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Abstract. We show that for some compact sets K ⊂ R2 of Cantor type the harmonic
measure is supported by a set whose Hausdorff dimension is strictly smaller than the dimension
of K .

1. Introduction

In [MV] Makarov and Volberg show that the Hausdorff dimension of the har-
monic measure of the complement of a particular kind of Cantor set is strictly
smaller than the dimension of the set, i.e. that there exists a subset of the Can-
tor set of full harmonic measure but of strictly smaller dimension. Furthermore,
in [V1], [V2] Volberg has extended this result to cover a large class of Cantor sets
on the real axis. In [C], Carleson has shown that techniques and tools of the er-
godic theory could be used to study the harmonic measure of “classical” Cantor
sets and [MV], [V1], [V2], [Z] contain some of the results that strongly rely on
this idea. Carleson proved that the dimension of the harmonic measure of these
Cantor sets in the plane is always strictly smaller than 1. A similar but more
general result is proved in [JW], under the assumption of the “capacity density
condition”.

The purpose of this work is to prove the inequality between the dimension of
the harmonic measure and the dimension of the set for a larger class of Cantor sets
in the plane (or the space) without using ergodic theory. We have been motivated
by an idea of Bourgain which appeared in [B], and we are also making use of some
lemmas and results of the works mentioned above. Further information regarding
the Hausdorff dimension and measure of Cantor type sets is provided for example
in [Be], [F].

This paper is organized in five sections: first we present the main theorem and
introduce some notation. In the second section we prove a number of lemmas and
in the third we prove the theorem. Two examples are given in the fourth section,
and in the final section we make some remarks and investigate the possibilities of
the method.
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Let {aj} be a sequence of real numbers such that there exist two constants
A , A , 0 < A ≤ A < 1

2
with A ≥ ai ≥ A , for all i ∈ N . We construct a Cantor

set K in the following way: we replace the square [0, 1]2 with four equal squares
of side-length a1 situated in the four corners, and each one of them with four
new ones of side-length a1a2 and so on; see Figure 1. We denote Ĩn

i1...in
, where

ij ∈ {1, 2, 3, 4} for 1 ≤ j ≤ n , the 4n squares of the nth generation constructed
in this way with the enumeration shown in the figure and the usual condition that
Ĩn
i1...in

is the “father” of the sets Ĩn+1
i1...inin+1

, in+1 ∈ {1, 2, 3, 4}. It is clear that

A ≥ diam Ĩn+1
i1...ini/diam Ĩn

i1...in
= an+1 ≥ A , i = 1, . . . , 4. We will denote by In

i1...in

the intersection of Ĩn
i1...in

with K . We will say that a set F ⊂ R2 \ K is of full
harmonic measure for the domain R2 \ K if ω(F ) = 1, where ω is the harmonic
measure of R2 \ K (see Notation 1.1).
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Figure 1.

Theorem 1.0. For a Cantor set K as above there exists a subset F of K

of full harmonic measure such that dim(F ) < dim(K) .

Notation 1.1. If there is a constant c independent of the parameters α, β
such that α/c ≤ β ≤ cα , we will write α ∼ β (in what follows the symbols c and
C will be used to denote the constants). Suppose that Ω is a domain in R2 and
that F ⊂ ∂Ω. For x ∈ Ω we denote by ω(x, F, Ω) the harmonic measure of F
in Ω evaluated at x . We denote by ω(F, Ω) the harmonic measure of F in Ω
evaluated at infinity. If Ω = R2 \K , we will write ω(F ) instead of ω(F, Ω). For a
square F we denote its side-length by l(F ) and, finally, hρ is the ρ -dimensional
Hausdorff measure.
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2. Preparatory lemmas

The proof of the theorem will be based on a number of lemmas some of which
are already well known.

We first remark that there exists a constant c0 > 1 depending only on A , A
such that, if c0Ĩ

n
i1...in

denotes the square of side-length c0 -times the side-length

of Ĩn
i1...in

with the same center, then c0Ĩ
n
i1...in

∩ K = In
i1...in

. For this c0 (not
depending on i1 . . . in ) we have the following classical lemma:

Lemma 2.1. There exists a δ > 0 depending neither on n nor on the choice

of i1 . . . in such that for all x ∈ 1
2
(1 + c0)Ĩ

n
i1...in

(1) ω(x, In
i1...in

,R2 \ K) > δ.

