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Abstract. Let d(f, g) = sup{d(f(z), g(z)) : z ∈ C} where f , g are Möbius transformations
and d(z1, z2) denotes the chordal distance between z1 , z2 in C . We show that if 〈f, g〉 is a
discrete group and if fg 6= gf , then

max{d(f, id), d(g, id)} ≥ c

where .863 ≤ c ≤ .911 · · · . We also obtain some higher dimensional analogs by means of Clifford
numbers.

1. Introduction

Let GM(n) denote the group of all Möbius transformations of R
n

and M(n)
the subgroup of GM(n) consisting of all orientation-preserving Möbius transfor-
mations. Stereographic projection p is the mapping from R

n
onto the unit sphere

Sn in Rn+1 given by

p(x) = en+1 +
2(x− en+1)

|x− en+1|2

where e1 , e2, . . . , en is the standard basis for R
n
. The chordal distance between

two points x and y in R
n

is defined by

d(x, y) = |p(x) − p(y)|.

The chordal metric on GM(n) is set to be

d(f, g) = sup
{

d
(

f(x), g(x)
)

: x ∈ R
n}

.

This metric was considered in [3] and [9]. We call d(f) = d(f, id) the chordal
norm of f . Then d(f) measures the maximum chordal derivation of f from the
identity, 0 ≤ d(f) ≤ 2 and d(f) = 2 if and only if f maps one point of a pair of
antipodal points of R

n
onto the other.

A subgroup G of M(n) is discrete if there exists a positive constant k = k(G)
such that d(f, g) ≥ k for each distinct f and g in G . Martin shows that a
dimension dependent lower bound can be obtained for chordal norms [14].
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1.1. Theorem (Martin). Let f and g be two Möbius transformations of

Bn generating a discrete subgroup. Then

max{d(f), d(g)} ≥ 1

2
√

16 + n

unless 〈f, g〉 is an elementary nilpotent group.

For plane Möbius transformations, Gehring and Martin [9] obtained

1.2. Theorem (Gehring–Martin). Suppose that 〈f, g〉 is a nonelementary

discrete subgroup of M . Then

max{d(f), d(g)} ≥ a

where 2(
√

2 − 1) = 0.828 · · · ≤ a ≤ 0.911 · · ·.
By means of Clifford numbers, we show in Section 3 that if f and g generate

a discrete nonelementary subgroup of M(n) , then

max{d(f), d(g)} ≥ .683,

max{d(f), d(g)} ≥ 1.22,

max{d(f), d(g)} ≥ .816,

if f is hyperbolic,

if f is strictly parabolic,

if f is loxodromic and fixes 0 and ∞.

For plane Möbius transformations, we show that if 〈f, g〉 is a discrete subgroup of
Möbius transformations of C and if fg 6= gf , then

max{d(f), d(g)} ≥ c1,

max{d(f), d(g)} ≥ c2,

max{d(f), d(g)} ≥ c3,

if f is parabolic,

if f is elliptic,

if f is loxodromic,

where c1 = 1, .937 ≤ c2 ≤ 1.12 · · ·, .863 ≤ c3 ≤ .911 · · ·. We then apply these
results to get some necessary and sufficient conditions for a group to be discrete.

2. Clifford numbers

In [1] Ahlfors shows how a 2×2 matrix with entries in a Clifford algebra may
be used to describe a Möbius transformation of R

n
. In this section we will briefly

review some material on Clifford numbers that is treated in detail in [1] and [2].
The Clifford algebra Cn is the associative algebra over the reals generated by

elements i1 , i2, . . . , in subject to the relations i2k = −1 and ihik = −ikih , h 6= k ,
and no others. An element of Cn is called a Clifford number. Every Clifford
number a can be expressed uniquely in the form a =

∑

aII where aI ∈ R and
the sum is over all products I = iν1

iν2
· · · iνp

with 1 ≤ iν1
< · · · < iνp

≤ n . The
null product is included and identified with the real number i0 = 1.
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The coefficient of the empty product is denoted by a0 and called the real part
of a . The sum of all other terms of a is referred to as the imaginary part and
we write a = Re(a) + Im(a) . We sometimes denote Im(a) by ac . The Euclidean
norm of a Clifford number is given by |a|2 =

∑

aI
2 = Re(a)2 + |ac|2 .

There are three involutions of Cn . The major involution a→ a′ replaces each
ik by −ik . It determines an automorphism of Cn : (ab)′ = a′b′ , (a+ b)′ = a′ + b′ .
The reversion a → a∗ replaces each I = iν1

iν2
· · · iνp

with I = iνp
· · · iν2

iν1
. It

defines an anti-automorphism: (ab)∗ = b∗a∗ , (a + b)∗ = a∗ + b∗ . The third
involution a → ā is a composition: ā = a′

∗
= a∗′ , which is again an anti-

automorphism.
We identify Rn with the subspace spanned by 1, i1 , i2, . . . , in−1 . Clifford

numbers of the form x = x0 + x1i1 + · · · + xn−1in−1 are called vectors. Every
non-zero vector x is invertible with x−1 = x̄|x|−2 . The product of nonzero vectors
form a multiplicative group Γn , known as Clifford group.

