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Abstract. We study the conformal mappings of a given measurable conformal structure on
the Riemann sphere. We construct an example of a quasiregular self mapping of the n -sphere whose
iterates have uniformly bounded dilatation with nonempty branch set. We describe the Fatou and
Julia sets of this function and discuss the associated invariant measurable conformal structures as
well as some simple dynamical properties. We thereby deduce that conformal mappings between
the same measurable structure need not be locally homeomorphic.

1. Introduction

Let Sn denote the unit sphere of Rn+1 . We begin our study by defining what
it means for a mapping F : Sn → Sn to be quasiregular and then discussing mea-
surable conformal structures on Sn and then on the Riemann sphere, or Möbius
space, R

n
= Rn ∪ {∞} .

A quasiregular semigroup will be a family of mappings of R
n

to itself closed
under composition such that each element is K -quasiregular for some fixed and
finite K . We then construct a quasiregular semigroup generated by the iterates of
a single quasiregular mapping with nonempty branch set. Thus F and its iterates
are not even locally injective.

We are then naturally led to study the dynamics of such mappings. We shall
discuss the more intricate details of the dynamics of such mappings in a sequel.
Here we only point out basic properties of our mapping. For example we show that
its Julia set is a Cantor set (that is it is a closed, perfect and totally disconnected
set) and we establish the existence of a single attracting basin, see the remarks at
the end of Section 4.

We subsequently show how to construct equivariant measurable conformal
structures for certain quasiregular semigroups. Hinkkanen [5] has shown that even
in the plane a quasiregular semigroup need not admit an invariant measurable
conformal structure. Hinkkanen’s example needs only two generators and is free on
these generators. Thus some additional hypothesis is necessary. In our application
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such an assumption will be satisfied since our semigroup will be cyclic although
more general algebraic conditions will suffice.

We consider Sn as a C∞ Riemannian n -manifold with the usual Riemannian

metric induced by the inclusion Sn i→֒Rn+1 . A mapping F : Sn → Sn is said to
be of Sobolev class W 1,p(Sn) , 1 ≤ p ≤ ∞ , if the following occurs. Let x ∈ Sn

and (U, ϕ) be a coordinate chart at x . That is x ∈ U ⊂ Sn and ϕ: U → Rn is
a C∞ diffeomorphism. Then i ◦ f ◦ φ−1 lies in the space W 1,p

loc (ϕ(U),Rn+1) . (In
the case of an arbitrary manifold we have to be a little careful here because there
is no assumption about the continuity of F and so possibly the image of every
neighbourhood of x might be onto. Hence there would be no chance of expressing
F in local coordinates as a mapping of subdomains of Rn .) We shall not go into
to detail describing the norms on W 1,p(Sn) since we really do not need them.
However we will need some topological properties of this space later. For us it
suffices to observe that a fixed atlas of coordinate charts may be used to define
local norms inducing a topology on W 1,p(Sn) . All we will need is that in this
topology W 1,p(Sn) is closed under uniform limits (in the chordal metric of Sn ,
see Section 4) of sequences of W 1,p(Sn) functions.

Now if F ∈ W 1,p(Sn) the differential DF (x): TxS
n → TyS

n , where y =
F (x) , is defined at almost every point of Sn . The transpose DtF (x): TyS

n →
TxS

n is defined via the usual inner product on the tangent spaces and |DF | =
(trDtFDF )1/2 ∈ Lp(Sn) . We denote by JF (x) = det DF (x) the Jacobian deter-
minant of F at x .

Definition. A mapping F : Sn → Sn of Sobolev class W 1,n(Sn) is said to
be K -quasiregular, 1 ≤ K < ∞ , if both

JF (x) ≥ 0 a.e. or JF (x) ≤ 0 a.e.

and

max{|DF (x)ξ| : ξ ∈ TxS
n, |ξ| = 1} ≤ K min{|DF (x)ξ| : ξ ∈ TxS

n, |ξ| = 1}

for almost every x ∈ Sn .

The smallest number K for which the above inequality holds is called the
maximal dilatation of F . A nonconstant quasiregular mapping can be redefined
on a set of measure zero so as to be continuous, open and discrete. It is also
differentiable with Jacobian determinant JF (x) 6= 0 almost everywhere. The
dilatation function of a quasiregular mapping is defined as

(1) KF (x) =
max{|DF (x)ξ| : ξ ∈ TxS

n, |ξ| = 1}
min{|DF (x)ξ| : ξ ∈ TxSn, |ξ| = 1} .