Remark 2.2. If δn is the side-length of the square In
i1...in

, the Green’s

function G of the square c0Ĩ
n
i1...in

satisfies

1

2π
log

C−1δn

|x − y|
≤ G(x, y) ≤

1

2π
log

Cδn

|x − y|

for x, y ∈ 1
2 (1+c0)Ĩ

n
i1...in

, where the constant C depends only on c0 . Furthermore,
we have

ω(x, In
i1...in

, c0Ĩ
n
i1...in

\ K) = c0Ĩn
i1...in R

In
i1...in

1 (x) = Gµ(x)

where ΩRF
1 is the capacitary potential of the set F in the domain Ω and µ is

the capacitary measure of In
i1...in

in c0Ĩ
n
i1...in

, ‖µ‖ = capc0Ĩn
i1...in

(In
i1...in

) .

Proof of Lemma 2.1. We first show that there exists a constant c1 > 0 such
that for x ∈ 1

2 (1 + c0)Ĩ
n
i1...in

(2) ω(x, In
i1...in

, c0Ĩ
n
i1...in

\ K) > c1.

If µ is the probability measure on K charging every square of the nth generation
with mass 4−n , let µn = 4nµ|In

i1...in

be the restriction of the renormalized measure

µ on the square In
i1...in

.
Let us calculate the potential of µn for y ∈ In

i1...in
:

Gµn(y) ≤ 4n
∑

κ>n

3 · 4−κ log

(
C

∏n
i=1ai∏κ

i=1ai

)
= 3 · 4n

∑

κ>n

4−κ log

(
C

κ∏

i=n+1

a−1
i

)

= 3

∞∑

κ=1

4−κ log

(
C

κ∏

i=1

a−1
i+n

)
≤ C̃(A, A) < ∞.
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The same reasoning provides a constant c2 > 0 such that

1

c2
≤ Gµn(y) ≤ c2 for all y ∈ In

i1...in
.

By the maximum principle we get

(3) ω(x, In
i1...in

, c0Ĩ
n
i1...in

\ K) ∼ Gµn(x) for x ∈ c0Ĩ
n
i1...in

.

We can easily see that

Gµn(x) ≥ c3 for x ∈ ∂
{

1
2 (1 + c0)Ĩ

n
i1...in

}
.

On the other hand, the harmonic measure is non-decreasing as a function of the
domain; hence

ω(x, In
i1...in

, c0Ĩ
n
i1...in

\ K) ≤ ω(x, In
i1...in

,R2 \ K)

and the lemma is proved.

Lemma 2.3. There exists a δ > 0 not depending on n such that for the

squares of the nth generation In
1...11 and In

1...14 we have

(4) ω(In
1...11) > (1 + δ)ω(In

1...14).

Remark 2.4. This lemma has been proved in [MV] in the case of standard
planar Cantor sets. The proof given below is similar.

We will make repeated use of the following well-known formula (see for in-

stance [Br]): If Ω ⊂ Ω̃ are two domains and if F ⊂ ∂Ω ∩ ∂Ω̃ , the harmonic
measures of the domains, ω and ω̃ , are associated in the following way:

ω(x, F ) = ω̃(x, F ) −

∫

∂Ω∩Ω̃

ω̃(y) ω(x, dy).

Proof of Lemma 2.3. To begin with, let us point out that the symmetry of
the set implies

(5) ω(In
1...11,R

2 \ In−1
1...1 ) = ω(In

1...14,R
2 \ In−1

1...1 ).

For the same reason, if x lies on the In−1
1...1 square’s diagonal separating In

1...11 and
In
1...14 , we have

(6) ω(x, In
1...11,R

2 \ In−1
1...1 ) = ω(x, In

1...14,R
2 \ In−1

1...1 ).
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Let H− be the half-plane limited by the line containing this diagonal, such
that the square In

1...14 is contained in H− . Using (2), the monotony of the har-
monic measure, and Harnack’s inequalities, one can verify the existence of a con-
stant c4 > 0 such that

(7) ω(x, In
1...14,H

− \ In−1
1...1 ) ≥ c4 for all x ∈ In−1

1...4 .

