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Abstract. This paper first studies the regularity of conformal homeomorphisms on smooth
locally embeddable strongly pseudoconvex Cauchy–Riemann manifolds. Then moduli of curve
families are used to estimate the maximal dilatations of quasiconformal homeomorphisms. On
certain CR 3-manifolds, namely, CR circle bundles over flat tori, extremal quasiconformal ho-
meomorphisms in some homotopy classes are constructed. These extremal mappings have similar
behavior to Teichmüller mappings on Riemann surfaces.

1. Introduction

A contact manifold M is a manifold of odd dimension with a nowhere in-
tegrable distribution HM of tangent hyperplanes. A Cauchy–Riemann (CR)
manifold is a contact manifold M endowed a complex structure on the contact
bundle HM . Two CR manifolds are equivalent if there is a diffeomorphism be-
tween them which respects both contact and CR structures. Generally, between
any two CR structures assigned on the same contact manifold, there may be no
such so-called CR diffeomorphism between them. Therefore we consider those
diffeomorphisms between CR manifolds which preserve the underlying contact
structures and distort the CR structures in a bounded fashion. They are called
quasiconformal diffeomorphisms. Quasiconformality can be generalized to certain
homeomorphisms with much weaker regularity. In a class of homeomorphisms
between two CR manifolds, an extremal mapping is a quasiconformal homeomor-
phism which distorts the CR structures in a minimal way. This paper studies
regularity of quasiconformal homeomorphisms and extremal quasiconformal ho-
meomorphisms on smooth strongly pseudoconvex CR manifolds.

The notion of quasiconformal homeomorphisms is a new tool to study CR
structures as initiated by Korányi and Reimann. In this paper, we use an analytic
definition of quasiconformal homeomorphisms given in [13] which is a generaliza-
tion of the one given by Korányi and Reimann in [5]. We restrict ourselves to the
3-dimensional case here not only because the notion of quasiconformality is not
invariant under CR transformations in higher dimensional cases, but also because
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3-dimensional CR structures are among the most interesting objects in the theory
of CR manifolds. We refer to [7] for details about the second point.

The purpose of defining quasiconformal homeomorphisms is to introduce vari-
ants of CR diffeomorphisms. But quasiconformal homeomorphisms are variants of
conformal homeomorphisms by default. Hence it is important to know if conformal
homeomorphisms are actually CR diffeomorphisms. Korányi and Reimann proved
that C4 conformal homeomorphisms on Heisenberg groups must be smooth and
CR ([6, Theorem 8]). By applying a regularity theorem of weak CR mappings
of Pinchuk and Tsyganov, we generalize Korányi and Reimann’s result to that
a conformal homeomorphism f between two smooth, strongly pseudoconvex, lo-
cally embeddable CR manifolds must be smooth and CR, if f has L1

loc horizontal
derivatives (Theorem 2.3).

To study the extremality of quasiconformal homeomorphisms is a global prob-
lem. But our analytic definition of quasiconformality is proposed infinitesimally.
Therefore we need some global notion to describe the quasiconformality. The one
best fitting our later developments is the notion of moduli of curve families. We
prove that a C2 diffeomorphism is quasiconformal if and only if it preserves mod-
uli of certain curve families up to a fixed bounded multiple (Theorem 3.3). On the
other hand, a homeomorphism satisfying this property is absolutely continuous on
lines (ACL) (Theorem 3.4) and has L4

loc horizontal derivatives (Corollary 3.5).

Between CR circle bundles over flat tori, we construct extremal quasicon-
formal homeomorphisms in certain homotopy classes (Theorem 4.2). There are
two transversal Legendrian foliations such that the extremal homeomorphism con-
structed preserves these two foliations. More precisely, it is a stretching by a con-
stant factor along leaves of one foliation and a compressing by the same factor
along leaves of another foliation. This behavior is analogous to that of Teich-
müller mappings on Riemann surfaces (see [14] or [1]). The generator T of the
circle action is transversal to the contact bundle. In this transversal direction, the
extremal mappings are equivariant under the circle action.

But on an arbitrary CR 3-manifold with a transversal free circle action, an
extremal quasiconformal homeomorphism is not necessarily equivariant under the
circle action. Such CR manifolds are constructed in [13] so that no extremal
quasiconformal mapping between them is equivariant.