A family Γ of quasiregular mappings F : Sn → Sn which is closed under
composition is called a quasiregular semigroup if there is some K < ∞ such
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that each element of Γ is K -quasiregular. A typical example of a quasiregular
semigroup is constructed as follows. Let G be a measurable conformal structure
on Sn . By this we mean that at each point x ∈ Sn , G(x) is a linear automorphism

(2) G(x): TxS
n → TxS

n

of the inner product space TxS
n , such that G(x) is symmetric, positive definite,

of determinant equal to 1 and satisfies a uniform ellipticity condition

(3) K−1|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ K|ξ|2

with K ≥ 1 independent of x .
The solutions of the equation

(4) DtF (x)G
(

F (x)
)

DF (x) = JF (x)2/nG(x)

for mappings of Sobolev class W 1,n(Sn) form a semigroup under composition.
Each such solution is a K -quasiregular mapping of Sn . We shall call the subsemi-
group of nonconstant solutions to (4) the G-transformations, and may refer to G
as an equivariant measurable conformal structure for Γ. Later it will be shown
that every abelian K -quasiregular semigroup arises in this manner. That is we
will construct for a given abelian quasiregular semigroup an equivariant conformal
structure.

It will be convenient for us to transfer the situation to R
n
. This is in order to

make the analogy with the iteration of rational mappings of the Riemann sphere C

more compelling. This also makes the construction easier to visualize. To this end
we utilize the conformal stereographic projection Π: R

n → Sn . For each mapping
f : R

n → R
n

we define

(5) F = Π ◦ f ◦ Π−1: Sn → Sn.

We say that f is K -quasiregular if the mapping F is K -quasiregular. In the
literature such mappings are sometimes called “quasimeromorphic” [9]. If F is
conformal with respect to the measurable conformal structure G , then an easy
application of the chain rule shows that

(6) Dtf(a)G
(

f(a)
)

Df(a) = Jf (a)2/nG(a)

for almost every a ∈ R
n
. Here

(7) G(a) = (detAtA)−2/nAtG
(

Π(a)
)

A

and A: Rn → TΠ(a)S
n is the differential of Π at a . Moreover it is easy to check

that we still have the ellipticity estimate

(8) K−1|h|2 ≤ 〈G(a)h, h〉 ≤ K|h|2.
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In this way we are now free to study equation (6) and its solutions in R
n
.

Such a solution is conformal with respect to the structure G and is called a
G-transformation. The equation (6) is one of a family of nonlinear first order
PDE’s known as Beltrami systems. It is possible to study weaker solutions to this
equation, but we do not seem to gain any real generality in doing so here. When
n = 2 and G = I , the identity matrix, this equation reduces to the usual Cauchy–
Riemann equations and such solutions necessarily represent rational (analytic)
mappings of C . More generally, because of the so-called measurable Riemann
mapping theorem, when n = 2 any G-transformation is a rational mapping after
a quasiconformal change of coordinates. G-transformations of the complex plane
are actually solutions of the following quasilinear elliptic system

(9)
∂f

∂z̄
= µ1(z, f)

∂f

∂z
+ µ1(z, f)

∂f

∂z

where

µ1(z, f) =
G1,1(z) − G2,2(z) − 2iG1,2(z)

G1,1(z) + G2,2(z) + G1,1

(

f(z)
)

+ G2,2

(

f(z)
)

and

µ2(z, f) =
G2,2(f) − G1,1(f) − 2iG1,2(f)

G1,1(z) + G2,2(z) + G1,1(f) + G2,2(f)
.

The existence of solutions and their many interesting properties can be established
by the methods of elliptic PDE theory.

It is a classical theorem of Gehring and Reshetnyak that if n ≥ 3 and
G(x) = I , then any solution to the Cauchy–Riemann system

(10) Dtf(x)Df(x) = Jf (x)2/nI

is a Möbius transformation, that is the finite composition of reflections in spheres
and hyperplanes of R

n
. This result is known as the Liouville theorem, see [6]

and the references therein. Notice in particular that all solutions to the Cauchy–
Riemann system are global homeomorphisms of Rn .