A Clifford matrix of dimension n is a matrix g =

(

a b
c d

)

which satisfies

the conditions

(1) a , b , c , d ∈ Γn ∪ {0} ,
(2) ad∗ − bc∗ = 1,
(3) ab∗ , cd∗ , c∗a , d∗b ∈ Rn .

The set of all Clifford matrices is denoted by SL(2, Cn) . It is Vahlen’s theorem

that SL(2, Cn) form a group whose quotient modulo ±
(

1 0
0 1

)

is isomorphic to

M(R
n
) , the group of orientation preserving transformations of R

n
[2]. A Clifford

matrix in dimension n is also a Clifford matrix in dimension n+1. It automatically

extends the corresponding transformation in M(R
n
) to one in M(R

n+1
) given by

the same matrix.
The following is the classification of Möbius transformations.
f ∈ GM(n) is elliptic if it has a fixed point in Hn+1 . Such maps are GM(n+1)

conjugate to x→ Tx with T ∈ O(n) .
f ∈ GM(n) is parabolic if it has exactly one fixed point, necessarily in R

n
.

Such maps are GM(n) conjugate to x → Tx + a with T ∈ O(n) , a ∈ Rn \ {0} .
A parabolic which is conjugate to x→ x+ a is called strictly parabolic.

f ∈ GM(n) is loxodromic if it has exactly two fixed points, both in R
n
. Such

maps are GM(n) conjugate to x → rTx with r > 0, r 6= 1 and T ∈ O(n) . If
T = I , then f is called hyperbolic.

A subgroup G of GM(n) is said to be elementary if and only if there exists
a finite G-orbit in Rn+1 .

3. Möbius transformations of R
n

3.1. Lemma. Suppose that f is not elliptic. Define the map θ: GM(n) →
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GM(n) by θ(g) = gfg−1 . If for some n , θn(g) and f have the same fixed point

set, then g
(

fix(f)
)

= fix(f) and hence 〈f, g〉 is elementary.

Proof. The result follows from the corresponding statement for SL(2,C) [3,
Theorem 5.1.4] and the fact that a parabolic or loxodromic element has at most
two fixed points in R

n
.

3.2. Lemma. Suppose that Möbius transformations f and g are represented

by

(3.3) A =

(

u 0
0 u∗−1

)

, B =

(

a b
c d

)

, ad∗ − bc∗ = 1.

Suppose that f is loxodromic and that g does not keep the fixed point set of f
invariant. If 〈f, g〉 is discrete, then

d(f)2 ≥ 4(|u| − |u|−1)2/(|u| + |u|−1)2,(3.4)

d(g)2 ≥ 4|bc|/(1 + 2|bc|),(3.5)

d(f)2(1 + |bc|) ≥ 4/(|u| + |u|−1)2.(3.6)

Proof. Let x = |u|−1 . Then

d2(f(x), x) ≥ 4(|f(x)| − |x|)2
(1 + |f(x)|2)(1 + |x|2) = 4(|u| − |u|−1)2/(|u| + |u|−1)2.

This proves (3.4). For (3.5), we let x1 = 0, x2 = ∞ . Since

d(g)2 ≥ d2(g(x1), x1) =
4|bd−1|2

1 + |bd−1|2 ,

d(g)2 ≥ d2(g(x2), x2) =
4

1 + |ac−1|2 ,

we have (4 − d(g)2)|bc| ≤ d(g)2|ad| . So (3.5) follows.
The proof of (3.6) requires the discreteness of 〈f, g〉 . It is essentially due to

Hersonsky [11], Friedland and Hersonsky [6], and Waterman [15]. We include a
proof for completeness. Consider the Shimizu–Leutbecher sequence

(3.7) B0 = B, Bn+1 = BnABn
−1.

The relation (3.7) yields

(3.8)

(

an+1 bn+1

cn+1 dn+1

)

=

(

anud
∗
n − bnu

∗−1c∗n −anub
∗
n + bnu

∗−1a∗n
cnud

∗
n − dnu

∗−1c∗n −cnub∗n + dnu
∗−1a∗n

)

.
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We observe that if one of an , bn , cn , dn is zero, then bn+1cn+1 = 0. For each n
with anbncndn 6= 0, we let

xn = a−1
n bn, yn = c−1

n dn, pn = xn/|uxn|, qn = yn/|uyn|.