This work is heavily influenced by the theory of quasiconformal homeomor-
phisms on Riemann surfaces and Teichmüller theory. Numerous proofs in this
paper are motivated by the proofs of the analogous facts on Riemann surfaces.
For example, the construction of the extremal homeomorphisms made in Theo-
rem 4.2, one of the main results of this paper, can find its root in Grötzsch’s
theorem which is proved by a length-area argument [9]. Teichmüller generalized
this result to closed Riemann surfaces, in particular tori, by an ergodic version
of the length-area argument [14]. The notion of modulus of a curve family is
a formalism of the length-area (volume) argument. In Section 4, we reformulate
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Teichmüller’s method to the CR setting by computing moduli of some special fam-
ilies of curves and successfully find the extremal quasiconformal homeomorphisms
in certain homotopy classes of mappings between CR circle bundles over flat tori.

Acknowledgement. This author is very grateful to his academic advisor,
László Lempert for the guidance with great insights. Thanks also to David Drasin
and Juha Heinonen for helpful talks.

2. Regularity of conformal homeomorphisms

For j = 1, 2, let Mj be a smooth strongly pseudoconvex CR 3-manifolds. The
contact bundle HMj is assumed to be smooth and orientable, that is, there exists
smooth global 1-form ηj on Mj , which is called a contact form, so that HMj =

Ker ηj . Let Jj : HMj → HMj denote the CR structure on Mj . H0,1Mj ,

{X+iJjX |X ∈ HMj} ⊂ C⊗HMj is the (0, 1) tangent bundle on Mj . ∧1,0Mj ,

{linear functionals ψ: C ⊗ HMj → C |ψ(JjX) = iψ(X), for X ∈ HMj} . For a
non-zero X ∈ HMj , {X, JjX} determines an orientation of HMj .

A continuous mapping f : M1 → M2 is said to be absolutely continuous on
lines (ACL) if for any open set with a smooth contact fibration, f is absolutely
continuous along all fibers in this fibration except a subfamily of measure zero.
Here a subfamily of fibers of the fibration is said to have measure zero if intersec-
tions of these fibers with any transversal smooth surface has measure zero on the
surface (see [12] for more details).

Definition 2.1. A homeomorphism f : M1 →M2 is said to be K -quasicon-
formal for a finite constant K ≥ 1 if

(i) f is ACL;
(ii) f is differentiable almost everywhere, and its differential f∗ preserves the

contact structures, i.e., f∗(HqM1) ⊂ Hf(q)M2 , for almost every q ∈M1 .
(iii) for norms | · |1 and | · |2 defined by any Hermitian metrics on HM1 and

HM2 respectively,

(2.1) K(f)(q) =

max
X∈HqM1,|X|1=1

|f∗(X)|2

min
X∈HqM1,|X|1=1

|f∗(X)|2
≤ K <∞,

for almost all q ∈ M1 . The number K(f) = ess supq∈M1
K(f)(q) is called the

maximal dilatation of f . f is conformal if K(f) = 1. K(f) = ∞ if f is not
K -quasiconformal for any finite K ≥ 1.

It is easy to see that K(f)(q) does not depend on the choice of the Hermitian
norms | · |1 and | · |2 . This is not true if the underlying CR manifolds have
dimensions > 3.

A mapping f : M1 →M2 is said to have Lp
loc horizontal derivatives for p ≥ 1

if for any smooth function h: M2 → R and any smooth local section X of HM1 on
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an open set U ⊂⊂M1 , the function h◦f has derivative at almost all points along
the trajectory of X passing through q for almost all q ∈ U , and the derivative
X(h ◦ f) is in Lp(U) .

A mapping f : M1 →M2 is said to have Lp
loc weak horizontal derivatives for

some p ≥ 1 if for any smooth function h: M2 → R and any open set U ⊂⊂ M1

with a smooth local section X of HM1 on U , there exists a function g ∈ Lp
loc(M1)

so that

(2.2)

∫

U

Xφ · (h ◦ f) dv1 = −
∫

U

g φ dv1

for all φ ∈ C∞
0 (U) , where dv1 is a smooth volume form on M1 . Certainly, the

function g depends on the choice of dv1 .
For the proof of the next theorem, we fix a norm | · | on HM1 . A C1 curve

on a contact manifold is called Legendrian if it is tangent to the contact structure.
For any Legendrian curve γ: I → M1 with an interval I ⊂ R and a function g
defined on an open neighborhood of γ , define the line integral

∫

γ

g =

∫

I

g
(
γ(t)

)
|γ′(t)| dt.