In our work [6] on the structure of solutions to the Beltrami system in higher
dimensions the question arose as to whether all G-transformations of R

n
are

locally homeomorphic. This is certainly the case if, for instance, the measurable
conformal structure in question is continuous [6].

Let f : R
n → R

n
be a mapping. We denote the iterates of f by

f1(x) = f(x), fn+1(x) = f
(

fn(x)
)

.

If f is a G-transformation, then so too is fn for every n = 1, 2, 3, . . . . If every
G-transformation were locally homeomorphic (and therefore globally homeomor-
phic because R

n
is a closed simply connected space), the dynamics involved in
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iterating the function f would be largely uninteresting. However if f were not
a homeomorphism one could expect to develop a reasonable theory of the dy-
namics of iteration of such functions analogous to the classical theory of iteration
of a rational function [2]. Indeed because of Rickman’s version [10] of Montel’s
normality criterion [11] the connections are especially pronounced. We discuss
this a little later, after first constructing an example of a nonlocally injective G-
transformation for some bounded conformal structure G . First we need to recall
a few facts about quasiregular mappings.

2. Quasiregular mappings

The characteristic property of quasiregular mappings is that they have
“bounded distortion”. The theory of quasiregular mappings is well developed with
strong connections to geometry, topology, nonlinear analysis and PDE’s, see [10],
[6]. If G is a measurable conformal structure on R

n
, then any G-transformation

is K -quasiregular with

(11) K ≤ sup
{λn(x)

λ1(x)
: x ∈ Rn

}

where 0 < λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x) are the eigenvalues of the positive definite
symmetric matrix G(x) . Therefore a noninjective G-transformation f : R

n → R
n

has iterates which are also quasiregular and the semigroup {fn}∞n=1 is quasireg-
ular. In general the degree of fn is dn where d is the degree of f . (The degree
of a mapping is the number of preimages of a generic point, see [10] for a fuller
discusion.)

It is not at all clear that such noninjective mappings exist. If g: R
n →

R
n

is quasiconformal (an injective quasiregular mapping) and Φ is any Möbius
transformation, then f = g−1 ◦Φ ◦ g is quasiregular and is conformal with respect
to the measurable structure

(12) Gg(x) =

{

J
−2/n
g (x)Dtg(x)Dg(x) at points where Jg(x) 6= 0 ,

I otherwise.

Such measurable structures are called conformally flat. No such construction can
yield noninjective mappings. Moreover if G is a conformally flat structure, then
all G-transformations are globally injective (since after changing coordinates via
g the transformation satisfies the Cauchy–Riemann system and so is Möbius by
the Liouville theorem).

The branch set of a quasiregular mapping f is the set of points Bf at which f
is not locally injective. That is x ∈ Bf if and only if for each open neighbourhood
U of x , f | U fails to be injective. We note that Bf2 = Bf ∪ f−1(Bf ) and more
generally

(13) Bfn =
n
⋃

i=0

f−i(Bf ).
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3. The example

We state the example in the form of a theorem. It is conjectured that a
noninjective quasiregular mapping of Rn , n ≥ 3, must have dilatation at least 2.
Thus, in this respect our example is best possible.

Theorem 3.1 For every K > 2 there is a K -quasiregular semigroup Γ acting

on R
n

with the property that every element of Γ has nonempty branch set.

The semigroup we seek will consist of the iterates of a quasiregular mapping
f : R

n → R
n
.

We begin the proof of this theorem by constructing a mapping of the plane
which is close to z 7→ z2/|z| and is branched at the origin. Fix ε ∈ (0, 1

2
π) . Define

a piecewise linear mapping h: [0, 2π) → [0, 2π) as follows:

(14) h(θ) =































θ if 0 ≤ θ ≤ ε or 2π − ε ≤ θ ≤ 2π,
2(π − ε)θ − πε

π − 2ε
ε ≤ θ ≤ π − ε,

θ + π if π − ε ≤ θ ≤ π,
θ − π if π < θ ≤ π + ε,
2(π − ε)θ + π(ε − 2π)

π − 2ε
π + ε ≤ θ ≤ 2π − ε.

Figure 1. Graph of the function h .

Now we define a mapping of Rn to itself using cylindrical coordinates (r, θ, z)
where r ≥ 0, θ ∈ [0, 2π) and z ∈ Rn−2 by the formula

(15) g(r, θ, z) =
(

2r, h(θ), 2z
)

.