By the maximum principle and (6) we obtain

ω(x, In
1...14,H

− \ In−1
1...1 ) = ω(x, In

1...14,R
2 \ In−1

1...1 ) − ω(x, In
1...11,R

2 \ In−1
1...1 )

for all x ∈ H− . Combining with (7),

(8) ω(x, In
1...14,R

2 \ In−1
1...1 ) − ω(x, In

1...11,R
2 \ In−1

1...1 ) ≥ c4 for all x ∈ In−1
1...4 ,

and (5), (8) imply that

(9)

ω(In
1...11,R

2 \ K) − ω(In
1...14,R

2 \ K) =

=

∫

K\In−1

1...1

(
ω(y, In

1...14,R
2 \ In−1

1...1 )

− ω(y, In
1...11,R

2 \ In−1
1...1 )

)
ω(dy,R2 \ K)

≥ c4ω(In−1
1...4 ,R2 \ K).

Finally, using Harnack’s principle and (7) we obtain a constant c5 > 0 not de-
pending on n , verifying

ω(In−1
1...4 ) ≥ c5ω(In

1...14).

Hence, (9) turns into

ω(In
1...11) − ω(In

1...14) ≥ c4c5ω(In
1...14)

and the lemma is proved.

Lemma 2.5 ([C], [MV]). Let Ω be a domain containing ∞ and let A1 ⊂
B1 ⊂ A2 ⊂ B2 ⊂ · · · ⊂ An ⊂ Bn ⊂ Ω be conformal discs such that the annuli

Bi \ Ai are contained in Ω , for 1 ≤ i ≤ n . If the modules of the annuli are

uniformly bounded away from zero and if ∞ ∈ Ω \ Bn , then, for all pairs of

positive harmonic functions u , v vanishing on ∂Ω \ A1 and for all x ∈ Ω \ Bn ,

we have

(10)
∣∣∣u(x)

v(x)
:

u(∞)

v(∞)
− 1

∣∣∣ ≤ Kqn,

where q < 1 and K are two constants that depend only on the lower bound of

the modules of the annuli.
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Lemma 2.6. There exists an N0 = N0(δ, A, A) large enough such that for

all n ∈ N and all squares In
i1...in

(11) ω(In+N0

i1...in11...1) > (1 + 1
2δ)ω(In+N0

i1...in11...4),

where δ is the positive constant defined in Lemma 2.3 .

Proof of Lemma 2.6. Let us first show the following estimate for x ∈ 1
2
(1 +

c0)Ĩ
n
i1...in

:

(12a) ω(x, In+N0

i1...in11...1, c0Ĩ
n
i1...in

\ In
i1...in

) ∼ ω(x, In+N0

i1...in11...1,R
2 \ K).

For N ∈ N we choose x such that

ω(x, In+N
i1...in11...1,R

2\K) = sup
{
ω(y, In+N

i1...in11...1,R
2\K) : y ∈ ∂

{
1
2 (1+c0)Ĩ

n
i1...in

}}
.

Then,

ω(x,In+N
i1...in11...1,R

2 \ K) ≥ ω(x, In+N
i1...in11...1, c0Ĩ

n
i1...in

\ In
i1...in

)

≥ ω(x, In+N
i1...in11...1,R

2 \ K)

−

∫

∂{c0Ĩn
i1...in

}

ω(y, In+N
i1...in11...1,R

2 \ K)ω(x, dy, c0Ĩ
n
i1...in

\ In
i1...in

)

≥ ω(x, In+N
i1...in11...1,R

2 \ K)

−
(
1 − ω(x, In

i1...in
, c0Ĩ

n
i1...in

\ In
i1...in

)
)
ω(x, In+N

i1...in11...1,R
2 \ K)

≥ c1ω(x, In+N
i1...in11...1,R

2 \ K)

because of (2).
Then (12a) follows on our using again Harnack’s inequalities.
We have, of course, the same estimate for In+N0

i1...in11...4 :

(12b) ω(x, In+N0

i1...in11...4, c0Ĩ
n
i1...in

\ In
i1...in

) ∼ ω(x, In+N0

i1...in11...4,R
2 \ K).

To simplify the notation in what follows we will write ω1(x)
(
ω̃1(x)

)
and

ω4(x)
(
ω̃4(x)

)
instead of

ω(x, In+N0

i1...in11...1,R
2 \ K)

(
ω(x, In+N0

i1...in11...1, c0Ĩ
n
i1...in

\ In
i1...in

)
)

and
ω(x, In+N0

i1...in11...4,R
2 \ K)

(
ω(x, In+N0

i1...in11...4, c0Ĩ
n
i1...in

\ In
i1...in

)
)
,

respectively.
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By the relation (10) in Lemma 2.5, for z ∈ ∂
{

1
2(1 + c0)Ĩ

n
i1...in

}

(13)
ω1(∞)

ω4(∞)
∼qN0

ω1(z)

ω4(z)
∼qN0

ω1(y)

ω4(y)
for all y /∈ K ∪ c0Ĩ

n
i1...in

.

