.6 below).

Lemma 2.4. Let x̃ = (−x1, x2, . . . , xn) . Then

ψ(x̃) ≤ ψ(x), x ∈ D+.

Proof. Let

ωR(x) =

{
ω
(
x, S(0, R) ∩D,B(0, R)∩D

)
, x ∈ B(0, R) ∩D,

0, x ∈ B(0, R) \D.

Then ΘR(x) = ωR(x̃)−ωR(x) is subharmonic in B(0, R)∩D+ =: Ω+ and ΘR is
non-positive on ∂Ω+ . Hence ΘR is non-positive in Ω+ , and our statement follows
from the definition of ψ .

Lemma 2.5. Let x2, . . . , xn be given. Then the function

t 7−→ ψ(t, x2, . . . , xn)

is increasing for t ≥ 0 .

Proof. Fix b ≥ 0. Let xb = (b, x2, . . . , xn) and let ωR(x) be as in Lemma 2.4.
For R > |xb| we consider the function

ΓR(x) = ωR(2b− x1, x2, . . . , xn) − ωR(x1, x2, . . . , xn),

x = (x1, x2, . . . , xn) ∈ Ω+

b := B(0, R) ∩ {x : x1 > b}.

Then ΓR(x) is subharmonic in Ω+
b and ΓR(x) is non-positive on ∂Ω+

b . Hence
ΓR(x) is non-positive in Ω+

b , and we have

ωR(b− h, x2, . . . , xn) ≤ ωR(b+ h, x2, . . . , xn)

for every h ∈ [0, b] and for all sufficiently large R . Our statement follows now
from (2.8).
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Lemma 2.6. The function ψ defined above vanishes continuously on ∂D .

Proof. Fix r > 0 and let R > 2r . Lemmas 2.4, 2.5 and Harnack’s inequality
yield

ωR(x) ≤ ωR(r, x2, . . . , xn) ≤ CωR(re), |x| < r,

where ωR is defined in Lemma 2.4. Hence,

ωR(x) ≤ CωR(re)ωr(x), |x| < r.

From (2.8) we deduce that ψ(x) ≤ Cψ(re)ωr(x) as x ∈ D ∩ B(0, r) , and our
lemma is proved.

We are now ready for the final step in our proof. We can use the argument
in the proof of Theorem 4 in [2].

From our assumption that |x1| does not have a harmonic majorant in D , we
deduce that ψ is the Poisson integral in D+ of its boundary values on ∂D+ (cf.
Lemma 2.3 and (2.7)). Applying Lemmas 2.4 and 2.5, Harnack’s inequality and
the formula

(2.9) ψ(x) = cn

∫

Π

x1ψ(y′)

|x− y′|n dy
′, x ∈ D+,

we have

ψ(x) = ψ(x1, x2, . . . , xn) ≤ ψ(|x1|, x2, . . . , xn) ≤ ψ(|x|, x2, . . . , xn)

≤ Cψ(|x|e) = C|x|
∫

Π

ψ(y′)

(|x|2 + |y′|2)n/2 dy
′

(here and in the sequel, we shall use C to denote absolute constants: the value
may vary from line to line). This estimation yields

(2.10) ψ(x) = o(|x|), as |x| → ∞.

By (2.10), there exists a sequence {Rk} tending to infinity such that

(2.11) ψ(re)/r ≤ ψ(Rke)/Rk for r ≥ Rk.

Let x ∈ S(y′, 1

2
|y′|) . According to Lemmas 2.4 and 2.5 and Harnack’s inequality,

we have
ψ(x) ≤ ψ(|y′|, x2, . . . , xn) ≤ Cψ(|y′|e).

It follows (see Lemma 2.6) that

ψ(y′) ≤ Cψ(|y′|e)βD(y′).
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Using (2.9) and this estimate, we obtain

(2.12) ψ(Rke) ≤ C1

∫

Π

Rkψ(|y′|e)
|Rke− y′|nβD(y′) dy′.

In Π ∩ {|y′| ≤ Rk} , we use again Lemma 2.5 to deduce that

ψ(|y′|e) ≤ ψ(Rke).

Furthermore, we have |Rke− y′| ≥ Rk .
In Π ∩ {|y′| > Rk} , we use (2.11) which tell us that

ψ(|y′|e)/|y′| ≤ ψ(Rke)/Rk.