If ε = 0 we have the usual winding map (r, θ, z) 7→ (r, 2θ, z) scaled by a factor
of 2. On the wedge W1 = {(r, θ, z) : |θ| < ε} the mapping g is simply scaling
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by the factor 2. On the wedge W2 = {(r, θ, z) : |θ − π| < ε} the mapping g is a
rotation through angle π followed by scaling by the factor 2. We let

(16) R = W1 ∪ W2

and call R the “red zone”. Notice that g is conformal on the red zone. We
compute the dilatation of g outside the red zone as follows. The vectors

∂

∂r
,

1

r

∂

∂θ
,

∂

∂zi
, i = 3, 4, . . . , n,

form an orthonormal frame at (r, θ, z) . Their images under the differential map-
ping Dg at points where it is defined are easily computed to be respectively

2
∂

∂r
,

2

r

∂h

∂θ

∂

∂θ
, 2

∂

∂zi
, i = 3, 4, . . . , n.

We note that ∂h/∂θ is equal to 1 or 2(π − ε)/(π − 2ε) . Thus this image frame is
orthogonal and represents the principal stretchings of g . The ratio of the lengths
of these vectors is therefore the maximal dilatation of g . Accordingly

(17) Kg =
π − ε
1
2
π − ε

.

And consequently Kg can be made as close to 2 as we like by choosing ε suffi-
ciently small. Other constructions of this type, and similar calculations of dilata-
tions, can be found in Väisälä’s book, [13].

Next choose a point a = (d, 0, 0, . . . , 0) such that B = B(a, 1) ⊂ W1 and
d > 3. Here d is chosen so that this ball is mapped off itself under g . Let Φ
denote the conformal inversion in the ball B obtained as the composition of the
two reflections

x 7→ a +
x − a

|x − a|2 and (x1, x2, . . . , xn) 7→ (x1, x2, . . . ,−xn).

The mapping f we are looking for is then defined by

(18) f = Φ ◦ g: R
n → R

n
.

We need to make a few observations about this map. We let B′ = g(B) = B(2a, 2).

– f is conformal in the red zone.

Since f is the composition of two maps, the first is conformal in the red zone, the
other is globally conformal.

– For all n ≥ 1, fn(B) ⊂ B .
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Indeed, f(B) = Φ
(

g(B)
)

= Φ(B′) ⊂ B since Φ is an inversion in B and B′ lies
outside of B . The claim follows by induction.

– If x lies outside the red zone, then f(x) ∈ B .

To see this simply observe

R
n \R = R

n \g−1(W1) ⊂ R
n \g−1(B) = g−1(R

n \B) = g−1
(

Φ−1(B)
)

= f−1(B).

It is now immediate that the iterates of f form a K -quasiregular semigroup
since the iterates {fn(x)}∞n=1 of a point x ∈ R

n
contain at most one point of the

red zone where there is any distortion. That is if x is not a point of the red zone,
then f(x) ∈ B and now all iterates of f map B conformally inside itself. We call
such a configuration, of a map f which maps a ball conformally inside itself, a
conformal trap.

The dilatation of fn at such a point is therefore just the dilatation of f at x
and this is at most K . If x is a point of the red zone and if all iterates of f map
this point into the red zone, then fn is conformal at x for all n . Otherwise there
is an n0 such that fn0(x) does not lie in the red zone, fn0 is conformal at x and
applying f we end up in the conformal trap with dilatation at most K .

4. Fatou and Julia sets

Let σ(x, y) denote the chordal metric of R
n
,

σ(x, y) =
|x − y|

√

1 + |x|2
√

1 + |y|2

for x, y ∈ Rn and σ(x,∞) = 1/
√

1 + |x|2 . In the sequel all notions of continuity
and convergence will be with respect to this metric.

Let Ω be a domain in R
n

and F a family of continuous mappings f : Ω → Rn .
We say that F is normal in Ω if every sequence {fj}∞j=1 in F contains a subse-
quence {fjk

}∞k=1 which converges locally uniformly in Ω.

A quasiregular semigroup Γ is said to be cyclic if Γ = {fn}∞n=1 .
Let Γ be a quasiregular semigroup. Then the Fatou set of Γ is defined as

(19) F (Γ) = {x ∈ R
n

: there is an open set U, x ∈ U and Γ | U is normal }.