Then

(3.9)

|bn+1cn+1| = |anbncndn||u− xnu
∗−1x−1

n ||u− ynu
∗−1y−1

n |
= |anbncndn|d

(

f(pn), pn

)

d
(

f(qn), qn
)

(|u| + |u|−1)2/4

≤ |bncn|(1 + |bncn|)d(f)2(|u| + |u|−1)2/4.

Suppose that µ = (1 + |bc|)d(f)2(|u|+ |u|−1)2/4 < 1. We will obtain a contradic-
tion. We obtain, by induction,

|bncn| ≤ µn|bc| ≤ |bc|.

So,
bncn → 0, and

∗
n → 1.

It follows from (3.8) that

|an| → |u|, |dn| → |u|−1.

Now
|bn+1|/|bn| ≤ |an|d(f)(|u|+ |u|−1)/2.

Thus, by induction, |bn|/|u|n → 0, and similarly, |cn||u|n → 0. So

A−nB2nA
n =

(

u−na2nu
n u−nb2nu

∗−n

u∗nc2nu
n u∗nd2nu

∗−n

)

has a subsequence that converges to a diagonal matrix. Since 〈f, g〉 is discrete,
u−nkb2nk

u∗−nk = 0 and u∗nkc2nk
unk = 0 for sufficiently large k . Thus bn = cn =

0 for infinitely many n . Hence g
(

fix(f)
)

= fix(f) by Lemma 3.1. This contradicts
the assumption that g does not keep the fixed point set of f invariant. Therefore
µ ≥ 1.

3.10. Corollary. Suppose that f is loxodromic with fix(f) = {0,∞} and

that g does not keep the fixed point set of f invariant. If 〈f, g〉 is a discrete

subgroup of M(n) , then

max{d(f), d(g)} ≥ .816.

Proof. Since fix(f) = {0,∞} , f and g can be represented by the Clifford
matrices A and B as in (3.3). Let k = .816, s = 1.543. If |u| ≥ s or |u|−1 ≥ s ,
then d(f) ≥ k by (3.4). If |bc| ≥ 1

4
, then d(g) ≥ k by (3.5). Finally, if 1/s <

|u| < s and |bc| < 1

4
, then (3.6) implies that d(f) ≥ k .
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3.11. Theorem. Suppose that 〈f, g〉 is a discrete subgroup of M(n) . If f
is hyperbolic and g does not keep the fixed point set of f invariant, then

max{d(f), d(g)} ≥ .683.

Proof. The statement is invariant with respect to conjugation by chordal
isometries. Thus by means of such a conjugation we may assume that f(∞) = ∞ .
Thus f and g can be represented by

A =

(

u t
0 u∗−1

)

, B =

(

a b
c d

)

, ad∗ − bc∗ = 1

where u is real. Replacing f by f−1 if necessary, we may assume |u| > 1. Let w
be the other fixed point of f . Then w satisfies the equation

(3.12) uw + t = wu∗−1.

Let h be the Möbius transformation represented by C =

(

1 −w
0 1

)

. Then

CAC−1 =

(

u 0
0 u∗−1

)

, CBC−1 =

(

a− wc aw + b− w(cw + d)
c cw + d

)

.

We now consider the sequence

Bn+1 = BnCAC
−1B−1

n , B0 = CBC−1.

We obtain as in the proof of Lemma 3.2 (see (3.9)) that

|bn+1cn+1| = |anbncndn| |β|

where β = (u− u∗−1)2 . The same argument as in the proof of Lemma 3.2 yields

(3.13) |β| + |β
(

aw + b− w(cw + d)
)

c| ≥ 1.

Since
|aw + b|2 + |cw + d|2 ≤ ‖g‖2(1 + |w|2),
|t|2

(

4 − d2
(

f(0), 0
))

≤ d2(f(0), 0), (|u| > 1)

4|c|2 ≤ ‖g‖2d2
(

g(∞),∞
)

,

it follows from (3.13) and (3.12) that

(3.14) |β| + 1

4

(

|β| + d(f)2

4 − d(f)2

)

‖g‖2d(g)2 ≥ 1.



The chordal norm of discrete Möbius groups 277

Now suppose that

(3.15) max{d(f), d(g)} < .683.

We will obtain a contradiction. It is a consequence of [7, Theorem 3.3] that

‖g‖2 ≤ 2
4 + d(g)2

4 − d(g)2
.

Hence if |β| ≤ .742, then either d(f) ≥ .683 or d(g) ≥ .683 by (3.14). This
contradicts (3.15).

Suppose that |β| > .742. Notice that

4d(f)−2 = inf
x∈R

n

|f(x)x̄+ 1|2
|f(x)− x|2 + 1.

Let x = t/|ut| . We obtain

(3.16) 4d(f)−2 − 1 ≤ (|t| + 2)2/|β|.