Furthermore, we have |Rke− y′| ≥ |y′| .
Estimating the integrand in (2.12) in this way, we see that

ψ(Rke) ≤ Cψ(Rke)

( ∫

|y′|≤Rk

βD(y′)

Rn−1
k

dy′ +

∫

|y′|>Rk

βD(y′)

|y′|n−1
dy′

)
.

Since the integral in (1.1) is convergent, the sum of the two integrals in this
expression tends to zero as Rk → ∞ . This is a contradiction, and Theorem 1.1 is
proved.

3. Proof of Corollary 1.1

An inversion in the sphere S(e, 2) will map ∂∆+ = S(0, 1) onto the hyper-
plane {x : x1 = −1} with e going to infinity. Using z for coordinates in the image
space, the inversion is given by

z = e+ 4(x− e)|e− x|−2.

If f∗ is a function defined on the z -space and r = |e− x| , the equation

f(x) = (2/r)n−2f∗
(
e+ 4(x− e)r−2

)

defines a function on the x -space: f is the Kelvin transformation of f∗ . It is
known that this transformation preserves harmonicity (cf. [13, p. 36]).

The unit ball B(0, 1) is mapped onto {z : z1 < −1} and the image of |z1 +1|
under the Kelvin transformation is 2n−1(1 − |x|2)|e− x|−n , i.e. a constant times
the Poisson kernel in B(0, 1) with pole at e .

If z′ ∈ {z : z1 = −1} is large, it corresponds to x′ ∈ S(0, 1) where |x′ − e|
is small. Furthermore, the image of the ball Bγ = B(z′, γ|z′|) is contained in
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B
(
x′, 1

2
|e− x′|

)
if γ ∈ (0, 1) is small, and contains B

(
x′, 1

2
|e− x′|

)
if γ ∈ (0, 1) is

near 1: the estimates are uniform for x′ near e , or equivalently, z′ large.
We shall say that two positive real valued functions f and g are comparable

and write f ≈ g if there exist positive constants A ≤ B such that Ag ≤ f ≤ Bg .
Let D be the image of ∆ under our inversion and let B(z′, γ|z′|) ∩D corre-

spond to Ωγ in the x -space. If

ω∗
γ = ω

(
· , S(z′, γ|z′|) ∩D,B(z′, γ|z′|) ∩D

)
,

the Kelvin transform F of ω∗ satisfies

ω∗(z) = F (x)(2/|z − e|)n−2 ≈ F (x)(1 + |z′|2−n)

for x ∈ Ωγ , where the constants A , B of comparison depend only on n and γ .
The right hand member is a harmonic function on Ωγ which is essentially either
1 or 0 for points x on ∂Ωγ that are images of points z on ∂

(
B(z′, γ|z′|) ∩D

)
.

Thus,
|z′|2−nF (x) ≈ ωγ(x) = ω( · , ∂Ωγ ∩ ∆,Ωγ),

i.e. we have
ωγ(x

′) ≈ ω∗
γ(z

′)

and there exist positive constants C1 , C2 , γ1 , γ2 where 0 < γ1 < γ2 < 1 such
that

C2ω
∗
γ2

(z′) ≤ ωγ2(x
′) ≤ β∆(x′) ≤ ωγ1(x

′) ≤ C1ω
∗
γ1

(z′).

Theorem 1.1 is for simplicity stated in terms of βD(z′) = ω∗
1/2(z

′) . We could just

as well have used ω∗
γ(z

′) for γ given in (0, 1). Thus the harmonic measures in the
two configurations are comparable.

To prove that the convergence criteria (1.1) and (1.2) are equivalent, we have
to compute the functional determinant of the mapping from S(0, 1) to the hyper-
plane {z : z1 = −1} defined by

zk = 4xk|e− x|−2 = 2xk(1 − x1)
−1, k = 2, . . . , n

(we note that |x| = 1). Hence






∂zk
∂xj

= − 2xkxj
x1(1 − x1)2

, j 6= k,

∂zk
∂xk

=
2

1 − x1

(
1 − x2

k

x1(1 − x1)

)
.