The Julia set of Γ is J(Γ) = R
n \ F (Γ). Clearly the Fatou set is open and the

Julia set is closed. If Γ = {fn}∞n=1 then we speak of the Fatou set and Julia sets
of f , denoted F (f) and J(f) . If f is not injective, then necessarily {fn}∞n=1 is
an infinite collection of mappings. We recall the following well known result which
can be found, for instance, in Rickman’s book [10].

Theorem 4.1. Suppose that {fj} is a sequence of K -quasiregular mappings

converging locally uniformly in a domain Ω to a mapping f . Then either f is a

quasiregular mapping defined on Ω or f is a constant mapping.
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It is more or less immediate from the definition that the Fatou and Julia sets
are completely invariant. That is for each f ∈ Γ

f
(

F (Γ)
)

= f−1
(

F (Γ)
)

= F (Γ),(20)

f
(

J(Γ)
)

= f−1
(

J(Γ)
)

= J(Γ).(21)

A simple degree argument based on the fact that a quasiregular mapping R
n → R

n

must have finite degree and completely analogous to the classical case of iteration of
a rational functions [2] shows that a quasiregular semigroup containing an element
with nonempty branch set cannot be normal on the entire Riemann-sphere. In
this case the Julia set cannot be empty.

We recall Rickman’s version of Montel’s normality criterion [10].

Theorem 4.2. For each K and n there is a positive integer q = q(n, K)
with the following properties. If F is a family of K -quasiregular mappings of

Ω ⊂ R
n

such that each f omits q values zf
1 , zf

2 , . . . , zf
q and there is some ε > 0

independent of f such that

(22) σ(zf
i , zf

j ) > ε

then F is a normal family on Ω .

With this tool in hand the theory of iteration of quasiregular mappings devel-
ops quite naturally and in close analogy to the classical theory. We shall discuss
this in more detail in a subsequent paper along with other examples. However we
make here a few simple comments about the example we have constructed in the
previous section.

As the positive real axis is mapped into itself we can compute a pair of
fixed points as follows: Since g(t, 0, . . . , 0) = (2t, 0, . . . , 0) and Φ(s, 0, . . . , 0) =
(d + (1/s − d), 0, . . . , 0) we need only solve

(23) d +
1

2t − d
= t

to find the two fixed points af = 1
4 (3d +

√
d2 + 8, 0, . . . , 0) and rf = 1

4 (3d −√
d2 + 8, 0, . . . , 0). The point af is an attracting fixed point. Indeed the Jacobian

matrix Df of f at af is easily computed to be equal to

Df(af ) =









1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . −1









2

|2af − a|2
(

I− 2
2af − a

|2af − a| ⊗
2af − a

|2af − a|

)

and so

(24) |Df(af)| =
2

|2af − a|2 =
4

d2 + d
√

d2 + 8 + 4
≤ 1

6
< 1
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since we chose d > 3. Similarly the fixed point rf is repelling and

(25) |Df(rf)| =
2

|2rf − a|2 =
4

d2 − d
√

d2 + 8 + 4
≥ 4 > 1.

This repelling fixed point is necessarily in the Julia set.

Remark. We can give a rough idea of what the Julia set is for the mapping f .
It is

(26) J(f) =

∞
⋂

m=1

∞
⋃

n=m

f−n(B)

where we recall that B = B(a, 1) is the ball on which the inversion Φ is defined.
This set J(f) is a Cantor subset of the real line. We can see this in the following
way. Let

D1 = f−1(R
n \ B).

Then D1 consists of the two closed balls B( 1
2a, 1

2 ) and B(−1
2a, 1

2 ). If x 6∈ D ,
then x has a neighbourhood U such that f(U) ⊂ B . Then fn(U) ⊂ B for all n ,
fn | U is a bounded family of K -quasiregular mappings and therefore normal. We
conclude x ∈ F (f) . Let D2 = f−1(D1) . Then D2 consists of four disjoint closed
balls, two in each component of D1 . If x 6∈ D2 , then x has a neighbourhood
U such that f2(U) ⊂ B and again we see x ∈ F (f) . Continuing in this fashion
we set Dn+1 = f−1(Dn) . Then Dn+1 consists of 2n+1 disjoint closed balls, two
in each component of Dn . We see inductively that if x 6∈ Dn , then x has a
neighbourhood U such that fn+1(U) ⊂ B and so, as before, x ∈ F (f) . We can
also see in this way the inductive construction of the Cantor set J(f) .