Since |t|2 ≤ d(f)2/
(

4−d(f)2
)

, (3.16) yields d(f) > .683. This contradicts (3.15).

3.17. Theorem. Suppose that 〈f, g〉 is a discrete subgroup of M(n) . If f
is strictly parabolic and g does not fix the fixed point of f , then

max{d(f), d(g)} ≥ 1.22.

Proof. The statement is invariant with respect to conjugation by chordal
isometries. Thus by means of such a conjugation we may assume that f(∞) = ∞ .
Hence f and g can be represented by

A =

(

1 t
0 1

)

, B =

(

a b
c d

)

, ad∗ − bc∗ = 1.

By [15, Lemma 2.1], |tc| ≥ 1. Since

d2(f(0), 0) = |t|2
(

4 − d2
(

f(0), 0
))

,

4|c|2 ≤ ‖g‖2d2
(

g(∞),∞
)

,

‖g‖2 ≤ 2
4 + d(g)2

4 − d(g)2
, [7,Theorem3.1]

we have
d(f)2d(g)2

(

4 + d(g)2
)

(

4 − d(f)2
)(

4 − d(g)2
) ≥ 2.

Therefore max{d(f), d(g)} ≥ 1.22.
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4. Plane Möbius transformations

Let M denote the group of all orientation-preserving Möbius transformations
of the extended complex plane C = C ∪ {∞} . We associate with each

f =
az + b

cz + d
∈ M, ad− bc = 1,

the matrix

A =

(

a b
c d

)

∈ SL(2,C)

and set tr(f) = tr(A) , where tr(A) denotes the trace of A . Note that tr(f) is
defined up to sign. The matrix norm m(f) is defined by (see [9])

m(f) = ‖A− A−1‖ = (2|a− d|2 + 4|b|2 + 4|c|2)1/2.

The quantity ‖A−A−1‖ is independent of the choice of A representing f and is
invariant with respect to conjugation by chordal isometries.

For each f and g in M we let [f, g] denote the multiplicative commutator
fgf−1g−1 . We call the three complex numbers

β(f) =
2

tr(f) − 4, β(g) =
2

tr(g) − 4, γ(f, g) = tr([f, g])− 2,

the parameters of the two generator group 〈f, g〉 . These parameters are indepen-
dent of the choice of representative matrices for f and g , and they determine
〈f, g〉 up to conjugacy whenever γ(f, g) 6= 0 [8]. But see [4] for three generator
Möbius groups. Note that γ(f, g) 6= 0 if and only if f and g do not have a
common fixed point in C .

There are some necessary conditions for a two generator group to be discrete.

4.1. Theorem. If 〈f, g〉 is discrete with γ(f, g) 6= 0 and γ(f, g) 6= β(f) ,
then

|γ(f, g)|+ |β(f)| ≥ 1.

4.2. Theorem. If 〈f, g〉 is discrete with γ(f, g) 6= 0 and γ(f, g) 6= β(f) and

if |β(f)| ≤ 2
(

cos(2π/7) + cos(π/7) − 1
)

= 1.0489 . . ., then

|γ(f, g)| ≥ 2 − 2 cos(π/7) = 0.198 . . . .

Theorem 4.1 is due to Jørgensen [12]. A proof of Theorem 4.2 is given in [5].
We will quantify the above statements in terms of matrix and chordal norms.
See [9] for related results.



The chordal norm of discrete Möbius groups 279

4.3. Lemma. Suppose that 〈f, g〉 is a discrete subgroup of M with γ(f, g) 6=
0 and γ(f, g) 6= β(f) . If f is loxodromic, then

(4.4) m(f)m(g) ≥ 4
(

2 − 2 cos(π/7)
)1/2

= 1.78 . . . .

If f is elliptic of order greater than two, then

(4.5) m(f)m(g) ≥ 4
(

2 cos(2π/7) − 1
)1/2

= 1.987 . . . .

Inequality (4.5) is sharp.

Proof. Let c0 = 2
(

cos(2π/7) + cos(π/7) − 1
)

, d0 = 2 − 2 cos(π/7). Suppose
that f is loxodromic. If |β(f)| ≥ c0 and |β(g)| ≥ c0 , then

m(f)m(g) ≥ 2|β(f)β(g)|1/2 ≥ 2c0 = 2.097 . . .

by [9, Theorem 2.7]. If |β(g)| ≤ c0 , then |γ(f, g)| ≥ d0 by [5, Theorem 3.1]. If
|β(f)| ≤ c0 , then |γ(f, g)| ≥ d0 by Theorem 4.2. Thus by [9, Theorem 2.7],

m(f)m(g) ≥ 4|γ(f, g)|1/2 ≥ 4
√

d0 = 1.78 . . . .