We need
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Lemma 3.1. Let B be the matrix (xixj)2≤i,j≤n . Then

det (tI −B) = tn−1

(
1 − 1

t

n∑

2

x2
k

)
.

We omit the proof. Using Lemma 3.1, it is easy to see that

d(z2, . . . , zn)

d(x2, . . . , xn)
= − 1

x1

( 2

1 − x1

)n−1

.

Near e , the surface element on S(0, 1) is essentially dx2 · · ·dxn . Since

|z′| ≈ |e− x′|−1 =
(
2(1 − x′1)

)−1/2

we have
dz2 · · ·dzn
|z′|n−1

≈ dx′2 · · ·dx′n
|e− x′|n−1

≈ dσ(x′)

|e− x′|n−1
.

Hence the convergence criteria (1.1) and (1.2) are equivalent which proves Corol-
lary 1.1.

4. Minimal thinness and majorization of |x1|
Let D be a domain in Rn containing D+ and satisfying conditions stated in

the introduction. We assume that D has an (essentially unique) minimal harmonic
function ψ with pole at infinity, i.e. ψ is a positive unbounded harmonic function
in D such that ψ(x) → 0 as x → x0 ∈ ∂D at all boundary points x0 . We shall
also consider E = D \ D+ (and recall that D− = {x ∈ Rn : x1 < 0}). In the
present paper we shall say that a set E ⊂ Ω is minimally thin at infinity with

respect to Ω if
R̂Eg (x0) < g(x0) for some x0 ∈ Ω,

where g is a minimal harmonic function in Ω with pole at infinity and the re-
duced function R̂Eg is formed with respect to all superharmonic and nonnegative
functions in Ω majorizing g on the set E . Thus the set E might be considered
as a minimally thin set with respect to D or as a minimally thin set with respect
to D− .

The results of the present section deal with the case when the dimension of
the set of positive harmonic functions vanishing on ∂D is one. It is possible to
introduce a kind of minimal thinness also when the dimension is larger than one.
An example will be given in Section 7.

Theorem 4.1. |x1| has a harmonic majorant in D if and only if E is

minimally thin at infinity with respect to D .
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In the plane, a non-trivial consequence of Theorem A and Theorem 4.1 is that
a simply connected set E is minimally thin at infinity with respect to D if and
only if condition (1.3) holds.

We would like to compare our results with Gardiner’s criterion (1.3). It is not
difficult to see that

βD(y′) ≥ C dist (y′, ∂D)/(1 + |y′|),

where the positive constant C depends only on the dimension n . An immediate
consequence of this inequality and Theorem 1.1 is

Corollary 4.1. Assume that |x1| has a harmonic majorant in D . Then we

have

(4.1)

∫

Π

dist (y′, ∂D)

1 + |y′|n dy′ <∞.

The converse of Corollary 4.1 is not true in general. An example will be given
in Section 7.

We have also

Theorem 4.2. If E is minimally thin at infinity with respect to D− , then

E is minimally thin at infinity with respect to D .

The next step is to define a general class of sets E for which our results have
a geometrical interpretation. Let {Q} be a Whitney decomposition of D− into
cubes with sides comparable to dist (Q,Π) and with sides parallel to the axes (cf.
Stein [15, Ch. 1]). To such a cube Q , we add all points in the convex hull of

Q and the orthogonal projection of Q onto Π and obtain a “box” Q̃ . Let us
for simplicity assume that all cubes and boxes are closed. Let D be a simply
connected set which is the interior of a union of such boxes Q̃ and D+ . It is
known that E = D \D+ is minimally thin at infinity with respect to D− if and
only if

(4.2)

∫

E

(1 + |y|n)−1 dy <∞,

(cf. [9, Theorem 2] and [6, Theorem 3]). It is easy to see that for domains of this
type, conditions (4.1) and (4.2) are equivalent.

The main result of this section is

Theorem 4.3. Let E = D \ D+ be a union of boxes as above. Then |x1|
has a harmonic majorant in D if and only if condition (4.1) (or condition (4.2))
holds.
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Theorem A is deduced from a known result on the angular derivative problem.
Our method does not involve conformal mapping and we can therefore deduce
results in higher dimensions.