Theorem 2.2. A mapping f : M1 → M2 is ACL and has Lp
loc horizontal

derivatives for some p ≥ 1 if and only if f has Lp
loc weak horizontal derivatives.

Proof. First assume that the homeomorphism f : M1 → M2 is ACL and has
Lp

loc horizontal derivatives. Let h: M2 → R be a smooth function and U ⊂⊂M1

be any open set with a smooth section X 6= 0 of HM1 on it.
We can assume that the trajectories Γ = {γ} of X form a contact fibration

of U by shrinking U appropriately. Let Γ1 be the subfamily of those γ ∈ Γ along
which f is absolutely continuous. Then Γ \ Γ1 has measure zero. Along γ ∈ Γ1 ,
h ◦ f is absolutely continuous, so X(h ◦ f) exists almost everywhere on γ and

(2.3)

∫

γ

Xφ · (h ◦ f) +

∫

γ

φ ·X(h ◦ f) =

∫

γ

X(φ · h ◦ f) = 0, ∀ φ ∈ C∞
0 (U).

We have topological and differential structures on Γ such that the natural
projection p: U → Γ is open and smooth. Then Γ becomes a smooth surface.
Let t be the parameter (with respect to a local coordinate system on U ) of the
flow generated by X and ω be any area form on Γ. Then dv1 , p∗ω ∧ dt is a
volume form of U . Integrating the expressions in (2.3) against ω with respect to
γ ∈ Γ1 , by the ACL property of f , local Lp integrability of X(h◦f) , and Fubini’s
theorem, we obtain

(2.4)

∫

U

Xφ · (h ◦ f) dv1 = −
∫

U

φ ·X(h ◦ f) dv1.
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So the weak derivative of h ◦ f in the X direction is given by X(h ◦ f) ∈ Lp
loc .

Conversely, assume f has Lp
loc weak horizontal derivatives. For any open set

U ⊂⊂M1 and a smooth contact fibration Γ of U , let X be the nonzero horizontal
vector field on U so that Xq , for any q ∈ U , is the tangent vector at q of the fiber
γ ∈ Γ passing through q . Let B ⊂⊂ U be an open set with coordinate system
{(x, y, t) | a1 < x < a2, b1 < y < b2, c1 < t < c2} , such that X = ∂/∂t .

For any smooth function h on M1 , h ◦ f has Lp(U) weak derivative in
the direction X . Denote it by ψ ∈ Lp(U) . Hence there exists a sequence of
C1 functions gn on B such that gn converges to h ◦ f uniformly in B and
Xgn converges to ψ in Lp(B) . Let Bx,y,t = (a1, x) × (b1, y) × (c1, t) , Rx,y =
(a1, x) × (b1, y) .

(2.5)

∫

Bx,y,t

Xgn(u, v, w) du dv dw =

∫

Rx,y

(
gn(u, v, t)− gn(u, v, c1)

)
du dv.

Hence by taking limits, we have

(2.6)

∫

Bx,y,t

ψ(u, v, w) du dv dw =

∫

Rx,y

(
(h ◦ f)(u, v, t)− (h ◦ f)(u, v, c1)

)
du dv.

Let {tn} be a countable dense set of (c1, c2) . (2.6) implies for each tn , there exists
a set En ⊂ Ra2,b2 such that Ra2,b2 \ En is of measure zero and

(2.7)

∫ tn

c1

ψ(x, y, w) dw = (h ◦ f)(x, y, tn) − (h ◦ f)(x, y, c1), ∀ (x, y) ∈ En.

Then (2.7) is true for all (x, y) ∈ E , ∩En and all tn . Hence by continuity of
both sides in t ,

(2.8)

∫ t

c1

ψ(x, y, w) dw = (h◦f)(x, y, t)−(h◦f)(x, y, c1), ∀ (x, y) ∈ E, t ∈ (c1, c2).