Suppose next that f is elliptic of order greater than two. Then by [10, Theo-
rem 3.1], |γ(f, g)| ≥ 2 cos(2π/7) − 1. Therefore,

m(f)m(g) ≥ 4
(

2 cos(2π/7) − 1
)1/2

.

The (2, 3, 7) triangle group in [9, Lemma 4.8] shows that (4.5) is sharp.

4.6. Remark. (i) Gehring and Martin [9] have shown that if 〈f, g〉 is
nonelementary discrete, then

m(f)m(g) ≥ 4(
√

2 − 1) = 1.656 . . . .

Furthermore, m(f)m(g) ≥ 4 if f is parabolic.
(ii) Let f , g be the Möbius transformations represented by

A =

(

cos(π/n) i sin(π/n)
i sin(π/n) cos(π/n)

)

, B =

(

i 0
0 −i

)

.

Then 〈f, g〉 is discrete and γ(f, g) = β(f) = −4 sin2(π/n) . In this case,

m(f)m(g) = 8 sin(π/n) → 0 as n→ ∞.

Notice that γ(g, f) 6= β(g) and g is elliptic of order two.
(iii) If f is of order two and γ(f, g) 6= 0, γ(f, g) 6= β(g) , then m(f)m(g) ≥

2
√

2. This is because that if |β(g)| ≥ 1/2, then m(f)m(g) ≥ 2|β(f)β(g)|1/2 ≥
√

8.
If |β(g)| ≤ 1/2, then |γ(f, g)| ≥ 1/2 by Jørgensen’s inequality. So m(f)m(g) ≥
4|γ(f, g)|1/2 ≥

√
8.
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4.7. Lemma. Let e(c) = inf{d(f) : f is elliptic and m(f) = c} . Then

(4.8) e(c) =















c√
2

if 0 < c ≤ 4(
√

2 − 1)1/2,

16c

c2 + 16
if 4(

√
2 − 1)1/2 < c < 4,

2 if 4 ≤ c.

Proof. All quantities in (4.8) are invariant with respect to conjugation by
chordal isometries. Thus by means of such a conjugation we may arrange that
fix(f) = {−r, r} where 0 < r ≤ 1. Since f is elliptic, it is conjugate to a mapping
of the form w = ei2θz , −π/2 < θ ≤ π/2. By [9, Lemma 2.10],

m(f)2 = 2
(

8 − q(−r, r)2
)

q(−r, r)−2|β(f)|
= (r2 + r−2)|eiθ − e−iθ|2

= (r2 + r−2)4 sin2 θ.

Note that m(f) ≥ 4 if and only if | tan(θ/2)| ≥ r . Thus by [9, Lemma 3.1],
d(f) = 2 if c ≥ 4. We now assume that | tan(θ/2)| < r . Then [9, Lemma 3.1]
implies that

16d(f)−2 − 2 = r2 cot2(θ/2) + r−2 tan2(θ/2).

We will find the maximum value of

g(r, θ) = r2 cot2(θ/2) + r−2 tan2(θ/2), 0 < r ≤ 1,

subject to the constraint

h(r, θ) = 4(r2 + r−2) sin2 θ − c2 = 0.

Let F (r, θ) = g(r, θ) + λh(r, θ) . Then the critical points satisfy the equations:

∂F

∂r
= 0,

∂F

∂θ
= 0.

It follows that

r2 cot2(θ/2) − r−2 tan2(θ/2) = 4λ(r−2 − r2) sin2 θ,(4.9)

r2 cot2(θ/2) − r−2 tan2(θ/2) = 4λ(r−2 + r2) sin2 θ cos θ.(4.10)

Since | tan(θ/2)| < r , (4.9)/(4.10) gives cos θ = (1 − r4)(1 + r4)−1 . Hence at the
critical points,

(4.11) g(r, θ) = 16/c2.

Next we consider the case r → 0. Solving θ from the equation h(r, θ) = 0, we get

(4.12) lim
r→0

g(r, θ) = lim
r→0

(

r2 cot2(θ/2) + r−2 tan2(θ/2)
)

= 16/c2 + c2/16.

At the end point r = 1, sin2 θ = c2/8. Hence

(4.13) g(1, θ) = 32/c2 − 2.

Combining (4.11), (4.12) and (4.13), we obtain (4.8).
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4.14. Remark. Let p(c) = inf{d(f) : f is parabolic and m(f) = c} and let
l(c) = inf{d(f) : f is loxodromic and m(f) = c} . Then

l(c) =
2c

(c2 + 8)1/2
, p(c) =

{

16c

c2 + 16
if 0 < c < 4,

2 if 4 ≤ c

by [9, Theorem 3.11 and Lemma 3.8]. It is easy to check that p(c) , e(c) , l(c) are
continuous increasing functions of c and p(c) ≥ e(c) > l(c) .