5. Invariant conformal structures

In this section we show how to find a measurable conformal structure on
R

n
which is preserved by the elements of certain quasiregular semigroups. The

construction is more or less the same as the construction given by Tukia [12] of
equivariant measurable conformal structures for quasiconformal groups, see too [3]
and [7]; however, there are some technical complications due to the lack of a group
structure. Surprisingly one cannot always construct such structures, see [5]. We
begin by recalling some basic facts.

Let S+(n,R) be the manifold of positive definite symmetric n × n matrices
with real entries and determinant 1. The general linear group GL(n,R) acts
transitively on the right of S+(n,R) via the rule

(27) X [A] = | detX |−2/nXtAX, X ∈ GL(n,R), A ∈ S+(n,R).

The Riemannian metric

(28) ds2 = tr(Y −1dY )2
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on S+(n,R) gives rise to a metric distance which we denote by ̺(A, B) for A, B ∈
S+(n) . This metric is invariant under the right action of GL(n,R) and makes
S+(n,R) a globally symmetric Riemannian manifold, which is complete, simply
connected and of nonpositive sectional curvature, see Helgason [4] for details. One
can compute that

(29) ̺(A) = ̺(A, I) = ‖ log A‖

where ‖ log A‖ =
(

(log λ1)
2 + (log λ2)

2 + · · · + (log λn)2
)1/2

is the usual Hilbert–
Schmidt norm and λ1, λ2, . . . , λn are the eigenvalues of the matrix A , see [8].
Other distances can now be calculated because of the transitivity of the GL(n,R)
action. We find that

(30) ̺(A, B) =
∥

∥log
√

BA−1
√

B
∥

∥

where
√

B is the symmetric positive definite square root of B .
Given a measurable conformal structure G on R

n
we define the dilatation

of a quasiregular mapping with respect to this new structure on R
n

as

(31) Kf (G) = exp ‖̺(G,Gf)‖∞

where Gf is defined in equation (12). Thus we view f : (R
n
, Gf ) → (R

n
, I) as a

conformal mapping.

Given a quasiregular semigroup Γ we define another dilatation for Γ by the
formula

(32) KΓ = sup{Kf (I) : f ∈ Γ} ≤
√

nK(n−1)/n

where each f is K -quasiregular in the usual sense.
We now go about constructing an invariant measurable conformal structure

for an abelian quasiregular semigroup Γ.

Theorem 5.1. Let Γ be an abelian quasiregular semigroup. Then there is a

measurable conformal structure GΓ such that each g ∈ Γ is a GΓ -transformation

and

̺(GΓ) ≤
√

2 log KΓ

Proof. We first suppose that Γ is countable. We also assume without loss
of generality, that the identity mapping I ∈ Γ. Since Γ is only countable we can
find a set U of full measure with the following properties.

– g(U) = g−1(U) = U for all g ∈ Γ,
– Dg(x) is defined and Jf (x) 6= 0 for all x ∈ U ,
– ̺

(

Gg(x)
)

≤ log KΓ for each g ∈ Γ and x ∈ U .
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If f, g ∈ Γ, then

(33) Gf◦g = Dg(x)
[

Gf

(

g(x)
)]

.

At every point x0 ∈ U , every element g ∈ Γ has a finite collection of local inverses
defined on some neighbourhood of x0 . The size of this neighbourhood depends
on the mapping of course. We define the local group Γx0

of Γ at x0 as follows:
A mapping h ∈ Γx0

if there is some neighbourhood V of x0 on which h can be
written in the form

(34) h = h1 ◦ h2: V → R
n

where h2 ∈ Γ and h1 is a branch of the inverse of some element of Γ restricted to
h2(V ) . Notice that it is possible that h1 = I or h2 = I . The two main properties
of the local group at x0 that we will use are:

– If g ∈ Γ, then
Γg(x0) ◦ g = {h ◦ g : h ∈ Γg(x0)} = Γx0

.

– If h ∈ Γx0
, then h: V → R

n
is K2 -quasiconformal.