So (h ◦ f)(x, y, t) is absolutely continuous in t for (x, y) ∈ E . Note Ra2,b2 \
E has measure zero. So f is ACL since B ⊂⊂ U is an arbitrary rectangular
coordinate chart and U ⊂⊂ M1 is arbitrary in M1 . Moreover, X(h ◦ f) exists
almost everywhere and X(h ◦ f) = ψ ∈ Lp(U) on U . So f has Lp

loc horizontal
derivatives.

Remark An equivalent result on Heisenberg groups was proved by Korányi
and Reimann ([4, Proposition 9]). Our proof of the second part is different from
theirs.

When M2 is locally embeddable into some Euclidean space Ck , a homeomor-
phism f : M1 →M2 is said to be weakly CR if

∫
U
(h ◦ f) ·Zφ = 0 for any smooth

CR function h: M2 → C , open set U ⊂⊂ M1 , φ ∈ C∞
0 (U) and Z ∈ H0,1M1 .

Here h is said to be CR if Zf = 0 for all Z ∈ H0,1M1 .
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Theorem 2.3. Let M1 and M2 be two smooth, strongly pseudoconvex,

locally embeddable CR 3 -manifolds. Assume f : M1 → M2 is a conformal ho-

meomorphism with L1
loc horizontal derivatives and at almost all points of differ-

entiability f∗ preserves the orientation of the contact bundles determined by CR

structures. Then f is smooth and CR.

Proof. A simple linear algebra argument shows that at almost all points
q ∈M1 where f is differentiable

(2.9) K(f)(q) =
1 + |µ(q)|
1 − |µ(q)| with |µ(q)| =

∣∣∣
〈f∗ψ2, Z 〉
〈f∗ψ2, Z〉

∣∣∣(q),

for any nonzero Z ∈ H0,1M1 and nonzero ψ2 ∈ ∧1,0M2 .
Thus K(f) = 1 implies that for almost every q ∈ M1 , Z ∈ H0,1

q M1 and

ψ2 ∈ ∧1,0
f(q)M2 , we have 〈f∗ψ2, Z 〉 = 0. Hence for any CR function h on M2 ,

(2.10) Z(h ◦ f) = 〈d(h ◦ f), Z 〉 = 〈f∗ dh, Z 〉 = 0,

since dh|C⊗HM ∈ ∧1,0M2 . Theorem 2.2 says that f is weakly CR. M1 and M2 are
locally embeddable implies they are locally embeddable into C2 as hypersurfaces.
A theorem of Pinchuk and Tsyganov ([10, Theorem 2]) asserts that such f must
be smooth, hence CR.

3. Moduli of curve families

Let M be a smooth, compact, contact 3-manifold. We always assume HM
is smooth and oriented. A sub-Riemannian metric on M with respect to HM is a
smooth positive definite quadratic form on HM . Fix a sub-Riemannian metric on
M with respect to HM momentarily, and denote by | · | the corresponding norm
on HM . For the general theory of sub-Riemannian geometry, we refer to [12]
and [2].

The sub-Riemannian metric on M can be extended to a Riemannian metric on
M canonically as follows. Let ω be the oriented area form on HM corresponding
to the sub-Riemannian metric. There exists a unique contact form η so that
dη|HM = ω . Let T be the characteristic vector field of η , namely, T is the
unique vector field satisfying that Tyη = 1 and Tydη = 0. Declaring T a unit
vector orthogonal to HM , we obtain a Riemannian metric which is called the
canonical extension of the sub-Riemannian metric. The positive volume form of
this Riemannian metric is dv , dη ∧ η .

A curve γ: Iγ → M with an interval Iγ ⊂ R is called locally rectifiable if γ
is absolutely continuous and γ′(t) is tangent to HM for almost all t ∈ Iγ . γ is
called rectifiable if γ is locally rectifiable and the length

(3.1) l(γ) ,

∫

Iγ

|γ′(t)| dt <∞.
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We set l(γ) = ∞ if γ is not rectifiable. For a locally rectifiable curve γ and a
non-negative Borel-measurable function σ on M , define the line integral

(3.2)

∫

γ

σ =

∫

Iγ

σ
(
γ(t)

)
|γ′(t)| dt.

Definition 3.1. Let Γ be a family of curves γ: Iγ → M . An admissible
measure for Γ is a Borel-measurable function σ: M → R such that σ ≥ 0 and∫

γ
σ ≥ 1, for all locally rectifiable γ ∈ Γ. Denote the set of admissible measures

for Γ by A(Γ). The modulus of Γ is defined by

(3.3) ModM (Γ) = inf
σ∈A(Γ)

∫

M

σ4 dv.