4.15. Lemma. Suppose that 〈f, g〉 is a discrete subgroup of M and that f
is elliptic. If fg 6= gf , then

max{d(f), d(g)} ≥ c1, .937 ≤ c1 ≤ 1.121 . . . .

Proof. Suppose first that γ(f, g) 6= 0 and γ(f, g) 6= β(f) . If f is of order
two, then d(f) = 2 by [9, Corollary 3.17]. Suppose that f is elliptic of order

greater than two. Let a0 = 4
(

2 cos(2π/7) − 1
)1/2

, t = m(f) . Then m(g) ≥ a0/t
by Lemma 4.3. By Remark 4.14,

max{d(f), d(g)} ≥ max
{

e
(

m(f)
)

, l
(

m(g)
)}

≥ max{e(t), l(a0/t)}.

Note that e(x) is strictly increasing for x ≤ 4 and l(a0/x) is strictly decreasing.
Hence max{e(x), l(a0/x)} obtains its minimum when x is the intersection point
x0 of e(x) and l(a0/x) . Solving for x , we get

x0 =
((

a2
0 + (a0/4)4

)1/2 − (a0/4)2
)1/2

,

max
x>0

{e(x), l(a0/x)} ≥ x0/
√

2 = .937 . . . .

Suppose next that γ(f, g) 6= 0, γ(f, g) = β(f) . Then either f is elliptic of order
2, 3, 4, or 6 or g is elliptic of order 2 by [10, Lemma 2.31]. In either case,

max{d(f), d(g)} ≥ 2 sin(π/6) = 1

by [9, Corollary 3.17]. Finally, suppose that γ(f, g) = 0. Then f and g have a
common fixed point in C , say ∞ . Thus every element of 〈f, g〉 fixes ∞ . Since
fg 6= gf , [f, g] is parabolic by [3, Theorem 4.3.5]. So there are no loxodromic
elements in 〈f, g〉 by [3, Theorem 5.1.2]. By the structure of elementary groups [3,
§ 5.1], if S is the set of multipliers of 〈f, g〉 , then S = {1, ω, ω2, . . . , ωq−1} where
ω = exp(2πi/q) , 0 ≤ q ≤ 6, q 6= 5. So f is elliptic of order less than or equal to
six. Therefore,

max{d(f), d(g)} ≥ d(f) ≥ 2 sin(π/6) = 1.
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To get the number 1.121 . . ., let 〈φ, ψ〉 denote the (2, 3, 7) triangle group with
φ2 = ψ3 = (φψ)7 = id. The transformations φ and ψ can be represented by the
matrices

A =
i

sin a

(

− cos b −p
p cos b

)

, B =

(

eia 0
0 e−ia

)

where a = π/3, b = π/7 and p = (cos2 b−sin2 a)1/2 [13, p. 88]. We set f = [A,B]
and g = AB . Then

β(f) = 2
(

cos(2π/7) + cos(π/7) − 1
)

, β(g) = 2 cos(2π/7)− 2,

γ(f, g) = 2 cos(2π/7) − 1.

We can find a Möbius transformation h which sends the fixed points of f to
{w,−w} and sends the fixed points of g to {1/w,−1/w} . By [9, Lemma 2.12],
such a w satisfies the equation

(w2 − 1/w2)2 = 16
γ(f, g)

β(f)β(g)
.

Let u = |w|2 + 1/|w|2 . Then m2(hfh−1) = uβ(f) and m2(hgh−1) = −uβ(g)
by [9, Lemma 2.10]. It is a consequence of [9, Lemma 3.1] that for any Möbius
transformation f , if m(f)2 ≤ 2(|β + 4| + 4), then

d(f) =
2(|β + 4| + 4 + |β|)

(

1

2
m(f)2 + |β|)

)1/2

|β + 4| + 4 + 1

2
m(f)2

+
2(|β + 4| + 4 − |β|)

(

1

2
m(f)2 − |β|)

)1/2

|β + 4| + 4 + 1

2
m(f)2

.

Therefore
d(hfh−1) = 1.121 . . . , d(hgh−1) = 1.071 . . . .

4.16. Example. Let f = e2πi/mz , g = e2πi/nz . Then 〈f, g〉 is a discrete
finite group with fg = gf . We have d(f) → 0, d(g) → 0, as m,n→ ∞ .

4.17. Lemma. Suppose that 〈f, g〉 is a discrete subgroup of M and that f
is parabolic. If fg 6= gf , then

max{d(f), d(g)} ≥ 1.