From (13) it follows that

(14)

∣∣∣ ω̃1(z)

ω̃4(z)
:

ω1(∞)

ω4(∞)
− 1

∣∣∣ ∼
∣∣∣ ω̃1(z)

ω̃4(z)
:

ω1(z)

ω4(z)
− 1

∣∣∣ =
ω4(z)

ω̃4(z)

∣∣∣ ω̃1(z)

ω1(z)
−

ω̃4(z)

ω4(z)

∣∣∣

=
ω4(z)

ω̃4(z)

∫

∂{c0Ĩn
i1...in

}

∣∣∣ω4(y)

ω4(z)
−

ω1(y)

ω1(z)

∣∣∣ω(z, dy, c0Ĩ
n
i1...in

\ In
i1...in

)

≤
1

c1

∫

∂{c0Ĩn
i1...in

}

ω4(y)

ω4(z)

∣∣∣ω1(y)

ω1(z)
:

ω4(y)

ω4(z)
− 1

∣∣∣ω(z, dy, c0Ĩ
n
i1...in

\ In
i1...in

)

≤ CqN0 .

If we take i1 = · · · = in = 1, Lemma 2.3 implies ω1(∞)/ω4(∞) > 1+δ . Then
(14) shows that there exists an N0 large enough such that ω̃1(z)/ω̃4(z) > 1 + 3

4
δ .

On the other hand, ω̃1(z)/ω̃4(z) does not depend on the choice of i1, . . . , in . It
follows that ω1(∞)/ω4(∞) > 1 + 1

2
δ for all the possible choices of i1, . . . , in .

Lemma 2.7. There exists an N1 ∈ N independent of n and of i1 . . . in such

that for all the squares In
i1...in

there is a square Jm = In+N1

i1...in...in+N1

⊂ In
i1...in

of

the (n + N1)th generation such that

ω(Jm) <
1

4

ω(In
i1...in

)

4N1
.

(In fact, 1
4

could be replaced with any constant ε > 0).

Proof of Lemma 2.7. Choose a square In
i1...in

. According to the preceding
lemma, there exists an α < 1 independent of the choice of i1, . . . , in and a J1 =
In+N0

i1...in...in+N0

such that

ω(J1) < α
ω(In

i1...in
)

4N0
.

Similarly there exists a J2 = In+2N0

i1...in...in+2N0

⊂ J1 with

ω(J2) < α
ω
(
J1

)

4N0
< α2 ω

(
In
i1...in

)

42N0
,

and after k steps we obtain a square Jk verifying

ω(Jk) < αk ω(In
i1...in

)

4kN0
.

To finish the proof, take k = m such that αk < 1
4 and let N1 = kN0 .
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3. Proof of Theorem 1.0

The theory of martingales provides a well-known technique for proving the
inequality between the dimensions of the two measures by using Lemma 2.7. How-
ever, we propose here a different path which does not involve probabilistic tools
and is inspired by [B].

We introduce some more notation. For n ∈ N we will denote by En the
collection of squares {In

i1...in
: ij = 1, . . . , 4, j = 1, . . . , n} , and for I ∈ En ,

En+s(I) will represent those squares J ∈ En+s that are contained in I .
It can be shown (see for instance Lemma 2 of [Be]) that if ρ is the Hausdorff

dimension of K , then

ρ = sup

{
s > 0 : lim inf

n→∞
4n

n∏

i=1

as
i = ∞

}
= inf

{
s > 0 : lim inf

n→∞
4n

n∏

i=1

as
i = 0

}

simply because in order to obtain the Hausdorff dimension of the Cantor set K

it suffices to consider coverings of K with the squares of construction Ĩn
i1...in

.
However, the ρ -Hausdorff measure of the Cantor sets considered here could be
infinite.

It easily follows that for ε > 0 there exists a strictly increasing sequence of
integers {nj}

∞
j=1 such that

(15) 4nj

nj∏

i=1

aρ+ε
i > 4nj+1

nj+1∏

i=1

aρ+ε
i .

We will also assume that nj+1 − nj > 2N1 .