Remark. (1) It is easy to see that if two sub-Riemannian metrics on M with
respect to HM define the same conformal structure on HM , then they give the
same value for ModM (Γ).

(2) If Γr ⊂ Γ consists of all locally rectifiable curves of Γ, then ModM (Γr) =
ModM (Γ).

The following proposition shows that modulus, regarded as a measure of (lo-
cally rectifiable) curve families, generalizes the concept of measure zero used in
the definition of ACL property. Henceforth if a property holds for all curves in a
family Γ except a subfamily with zero modulus, we say this property is true for
almost all curves in Γ.

Proposition 3.2. Let U be an open set of M , Γ a contact fibration of U ,

Γ1 ⊂ Γ . Then Γ1 has measure zero if and only if ModM (Γ1) = 0 .

Proof. Without loss of generality, we assume U is a domain of the coordinate
system {(x, y, t) | a1 < x < a2, b1 < y < b2, c1 < t < c2} and X = ∂/∂t is tangent
to Γ. Let E ⊂ (a1, a2) × (b1, b2) so that Γ1 = {curves t 7→ (x, y, t) | (x, y) ∈ E} .

If Γ1 has measure zero, then
∫

E
dx dy = 0. Notice

(3.4) σ0 =

{
1/(c2 − c1), when (x, y) ∈ E, t ∈ (c1, c2),
0, otherwise,

is an admissible measure for Γ1 . Therefore

(3.5) ModM (Γ1) ≤ c

∫

U

σ4
0 dx dy dt = 0,

where c is a constant upper bound of the Jacobian J on U with J dx dy dt = dv .
If ModM (Γ1) = 0, then for any σ ∈ A(Γ1) with σ = 0 outside U , γ ∈ Γ1 ,

(3.6) 1 ≤
(∫

γ

σ

)4

≤
(∫

γ

σ4

)(∫

γ

1

)3

= (c2 − c1)
3

∫

γ

σ4.
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Taking the integral over E ,

(3.7)

∫

E

dx dy ≤ c′(c2 − c1)
3

∫

M

σ4.

Hence

(3.8)

∫

E

dx dy ≤ c′(c2 − c1)
3ModM (Γ1) = 0,

that is, Γ1 has measure zero.

Let M1 and M2 be two compact, smooth, strongly pseudoconvex CR 3-
manifolds with smooth contact forms η1 and η2 respectively. Here the roles of
sub-Riemannian metrics on HM1 and HM2 are played by Hermitian metrics with
respect to the CR structures J1 and J2 respectively.

Theorem 3.3. A C2 homeomorphism f : M1 → M2 is K -quasiconformal

for a constant K ≥ 1 if and only if for any family Γ of C1 Legendrian curves on

M1

(3.9)
1

K2
ModM1

(Γ) ≤ ModM2

(
f(Γ)

)
≤ K2ModM1

(Γ),

where f(Γ) = {f(γ) | γ ∈ Γ} .

Proof. Assume f : M1 → M2 is K -quasiconformal. Then f is contact, i.e.,
for contact forms η1 and η2 on M1 and M2 respectively, f∗η2 = λη1 with a C1

function λ on M1 . Then

(3.10) f∗(dη2) = dλ ∧ η1 + λ dη1.

Therefore

(3.11) f∗(dη2|HM2
) = λ dη1|HM1

.

For j = 1, 2, the Levi form Lj on Mj is a symmetric bilinear form on HMj

defined by

(3.12) Lj(X, Y ) = dηj(X, JjY ), for X, Y ∈ HMj.

By replacing ηj by −ηj , if necessary, we can always assume that Lj is positive
definite. Hence Lj is a Hermitian form on HMj . With respect to the Levi forms
on M1 and M2 , we define

(3.13)

λ1(q) = max
Y ∈HqM1, |Y |1=1

|f∗(Y )|2,

λ2(q) = min
Y ∈HqM1, |Y |1=1

|f∗(Y )|2.
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Then (3.11) implies that |λ| = λ1λ2 . Moreover, (3.10) implies that

(3.14) f∗(dη2 ∧ η2) = λ2 dη1 ∧ η1.