Proof. If γ(f, g) 6= 0, then m(f)m(g) ≥ 4 by [9, Lemma 4.5]. Let t = m(f) .
By Remark 4.14,

max{d(f), d(g)} ≥ max
{

p
(

m(f)
)

, l
(

m(g)
)}

≥ max{p(t), l(4/t)}.
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Note that p(x) is strictly increasing for x ≤ 4 and l(4/x) is strictly decreasing.
Hence max{p(x), l(4/x)} obtains its minimum when x is the intersection point
x0 of p(x) and l(4/x) . Solving for x0 , we have

x0 =
4

31
(124

√
2 − 31)1/2,

max
x>0

{p(x), l(4/x)} ≥ 4/(4 + 2x2
0)

1/2 = 1.347 . . . .

So,
max{d(f), d(g)} ≥ 1.347 . . . .

If γ(f, g) = 0, then f and g have a common fixed point in C , say ∞ . Thus
every element of 〈f, g〉 fixes ∞ . Since f is parabolic, there are no loxodromic
elements in 〈f, g〉 by [3, Theorem 5.1.2]. Since fg 6= gf , g is not parabolic by
[3, Theorem 4.3.6]. Thus g is elliptic. By the structure of elementary groups
[3, § 5.1], the set of multipliers S = {1, ω, ω2, . . . , ωq−1} where ω = exp(2πi/q) ,
0 ≤ q ≤ 6, q 6= 5. So g is elliptic of order less than or equal to six. Therefore,

max{d(f), d(g)} ≥ d(g) ≥ 2 sin(π/6) = 1.

4.18. Corollary. Suppose that 〈f, g〉 is a discrete subgroup of M and that

f is parabolic. If γ(f, g) 6= 0 , then

max{d(f), d(g)} ≥ c2, 1.347 ≤ c2 ≤ 1.6.

Proof. It follows from the proof of Lemma 4.17 that max{d(f), d(g)} ≥ 1.347.
The subgroup generated by

f =

(

1 1
0 1

)

, g =

(

1 0
1 1

)

is discrete. We have d(f) = d(g) = 8/5.

4.19. Example. Let f = z + 1/m , g = z + 1/n . Then 〈f, g〉 is a discrete
group with fg = gf . We have d(f) → 0, d(g) → 0, as m,n→ ∞ .

4.20. Lemma. Suppose that 〈f, g〉 is a discrete subgroup of M and that f
is loxodromic. If fg 6= gf , then

max{d(f), d(g)} ≥ c3, .863 ≤ c3 ≤ .911 . . . .

Proof. By Lemma 4.15 and Lemma 4.17, we may assume that g is also
loxodromic. Thus γ(f, g) 6= β(f) by [10, Lemma 2.31]. We also have γ(f, g) 6= 0
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since otherwise f and g have one common fixed point, and hence two common
fixed points by [3, Theorem 5.1.2]. Thus fg = gf , a contradiction.

Since f is loxodramic, it is conjugate to a mapping of the form w = ρ2ei2θz ,
−π/2 < θ ≤ π/2, 0 < ρ 6= 1.

By [9, Theorem 2.7 and Theorem 3.11],

(4.21) 2|β(f)| ≤ m(f)2 ≤ 8 cos2 θ
d(f)2

4 − d(f)2
.

Let c0 = 2
(

cos(2π/7) + cos(π/7)− 1
)

, d0 = 2− 2 cos(π/7). It follows from (4.21)
that if |β(f)| ≥ c0 , then

d(f) ≥ 2
(cos(2π/7) + cos(π/7) − 1

cos(2π/7) + cos(π/7) + 1

)1/2

= .911 . . . .

Suppose that max{|β(f)|, |β(g)|} ≤ c0 . Let γ = γ(f, g) , β = β(f) , v = cos2 θ ,
a = 0.21. If |γ| ≥ a , then by [9, Theorem 2.7 and Corollary 3.15],

max{d(f), d(g)} ≥
( 4|γ|1/2

|γ|1/2 + 2

)1/2

≥ .863.

We now assume that |γ| ≤ a . Then |β| ≥ 1 − a by Jørgensen’s inequality (4.1).
Let g1 = gf−1g−1fgfg−1f−1g . If γ(f, g1) 6= 0 and γ(f, g1) 6= β(f) , then

|γ(f, g1)| =
∣

∣γ
(

γ2 − (β − 1)γ − (β − 1)
)2∣

∣ ≥ d0

by [5, Corollary 3.8]. It follows that

(4.22) |β − 1| > 1

1 + a
(
√

d0/a− a2).

Since 1 − a ≤ |β| ≤ c0 and

|β − 1|2 = −16v2 + 4(4 − |β|)v + (|β| + 1)2,

it follows from (4.22) that v < .971. If m(f) ≥ m(g) , then

1.78 ≤ m(f)m(g) ≤ m(f)2 ≤ 8vd(f)2

4 − d(f)2

by Lemma 4.3 and (4.21). Therefore,

max{d(f), d(g)} ≥ d(f) ≥ .863.
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If γ2 − (β − 1)γ − (β − 1) = 0, then β = (1 + γ + γ2)/(1 + γ) . Since |γ| ≤ a ,

1

|β| ≤ max
|z|=a

∣

∣

∣

1 + z

1 + z + z2

∣

∣

∣
< 1.05.