Lemma 2.8. There exists a β < 1 such that the following inequality holds

for ε > 0 and I ∈ Enj
:

(16)
∑

J∈Enj+1
(I)

ω(J)1/2l(J)(ρ+ε)/2 ≤ βnj+1−nj ω(I)1/2l(I)(ρ+ε)/2;

where nj is the sequence corresponding to ε given by (15) .

Proof of Lemma 2.8. Let us start by showing that there is a β̃ such that for
I ∈ En

(17)
∑

J∈En+N1
(I)

ω(J)1/2
(

1
4

)(n+N1)/2
≤ β̃ω(I)1/2

(
1
4

)n/2
.

Take Jm ∈ En+N1
(I) to be the square provided by Lemma 2.7, i.e. a square such

that ω(Jm) < 1
4
ω(I) · 4N1 . We have

ω(Jm)1/2
(1

4

)(n+N1)/2

≤
1

2

1

4N1

(1

4

)n/2

ω(I)1/2
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∑

J∈En+N1
(I), J 6=Jm

ω(J)1/2
(1

4

)(n+N1)/2

≤ ω(I)1/2(4N1 − 1)1/2
(1

4

)(n+N1)/2

by the Cauchy–Schwarz inequalities. Summing up we get

(18)
∑

J∈En+N1
(I)

ω(J)1/2
(1

4

)(n+N1)/2

≤ ω(I)1/2
(1

4

)n/2(1

2

1

4N1
+

(4N1 − 1

4N1

) 1
2
)

and we may let

β̃ =
1

2

1

4N1
+

(4N1 − 1

4N1

)1/2

< 1.

Choose ε > 0 and let {nj} be a corresponding sequence given by (15). Then
by (17)

∑

J∈Enj+1
(I)

ω(J)1/2l(J)(ρ+ε)/2 ≤ 4nj/2β̃

( nj∏

i=1

a
(ρ+ε)/2
i

)
×

×
∑

J∈Enj+1−N1
(I)

ω(J)1/2
( 1

4nj+1−N1

)1/2

.

We repeat the procedure and apply the Cauchy–Schwarz inequalities. We then get

∑

J∈Enj+1
(I)

ω(J)1/2l(J)(ρ+ε)/2 ≤ 4nj/2β̃(nj+1−nj)/2N1

( nj∏

i=1

a
(ρ+ε)/2
i

)(
ω(I)

4nj

)1/2

.

The existence of β is now obvious. For instance, one may take β = β̃1/2N1 .

Proof of Theorem 1.0. Let Lj = {J ∈ Enj
| ω(J) > l(J)ρ−ε} and L ′

j = Enj
\

Lj , where ε > 0 is to be chosen later, and let {nj} be a sequence corresponding
to ε as above. It is clear that

(19)
∑

J∈Lj

l(J)ρ−ε <
∑

J∈Lj

ω(J) ≤ 1.

But, we can also estimate

∑

J /∈Lj

ω(J) =
∑

J /∈Lj

ω(J)1/2ω(J)1/2 ≤
∑

J∈Enj

ω(J)1/2l(J)((ρ+ε)/2)−ε

≤

nj∏

i=1

a−ε
i βnj−nj−1

∑

J∈Enj−1

ω(J)1/2l(J)(ρ+ε)/2
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because of (16). By iterating the procedure we get

∑

J /∈Lj

ω(J) ≤ βnj

nj∏

i=1

a−ε
i ≤ βnj A−εnj .

Let ε > 0 be such that β < Aε . It is then immediate from the above that

(20) lim
j→∞

∑

J /∈Lj

ω(J) = 0.

Clearly, (19) and (20) allow us to construct a subset of K of Hausdorff dimension
< ρ but of full harmonic measure, and the proof is completed.

4. A counterexample

We state the following simple result:

Proposition 4.0. For a Cantor set K as described in the introduction,

the harmonic measure ω of its complement is “monodimensional”, i.e. there is a

dimension σ (the dimension of the harmonic measure) such that there exists a

subset F ⊂ K of Hausdorff dimension σ with ω(F ) = 1 , and ω(F ′) = 0 for every

set F ′ ⊂ K of dimension smaller than σ .

The proof given below applies to all self-similar Cantor sets and therefore the
proposition remains valid even for “general” Cantor sets.