Thus the Jacobian of f with respect to the volume forms dv1 = dη1 ∧ η1 on M1

and dv2 = dη2 ∧ η2 on M2 is J(f) = (λ1λ2)
2 .

For any non-negative Borel-measurable function σ2 ,

(3.15)

∫

f(γ)

σ2 =

∫

Iγ

∣∣f∗
(
γ′(t)

)∣∣
2
σ2

(
f
(
γ(t)

))
dt

≤
∫

Iγ

λ1|γ′(t)|1σ2

(
f
(
γ(t)

))
dt =

∫

γ

λ1 · σ2 ◦ f.

Hence σ2 ∈ A
(
f(Γ)

)
implies that λ1 · σ2 ◦ f ∈ A(Γ).

On the other hand,

(3.16)

∫

f(γ)

σ2 ≥
∫

Iγ

λ2|γ′(t)|1σ2

(
f
(
γ(t)

))
dt =

∫

γ

λ2 · σ2 ◦ f.

Hence σ1 ∈ A(Γ) implies (σ1/λ2) ◦ f−1 ∈ A
(
f(Γ)

)
. Therefore,

(3.17)

ModM2

(
f(Γ)

)
= inf

σ2∈A(f(Γ))

∫

M2

σ4
2 dv2 ≤ inf

σ1∈A(Γ)

∫

M2

((σ1

λ2

)
◦ f−1

)4

dv2

= inf
σ1∈A(Γ)

∫

M1

σ4
1

λ4
2

· (λ1λ2)
2 dv1 ≤ K2 ModM1

(Γ).

(3.18)

ModM1
(Γ) = inf

σ1∈A(Γ)

∫

M1

σ4
1 dv1 ≤ inf

σ2∈A(f(Γ))

∫

M1

(λ1 · σ2 ◦ f)4 dv1

= inf
σ2∈A(f(Γ))

∫

M2

(λ1 ◦ f−1 · σ2)
4

(λ1λ2)2 ◦ f−1
dv2 ≤ K2ModM2

(
f(Γ)

)
.

Assume that f satisfies the inequalities (3.9). Then f must respect contact
structure in the sense that f∗(HM1) ⊂ HM2 . Otherwise, there will be a point
q ∈M1 with a tangent vector Xq ∈ HqM1 so that f∗(Xq) /∈ Hf(q)M2 . f is C1 ,
so there is a neighborhood U of q with a nonzero smooth section X of HM1

on U so that f∗(Xq′) is not contact for each q′ ∈ U . Let Γ be the family of
trajectories of X , and shrink U appropriately so that ModM1

(Γ) 6= 0. On the
other hand, curves in f(Γ) are not Legendrian, hence not locally rectifiable. So
ModM2

(
f(Γ)

)
= 0 by Definition 3.1. Thus f cannot satisfy (3.9) for this family Γ.

This contradiction shows that f must be contact.
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If f is not K -quasiconformal, there exists an open set U ⊂ M1 such that
λ1/λ2 ≥ K+ε , for some ε > 0. Let X be the vector field on U so that |X |1 = 1,
|f∗(X)|2 = λ2 . Let Γ be the family of trajectories of X in U . Then for any
function σ2 on f(U) , non-negative Borel-measurable,

(3.19)

∫

f(γ)

σ2 =

∫

γ

σ2 ◦ f · |f∗(X)|2 =

∫

γ

λ2 · σ2 ◦ f.

So σ2 ∈ A
(
f(Γ)

)
if and only if σ1 , λ2 · σ2 ◦ f ∈ A(Γ). Hence

ModM2

(
f(Γ)

)
= inf

σ2∈A(f(Γ))

∫

M2

σ4
2 dv2

= inf
σ1∈A(Γ)

∫

f(U)

((σ1

λ2

)
◦ f−1

)4

dv2

= inf
σ1∈A(Γ)

∫

U

(σ1

λ2

)4

· (λ1λ2)
2 dv1(3.20)

= inf
σ1∈A(Γ)

∫

U

(λ1

λ2

)2

σ4
1 dv1 ≥ (K + ε)2 ModM1

(Γ).

Therefore, (3.9) implies that

(3.21) (K + ε)2ModM1
(Γ) ≤ K2ModM1

(Γ).