It follows from (4.21) that d(f) > .877.
We finally show that γ(f, g1) = β(f) can not occur. By [10, Lemma 2.29],

there exists an elliptic h of order two such that 〈f, h〉 is discrete with γ(f, h) =
γ(f, g) . Let g2 = hf−1h−1fhfh−1f−1h . Suppose that γ(f, g1) = β(f) . We will
obtain a contradiction. Since γ(f, g2) = γ(f, g1) = β(f) , g2 is of order two by [10,
Lemma 2.31]. After a conjugation, we may assume that f and h are represented
by

A =

(

u 0
0 1/u

)

, B =

(

e11 e12
e21 e22

)

.

Thus β = (u− 1/u)2 , γ = −e12e21(u− 1/u)2 . Elementary calculations show that

BA−1B−1ABAB−1A−1B =
(

e11((γ + 1)2 − γu−2) e12(γ
2 − (β − 1)γ − (β − 1))

e21(γ
2 − (β − 1)γ − (β − 1)) e22((γ + 1)2 − γu2)

)

.

Since hf−1h−1fhfh−1f−1h is of order two,

(4.23) e11
(

(γ + 1)2 − γu−2
)

+ e22
(

(γ + 1)2 − γu2
)

= 0.

Notice that e11 + e22 = 0 (h is of order two). If e11 6= 0, then (4.23) implies
that β(β + 4) = 0, a contradiction. If e11 = 0, then e12e21 = −1. Hence γ = β ,
another contradiction.

The number .911 . . . occurs in the (2, 3, 7) triangle group (see [9]).

4.24. Example. Let f = (1+1/m)z , g = (1+1/n)z . Then 〈f, g〉 is discrete
and fg = gf . We have d(f) → 0, d(g) → 0, as m,n→ ∞ .

4.25. Theorem. Suppose that 〈f, g〉 is a discrete subgroup of M . If

fg 6= gf , then

max{d(f), d(g)} ≥ c, .863 ≤ c ≤ .911 . . . .

Proof. This follows from Lemma 4.15, Lemma 4.17 and Lemma 4.20.

4.26. Corollary. Suppose that 〈f, g〉 is a discrete subgroup of M . If

γ(f, g) 6= 0 and g is not of order two, then

max{d(f, g), d(f, g−1)} ≥ .863.

Proof. This follows from the fact d(f, g) = d(fg−1) and Theorem 4.25.
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4.27. Theorem. Suppose that G does not have a G-orbit in C that has less

than three points. Then G is discrete if and only if for each pair f, g ∈ G \ {id} ,

either fg 6= gf or

max{d(f), d(g)} ≥ .863.

Proof. By Theorem 4.25, it suffices to prove that G is discrete if for each pair
f , g ∈ G \ {id} , either max{d(f), d(g)} ≥ .863 or fg = gf . Suppose that G is
not discrete. We will obtain a contradiction. Since G is not discrete, there exists
distinct elements f1 , f2 , · · · ( 6= id) in G such that d(fn, id) → 0 as n → ∞ . So
there exists an N > 0 such that d(fn, id) < 1/2 if n ≥ N . Thus for all m , k ≥ N ,
fmfk = fkfm by hypothesis. So we may assume that there exists a sequence {fn}
such that

d(fn, id) → 0,

fmfk = fkfm,

as n→ ∞
for all m, k ≥ 1.

Furthermore, since all fi ’s are distinct and d(fn, id) → 0, by passing to a sub-
sequence of {fn} if necessary, we may assume that fk is not of order two for all
k ≥ 1. Since fk and fm commute for all k , m ≥ 1, fix(fk) = fix(fm) by [3,
Theorem 4.3.6]. Let fix(fk) = {a, b} for all k ≥ 1 (it is possible that a = b).
For any g ∈ G \ {id} , d(gfng

−1) → 0, as n → ∞ . So there exists an n0 such
that max{d(gfng

−1), d(fn)} ≤ 1/2 if n ≥ n0 . By hypothesis, gfn0
g−1fn0

=
fn0

gfn0
g−1 . Since fn0

is not of order two, fix(gfn0
g−1) = fix(fn0

) = {a, b} by [3,
Theorem 4.3.6]. Thus g{a, b} = {a, b} . Since g is arbitrary, ∩h∈Gh(a) ⊂ {a, b} .
This contradicts the assumption that G does not have a G-orbit that has less
than three points.
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