Combining Theorem 1.1 and Theorem 4.3, we obtain

Corollary 4.2. Let E = D \D+ be as in Theorem 4.3 . Then (1.1) holds if

and only if (4.1) , or equivalently (4.2) , holds.

Remark. We would like to compare our results with earlier work which in
the two-dimensional case is related to the angular derivative problem.

Let ϕ: Π → R satisfy ϕ(0) = 0, ϕ(x′) = 0 for |x′| ≥ 1 and that for some
a > 0,

|ϕ(x′) − ϕ(y′)| ≤ a|x′ − y′|, x′, y′ ∈ Π.

We also define Dϕ = {x = (x1, x
′) : x1 > ϕ(x′)} , ϕ+ = max{ϕ, 0} and ϕ− =

max{0,−ϕ} .

Theorem B. Let ε > 0 and let h be a positive harmonic function on Dϕ ∩
B(0, ε) which vanishes continuously on ∂Dϕ ∩B(0, ε) . If

(4.3)

∫

|x′|<1

ϕ+(x′)|x′|−n dx′ <∞,

and

(4.4)

∫

|x′|<1

ϕ−(x′)|x′|−n dx′ = ∞,

then h(0, y)/y → ∞ as y → 0+ .

Theorem B is due to Carroll [5] and related to earlier work of Burdzy [4] (Bur-
dzy’s work was based on probabilistic methods; Carroll used classical analysis). In
[11], Gardiner used minimal fine topology to give a short proof of Theorem B.

To transfer our results in Sections 1 and 4 from a neighborhood of infinity to
a neighborhood of the origin, we make an inversion in the unit sphere and map
D ⊃ D+ onto D̃ ⊃ D+ . Assuming that the origin belongs to ∂D̃ , we deduce the
following analogues of Theorems 1.1, 4.1 and 4.3.

Theorem 1.1 ′ . |x1| |x|−n has a harmonic majorant in D̃ if and only if

(4.5)

∫

Π

β
D̃

(y′)(1 + |y′|n−1)−1 dy′|y′|1−n <∞.

Theorem 4.1 ′ . |x1| |x|−n has a harmonic majorant in D̃ if and only if

Ẽ = D̃ \D+ is minimally thin at the origin with respect to D̃ .
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Theorem 4.3 ′ . Let Ẽ = D̃ \D+ be a box domain. Then |x1| |x|−n has a

harmonic majorant in D̃ if and only if

(4.6)

∫

Π

dist (z′, ∂D̃)(1 + |z′|n)−1 dz′|z′|−n <∞.

It is clear that Theorem B is quite different from our Theorems 1.1′ and 4.3′ .
We would like to discuss Gardiner’s proof of Theorem B and compare it with

our results. We note that when applying the integral conditions in Theorem B,
we could just as well have used our “box domains” as the Lip-domain Dϕ .

A key observation in Gardiner’s proof is that if (4.4) holds, then Dϕ\{x1 > 0}
will not be minimally thin at the origin with respect to Dϕ . In the case when ϕ
is non-positive, this can also be deduced from our Theorems 4.1′ and 4.3′ .

5. Proof of Theorem 4.1

Let us first assume that |x1| has a harmonic majorant in D . If h0 is the
least harmonic majorant of this type, it is clear that ψ(x) = h0(x) + x1 is a
minimal harmonic function in D with pole at infinity. Arguing as in the proof of
Lemma 2.3, we see that

(5.1) ψ(x) = αx1 + Pψ(x), x ∈ D+

where α > 0. Consequently, the function

(5.2) ψ1(x) =

{
ψ(x), x1 ≤ 0,
Pψ(x), x1 > 0,

is superharmonic in D and strictly smaller than ψ in D+ . It follows that E =
D \D+ is minimally thin at infinity with respect to D .

Conversely, let us assume that E is minimally thin at infinity with respect
to D . If ψ is a minimal harmonic function in D with pole at infinity, it is clear
that ψ can be written as in (5.1) with α ≥ 0. If α = 0, we must have R̂Eψ = ψ
in D which contradicts our assumption that E is minimally thin at infinity with
respect to D . Hence α is positive, and we can define

ψ2(x) =
2

α

(
ψ(x) − α

2
x1

)

which is a harmonic majorant of |x1| in D . This completes the proof of Theo-
rem 4.1.
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6. Proof of Theorems 4.2 and 4.3

Let us assume that E is minimally thin at infinity with respect to D− but
not minimally thin with respect to D . We argue as in Section 2 and use (2.8) to
construct a minimal harmonic function ψ0 in D which we extend to a subharmonic
function ψ in Rn by defining it to be zero outside D . According to Lemmas 2.4
and 2.5, we have

(6.1) ψ(x) = ψ(x1, x2, . . . , xn) ≤ ψ(|x|, x2, . . . , xn).