It is only in the verification of the first property that the hypothesis that Γ is
abelian is used. Let us verify this first property. The containment

Γg(x0) ◦ g ⊂ Γx0

is clear from the definition. We want to establish the reverse inclusion. If h ∈ Γx0
,

then there is a neighbourhood V of x0 in which h = h1 ◦ h2 where h2 ∈ Γ and
h1 is a branch of some inverse of an element of Γ, say h1 is a branch of f−1 .
Choose branches of g−1 and of (g ◦ f)−1 such that g−1 ◦ g = I on h2(V ) and
(g ◦ f)−1 = h1 ◦ g−1 . Then, on an appropriate neighbourhood of x0 ,

h = h1 ◦ h2 = h1 ◦ g−1 ◦ g ◦ h2 = (g ◦ f)−1 ◦ g ◦ h1 = (g ◦ f)−1 ◦ h1 ◦ g.

Thus (g ◦ f)−1 ◦ h1 ∈ Γg(x0) .
The second property is clear because h2 is K -quasiregular and h1 is a branch

of the inverse of a K -quasiregular mapping, and therefore K -quasiregular where
defined.

In the above situation we can define Gh(x) in a neighbourhood of x0 and in
particular at x0 in the obvious way. We also observe that

(35) ̺(Gh) ≤ 2 log KΓ.

We now define

(36) E (x) = {Gh(x) : h ∈ Γx}.
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Hence for every x ∈ U and g ∈ Γ we have

Dg(x)
[

E
(

g(x)
)]

=
{

Dg(x)
[

Gh

(

g(x)
)]

: h ∈ Γg(x)

}

= {Gh◦g(x) : h ∈ Γ} = {Gf : f ∈ Γx} = E (x).

Thus E (x) is a set function solution to equation (6) defining an equivariant con-
formal structure.

We now recall that in a nonpositively curved Riemannian metric on a simply
connected manifold any bounded set E lies in a unique ball of smallest radius.
Denote the center of this ball by Ec . In the case at hand the right action of
GL(n,R) is isometric we find that for a bounded subset E ⊂ S+(n,R)

(37) X [Ec] = {X [A] : A ∈ E }c.

We also recall the following lemma from [7]:

Lemma 5.1. Let N be a simply connected, nonpositively curved Rieman-

nian manifold with complete metric ̺ . Let A ∈ N and E ⊂ N such that

sup{̺(A, B) : B ∈ E } ≤ s.

Let Ec denote the center of the smallest ball containing E in the metric ̺ . Then

(38) ̺(A, Ec) ≤ s/
√

2.

This estimate is sharp.

In our situation I ∈ E (x) for each x ∈ U . Therefore

(39) ̺
(

Ec(x)
)

≤
√

2 log KΓ.

The invariant measurable conformal structure that we seek can now be defined by

(40) GΓ(x) = Ec(x).

In view of (39) we see that GΓ is a bounded measurable conformal structure and
by (32)

(41) exp ‖ logGΓ‖ ≤ K
√

2
Γ ≤ (

√
n K(n−1)/n)

√
2.

It only remains to establish the result in case Γ is uncountable.
To this effect we return to the sphere Sn by pulling back the quasiregular

semigroup via the stereographic projection. We abuse notation by continuing to
denote the induced semigroup by Γ. Thus each f ∈ Γ is a quasiregular mapping
in the Sobolev class W 1,n(Sn) . This space is a separable metric space and so
therefore is the subspace Γ. Hence there is a countable subsemigroup Γ0 which is
dense in Γ with respect to the topology of W 1,n(Sn) . We have shown that there
is an invariant measurable conformal structure G0 for Γ0 on Sn . That is

(42) Dtf(x)G0

(

f(x)
)

Df(x) = J
2/n
f (x)G0(x)

for all f ∈ Γ0 . The result now follows since the space of all W 1,n(Sn) solutions
to this equation is obviously closed in the topology of uniform convergence on Sn .
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Remark. We comment about the hypothesis in Theorem 5.1 that Γ is
abelian. As the proof we give for Theorem 5.1, we see that all we really need
is that Γ have the property that

Γg(x0) ◦ g = Γx0
.

Following our proof we find that if g, g′ ∈ Γ, then the existence of an h ∈ Γ,
depending on g and g′ , such that

h ◦ g′ = g′ ◦ g

would suffice. Therefore in Theorem 5.1 we could have replaced the hypothesis
that Γ is abelian with the algebraic assumption that every right principal ideal is
a left principal ideal. That is if g ∈ Γ, then there is h ∈ Γ such that

h ◦ Γ = Γ ◦ g.

However we have been unable to find any literature involving this property for
semigroups, and it is probably of limited utility in applications.
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