Proof of Proposition 4.0. Suppose that the proposition is false. Then there is
a dimension σ and a real number 0 < α < 1 such that

sup{ω(F ) : F ⊂ K, dim(F ) ≤ σ} = α

or, equivalently, there exist a dimension σ and a γ > 0 such that

sup
{

inf
x∈ 1

2
(1+c0)[0,1]2

ω(x, F, c0[0, 1]2 \ K) : F compact, F ⊂ K, dim(F ) ≤ σ
}

= γ

and
γ < inf

x∈ 1
2
(1+c0)[0,1]2

ω(x,K, c0[0, 1]2 \ K),

where c0 is the constant defined in Section 2.
For every real number τ , 0 < τ < 1 there is a compact set F ⊂ K of

Hausdorff dimension σ with

τγ < inf
x∈ 1

2
(1+c0)[0,1]2

ω(x, F, c0[0, 1]2 \ K) <
1

τ
γ.
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Moreover, we can find a covering F = {Ij}j∈J of F with squares Ij of the same
generation of the construction of K , satisfying

τγ < inf
x∈ 1

2
(1+c0)[0,1]2

ω
(
x,

⋃
I∈F

I, c0[0, 1]2 \ K
)

<
1

τ
γ.

There exists at least one Ij ∈ F with the following property:
“There is a compact set Fj ⊂ Ij ∩ K of Hausdorff dimension σ with

inf
x∈ 1

2
(1+c0)Ij

ω(x, Fj, c0Ij \ K) > cτγ inf
x∈ 1

2
(1+c0)Ij

ω(x,K, c0Ij \ K),

where c is a Harnack constant depending only on K .”
We then say that Fj is a γ -subset of Ij .
To prove this claim, we first show the existence of at least one Ij satisfying

inf
x∈ 1

2
(1+c0)[0,1]2

ω(x, Fj, c0[0, 1]2 \ K) > τγ inf
x∈ 1

2
(1+c0)[0,1]2

ω(x,K ∩ Ij , c0[0, 1]2 \ K)

and then proceed with standard arguments, using the Brelot formula.
Recall that all squares of the same generation of the construction of K are

identical, and therefore the preceding property is valid for any square of the gen-

eration of Ij , i.e. every such square has a γ -subset. Let F̃ be the collection of
all squares of the same generation with Ij that do not belong to F , and let S be

the union of F with the γ -subsets of the squares in F̃ . Thus S is a subset of K

of Hausdorff dimension σ . By the above it is clear that

inf
x∈ 1

2
(1+c0)[0,1]2

ω(x, S, c0[0, 1]2 \ K)

> τγ + cτγ
(

inf
x∈ 1

2
(1+c0)[0,1]2

ω(x,K, c0[0, 1]2 \ K) −
1

τ
γ
)
,

which is greater than γ if τ is close enough to one; since γ is taken to be the
maximal value of harmonic measure for subsets of K of Hausdorff dimension equal
to σ , we have reached a contradiction. The proof is now complete.

We will now construct a Cantor set K′ as in the introduction, except that
here we replace a square J of the k th generation, k ≥ 1, with four equal squares,
J1, . . . , J4 , whose size depends not only on the generation k but also on the square
J ; we still require A ≤ l(Ji)/l(J) ≤ A with 0 < A ≤ A < 1/2. We will show
that for an appropriate choice of the sizes of the squares the Hausdorff dimension

of K′ will be equal to the dimension of its harmonic measure. The idea of the
construction was suggested to us by a remark of A. Ancona. Let us begin with
the standard planar Cantor set K1/4 of dimension 1, i.e. a Cantor set as defined

in the introduction with A = A = 1/4. Let D be the dimension of its harmonic
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measure; if F is a compact subset of K1/4 such that ω(F ) > 1/2, it follows from
Proposition 4.0 that its dimension will be at least D . We may therefore find such
a subset F of K1/4 of Hausdorff dimension D . We then construct the desired
Cantor set in the following way: In each generation we replace every square J
that does not intersect F with squares of size 4−M times the size of J , where
M is a fixed integer with M > 1/D , and every square J ′ that intersects F is
replaced with four squares of size 1/4 times the size of J ′ . Let K′ be the Cantor
set constructed in this way. Observe that K′ ⊂ K1/4 by construction and that
dimK′ = D because of the choice of M . It is clear (by the monotonicity of the
harmonic measure as a function of the domain) that the dimension of the harmonic
measure of K′ is also D , and the construction is complete.