Applying first (6.1) and then Harnack’s theorem, we obtain

M(r, ψ) = sup
|x|=r

ψ(x) ≈ ψ(re).

Again, the positive harmonic function ψ can be written as in (5.1). Defining ψ1

as in (5.2), we know that ψ1 is superharmonic in D and that

ψ1 ≥ R̂Eψ = ψ.

The last equality holds since we have assumed that E is not minimally thin at
infinity with respect to D . We conclude that α = 0 and that (cf. (2.10))

(6.2) M(r, ψ) ≈ ψ(re) = o(r), r → ∞.

Let f be the regularized reduced function of |x1| in D− with respect to E . We
define

u(x) =

{
u1(x) = ψ(x), x ∈ D,
u2(x) = |x1| − f(x), x ∈ Rn \D.

The function u vanishes on ∂D and is subharmonic in Rn . We claim that it is
unbounded both in D and in Rn \ D . By assumption, u1 is unbounded in D .
To prove that u2 is unbounded in Rn \D , we use first the Riesz representation
theorem in D− which tells us that

f(x) = η|x1| +Gµ(x),

where Gµ is the Green potential of a measure µ on D− and η is a nonnegative
constant. Since 0 ≤ f(x) ≤ |x1| in D− , there is no Poisson integral in this formula.
If η ≥ 1, we would have f(x) ≥ |x1| in D− which contradicts our assumption
that E is minimally thin with respect to D− . Hence we have 0 ≤ η < 1. If u2 is
bounded above, we would have

u2(x) = (1 − η)|x1| −Gµ(x) < C
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and thus

Gµ(x) > (1 − η)|x1| − C ≥ 1

2
(1 − η)|x1|, |x1| > 2C/(1 − η) := δ0, x ∈ D−.

It is known that the set {x ∈ D− : Gµ(x) > δ|x1|} is minimally thin at infinity
for every positive δ (see for example [6]). Consequently, the set {x : x1 < −δ0} is
minimally thin at infinity with respect to D− which is wrong. It follows that u2

is unbounded in D which proves our claim.
From (6.2), we see that

(6.3) M(r, u1) = o(r), r → ∞.

Clearly, we have

(6.4) M(r, u2) ≤ r, r → ∞.

In the plane, Theorem 4.2 is a consequence of a lemma of Beurling [3]. A
convenient reference is Lemma 3 in Domar [7]. The lemma tells us that for r
large, there exists a constant c such that

(
logM(r, u1)

)−1
+

(
logM(r, u2)

)−1 ≤ 2(log r − c)−1.

Using (6.4), we deduce that

logM(r, u1) ≥ log r − c′,

for some constant c′ which contradicts (6.3). We have proved Theorem 4.2 in the
plane.

In higher dimensions, we apply results of Friedland and Hayman [10]. Using
their terminology and notation, we note first that our subharmonic function u has
N ≥ 2 tracts. Let α1(t, R) and α2(t, R) be characteristic constants associated
with two components of the set {x : u(x) > 0} contained in D and in Rn \ D ,
respectively (for notation, we refer to [10]). From Theorem E and Theorem 4
in [10], we deduce that there exists a convex and decreasing function φn with
φn( 1

2
) = 1 such that

αi(t, R) ≥ α
(
Si(t), n

)
≥ φn

(
Si(t), n

)
, i = 1, 2,

where Si(t) denotes the normalized (n− 1)-dimensional surface area of the inter-
section of the component with the sphere {|x| = t} . The normalization is chosen
so that the total area of {|x| = t} is one. Using the properties of φn , we deduce
that

α1(t, R) + α2(t, R) ≥ φn(S1) + φn(S2)

≥ 2φn
(

1

2
(S1 + S2)

)
≥ 2φn

(
1

2

)
= 2.
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Now the estimate of the product of the maximum moduli in the components
from [10] yields

M(r, u1)M(r, u2) ≥ C exp

{∫ r/2

r0

(
α1(t, R) + α2(t, R)

) dt
t

}
≥ C′r2.