We should remark here that the preceding process gives us Cantor sets whose
Hausdorff dimension is equal to their harmonic measure dimension for every possi-
ble value of the dimension of the harmonic measure of a Cantor set as described in
the introduction. Also, a result of [JW] implies that we cannot have dimω = 1 for
Cantor sets of this type. It is therefore natural to ask if we can have dimensions
arbitrarily close to one. The following proposition answers the question.

Proposition 4.1. For the self-similar Cantor set Kδ , 0 < δ ≤ 1
4 , as defined

in the introduction with 1
2 − δ = A and A = A , the dimension of the harmonic

measure dim ω is greater than 1 − Cδ for some constant C > 0 .

This proposition as well as the proof given below is due to Professor A. Ancona
(compare with [MV, pp. 15–22, 28]).

Proof of Proposition 4.1. We will need some more notation. Let Kn be the
nth approximation of Kδ by squares of the nth generation, let gn be the Green
function of the complement of Kn and Cn its critical points. We shall rely on the
formula

dim ω = 1 −
limn→∞ n−1

∑
Cn

gn(c)

χµ
,

where χµ = log
(
2/(1 − 2δ)

)
and the critical points in the sum are counted with

their multiplicity.
This formula is a simple variant of the Carleson formula given in [MV, p. 15]

(see also [C]); here we consider the sum over the critical points of gn instead of
those of the Green function of the complement of Kδ .

It remains to be proved that the limit in the previous formula is O(δ) as δ
tends to 0.

We extend gn on Kn by the value 0 and consider the critical domains of gn ,
i.e. any region U which is a connected component of {gn < β} for some β > 0
and with a critical point c ∈ ∂U . Let U be the collection of all critical domains.

Note that if U ∈ U and if τ = max{gn(z) : z ∈ Cn ∩ U} , the number of
critical domains U ′ ⊂ U associated with τ is exactly equal to the number of
critical points z ∈ U with gn(z) = τ (counted with their multiplicity) plus one.
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To each U ∈ U we attach a square I = IU of some stage k of the construction
of the Cantor set, k ≤ n , with the following property:

(PI) We have I∩Kn ⊂ U , and if Ĩ denotes the “father” of I , there exists a square
I ′ ⊂ Ĩ of the k th generation such that I ′ ∩ Kn ∩ U = ∅ and I and I ′ lie on
the same side of Ĩ .

The existence of IU is easily checked. For instance, one may take for Ĩ a minimal
square such that Ĩ ∩Kn ∩U c 6= ∅ and Ĩ ∩Kn ∩U 6= ∅ , and then easily verify the
existence of I ⊂ Ĩ with the property (PI).

We now proceed with the following simple algorithm which leads to the con-
struction of a subcollection U0 ⊂ U (the “nice” domains) and to the choice of
some square cU ⊂ IU of the nth generation (the last generation for Kn ), for every
U ∈ U0 .

Each domain U ∈ U which is maximal is “nice”, and we choose the square
cU arbitrarily in IU . For U ∈ U , if the construction has been achieved for all
U ′ ⊃ U , U 6= U ′ , we decide that U /∈ U0 if there exists cU ′ ⊂ U for some
U ′ ⊃ U , U 6= U ′ . Otherwise we say that U ∈ U0 and we associate with it some
square cU ⊂ IU of the nth generation.

At the end of the procedure every critical domain U ∈ U contains exactly
one cU ′ for some U ′ , U ⊂ U ′ , and for U, U ′ ∈ U0 we have IU = IU ′ if and only
if U = U ′ .

Hence we have

1

n

∑

Cn

gn(c) =
1

n

( ∑

U∈U0

g
U
− gmax

)
,

where g
U

is the value of gn on ∂U and gmax is the maximal critical value of gn .

If U ∈ U0 , let I = IU be the square attached to it, Ĩ its “father”, and I ′ as
in (PI) (see Figure 2). There are at least s = [1/4δ] parallel segments, l1, . . . , ls ,
joining points of Kn ∩ I with points of Kn ∩ I ′ , the distance between any two
segments being ≥ δ l(I) . Necessarily, ∂U cuts through all these segments and
therefore sup{gn(t) : t ∈ li} ≥ g

U
, 1 ≤ i ≤ s .
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I I’

U

Figure 2.