It follows from (6.4) that M(r, u1) ≥ C′r which contradicts (6.3). This completes
the proof of Theorem 4.2.

In the proof of Theorem 4.3, we need

Lemma 6.1. Let D be as in Theorem 4.3 and assume that (4.1) holds.

Then there exists a minimal harmonic function ψ in D with pole at infinity : it

is unique modulo multiplication by constants.

Proof. Since (4.1) holds, there exists a circular cone in Rn contained in the
interior of Rn\D . Any positive harmonic function ψ in D vanishing on ∂D must
be unbounded in D . In fact, if such a function ψ is bounded, a simple Phragmén–
Lindelöf argument shows that ψ must be non-positive which is wrong. Choosing
a closed ball B contained in the interior of Rn \D , we map D onto DB via an
inversion in ∂B . DB is a bounded set and it suffices to prove the lemma with
D replaced by DB . Let xB be the centre of B . Since DB is a non-tangentially
accessible domain (see [14, p. 93]), we can apply Theorem 5.5 in [14, p. 104] which
tell us that there is exactly one positive harmonic function u in DB vanishing
continuously on ∂DB \{xB} which is such that u(x0) = 1, where x0 is some fixed
point of DB . Lemma 6.1 is proved.

It is now easy to prove Theorem 4.3. If |x1| has a harmonic majorant in
D , it follows from Corollary 4.1 that (4.1) and (4.2) hold. Conversely, if (4.1)
and (4.2) hold, E is minimally thin at infinity with respect to D− . According to
Lemma 6.1, there exists an essentially unique minimal harmonic function ψ in D
with pole at infinity and we can use Theorem 4.2. It follows that E is minimally
thin at infinity with respect to D . Finally by Theorem 4.1, we conclude that |x1|
has a harmonic majorant in D . The theorem is proved.

7. Remarks

Also when there exist at least two linearly independent functions in the cone
P of positive harmonic functions in D with vanishing boundary values, we can
use the definition in Section 4 and talk about g -minimal thinness if g ∈ P is
given.

As an example, we consider Denjoy domains, i.e., domains which are such
that Rn \D is contained in Π. According to [2], the dimension of P in this case
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is two if and only if (1.1) holds. Assuming this, we can choose g ∈ P in such a
way that

lim
t→∞

g(−te)/t = 0i)

α = lim
t→∞

g(te)/t > 0.ii)

Again referring to the theorem of Herglotz and F. Riesz, we have

g(x) = αx1 + Pg(x), x ∈ D+.

Consequently, the function

g0(x) =

{
g(x), x1 ≤ 0,
Pg(x), x1 > 0,

is superharmonic in D and strictly smaller than g in D+ . Consequently, R̂D
−

g =
g0 and D− is “g -minimally thin” at infinity with respect to D . This is intuitively
natural since D− is “far” from the set where g is large.

We note that condition (4.1) appears in a different context in formula (7)
in [1]: they discuss Denjoy domains.

In conclusion, we give an example showing that the converse of Corollary 4.1
is not true in general.

Example 7.1. Let n > 2. We construct a simply connected domain D with
a smooth boundary such that (4.1) holds but |x1| has not a harmonic majorant
in D .

Let m2, . . . , mn be integers. Let Im2,...,mn
be a closed semi-infinite cylinder

with axis
{
x : x = (t,m2, . . . , mn), −∞ < t ≤ −1

}
. Let

D = {x : x1 > −|x|} \
( ⋃
m2,...,mn

Im2,...,mn

)
.

We can choose sets Im2,...,mn
sufficiently thin to achieve that

βD(y′) ≥ C > 0, y′ ∈ Π,

where C is a constant. Since the integral in (1.1) is divergent, |x1| has not a
harmonic majorant in D . At the same time, dist (y′, ∂D) <

√
n for y′ ∈ Π, and

thus (4.1) holds. Clearly, we can modify the definition of D so that we obtain a
domain with a smooth boundary.
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