For every li , i = 1 . . . , s , let z1
i , z2

i be the endpoints of li , z1
i ∈ Kn ∩ I ,

z2
i ∈ Kn∩I ′ . It is clear that the set B(z1

i , δl(I)/2)∩Kn∩I has capacity ≥ C0 > 0
in the domain B

(
z1, δl(I)

)
, with C0 independent of δ ∈ [ 1

4
, 1

2
) . By standard

arguments it follows that

gn(t) ≤ Cω
(
B

(
z1
i , δl(I)/2

)
,R2 \ Kn

)

on the segment li with a constant C indepent of δ .

The above finally yields

1

4δ
g

U
≤

∑

i

sup{gn(t) : t ∈ li} ≤ C ω(I,R2 \ Kn).

Summing up we find

1

n

∑

Cn

gn(c) ≤
1

n

∑

U∈U0

g
U
≤ Cδ

1

n

∑

I∈Fn

ω(I,R2 \ Kn) ≤ Cδ,

where Fn is the collection of all squares of some stage k , k ≤ n , of the construc-
tion of Kδ . The proof of the proposition is complete.
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5. Conclusion – Further remarks

It is clear that the method we developed in Sections 2 and 3 applies not only
to the Cantor sets described above but also to other Cantor sets, for example those
indicated by Figure 3. The proof can also be applied to some Cantor sets in higher
dimensions.

For a general Cantor set K ⊂ Rd , a sufficient condition to conclude that
dim(ω) < ρ = dim(K) is the following: if In

i1...in
is a square of the nth generation

and if In+1
i1...1, . . . , I

n+1
i1...s are the squares of the next generation contained in In

i1...in
,

there exist 0 < α < 1, 1 ≤ τ ≤ s , and constants an
j > 0 such that

(∗) ω(In+1
i1...inτ ) < α

diam(In+1
i1...inτ )ρ

∑s
j=1 diam(In+1

i1...inj)
ρ
ω(In

i1...in
),

and

diam(In+1
i1...inj) = an

j diam(In
i1...in

), 2−d < A ≤ an
j ≤ A < 1 for all j ∈ {1, . . . , s},

where an
j depends only on j, n but not on the square In

i1...in
and A, A are two

constants not depending on n . Lemmas 2.7 and 2.8 can both be applied to prove
a formula similar to (16), and the proof of the theorem may be completed in the
same way.

 

Figures 3a and 3b

In general (∗) seems hard to check; however, under certain assumptions of
symmetry on the Cantor set K one may verify it by proving some lemmas similar
to those presented above. Even though the method presented here seems to be
rather general, we have not been able to get rid of these assumptions of symmetry,
and the proof of Lemma 2.3 strongly depends on them.
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Added in proof. It is perhaps interesting to point out that the result of
Theorem 1.0 can also be proved under some weaker assumptions on the size of the
squares:

For a sequence {an}n∈N as in the introduction we construct a Cantor set in a
similar way. We allow the squares of the nth generation In

i1···in
to have sidelengths

li1···in
not necessarily equal but require that an(1 − ε)li1···in−1

≤ li1···in
≤ an(1 +

ε)li1···in−1
, where ε > 0 and li1···in−1

is the sidelength of the “father” of In
i1···in

.
For such a Cantor set the dimension of the harmonic measure is smaller than the
dimension of the set, provided ε is small enough (the proof is slightly different).
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[Br] Brelot, M.: Eléments de la théorie classique du potentiel. - Paris C. D. U.

[C] Carleson, L.: On the support of harmonic measure for sets of Cantor type. - Ann. Acad.
Sci. Fenn. Ser. A I Math. 10, 1985, 113–123.

[F] Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications. - John
Wiley & Sons, 1990.

[JW] Jones, P., and T. Wolff: Hausdorff dimension of harmonic measures in the plane I. -
Preprint, 1986.

[MV] Makarov, N., and A. Volberg: On the harmonic measure of discontinuous fractals. -
Preprint LOMI E-6-86, Leningrad, 1986.

[V1] Volberg, A.: On the harmonic measure of self-similar sets in the plane. - In: Harmonic
Analysis and Discrete Potential Theory, Plenum Press, 1992.

[V2] Volberg, A.: On the dimension of harmonic measure of Cantor type repellers. - Mich.
Math. J. 40, 1993, 239–258.

[Z] Zdunik, A.: Parabolic orbifolds and the dimension of the maximal measure for rational
maps. - Invent. Math. 99, 1990, 627–649.

Received 28 February 1995