But we can always choose U such that ModM1
(Γ) 6= 0. So (3.9) cannot be true

for such Γ. Hence λ1/λ2 ≤ K on M1 , i.e., f is K -quasiconformal.

It would be important to know if we can use (3.9) to define quasiconformality
for a homeomorphism f : M1 → M2 . The rest of this section is devoted to this
problem.

Theorem 3.4. If f : M1 → M2 is a homeomorphism so that for a constant

K ≥ 1 and any curve family Γ which forms a smooth contact fibration of an open

set in M1

(3.22) ModM1
(Γ) ≤ K2 ModM2

(
f(Γ)

)
,

then f is ACL.

Proof. Let U ⊂M1 be an open set with a smooth contact fibration Γ, X 6= 0
be a horizontal vector field on U tangent to Γ. By replacing X by X/|X |1 , we
can assume |X |1 = 1. Shrink U , if necessary, so that there is a smooth surface
S ⊂ U which intersects each fiber of Γ transversally once and only once. Choose
a local coordinate system such that fibers γ ∈ Γ is parametrized by t , X = ∂/∂t
and γ(0) ∈ S . Let p: U → S denote the natural projection given by γ(t) 7→ γ(0).
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Recall that Hermitian metrics on HM1 and HM2 can be extended canoni-
cally to Riemannian metrics on M1 and M2 respectively. Restricting the Rieman-
nian metric on M1 to S makes S a Riemannian 2-manifold. Let ω be the area
form on S , and Aω(E) ,

∫
E
ω the ω -area of a measurable set E ⊂ S . Define

a set function F for measurable set E ⊂ S by letting F (E) = vol
(
f
(
p−1(E)

))
,

where vol refers to the Riemannian volume on M2 . Then Lebesgue’s theorem
([15, Theorem 23.5]) asserts that F has finite derivatives at all points in S1 with
respect to ω -area, for a subset S1 ⊂ S with Aω(S \S1) = 0. We want to prove f
is absolutely continuous along the fibers of Γ passing through points in S1 .

For q ∈ S1 , let Dr ⊂ S be a disc centered at q with radius r , γq: I → U
be the fiber of γ passing through q . Take any sequence t′1, t

′′
1 , t

′
2, t

′′
2 , . . . , t

′
k, t

′′
k ∈ I

such that

(3.23) t′1 < t′′1 < t′2 < t′′2 · · · < t′k < t′′k .

Let ∆tj , t′′j − t′j . When max1≤j≤k ∆tj is small enough,

(3.24) dr,j ≤ ∆tj ≤ 2 dr,j,

where dr,j is the sub-Riemannian distance between the set B′
r,j , {γ(t′j) | γ ∈

Γ, γ(0) ∈ Dr} and the set B′′
r,j , {γ(t′′j ) | γ ∈ Γ, γ(0) ∈ Dr} . For j = 1, 2, . . . , k ,

denote
Rr,j , {γ(t) | γ ∈ Γ, γ(0) ∈ Dr, t

′
j ≤ t ≤ t′′j }

and let
Γr,j , {γj = γ|[t′

j
,t′′

j
] | γ ∈ Γ, γ(0) ∈ Dr},

a contact fibration of Rr,j . Then by (3.22),

(3.25) ModM1
(Γr,j) ≤ K2 ModM2

(
f(Γr,j)

)
.

Next we use length-volume argument to give an estimate for ModM1
(Γr,j) .

For σ ∈ A(Γr,j) and γj ∈ Γr,j ,

(3.26) 1 ≤
(∫

γj

σ

)4

≤
(∫

γj

σ4

)(∫

γj

1

)3

= (∆tj)
3

∫

γj

σ4.

Integrating each term against ω over Dr , then

(3.27) Aω(Dr) ≤ c(∆tj)
3

∫

Rr,j

σ4 dv1.

where c is constant, dv1 is the volume form of the Riemannian metric on M1 . By
(3.3) and (3.24),

(3.28) Aω(Dr) ≤ 8cdr,j
3 ModM1

(Γr,j).
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On the other hand, let δr,j be the sub-Riemannian distance between f(B′
r,j)

and f(B′′
r,j) . Then 1/δr,j ∈ A

(
f(Γr,j)

)
. Thus

(3.29) ModM2

(
f(Γr,j)

)
≤ 1

δ4r,j

vol
(
f(Rr,j)

)
.

Combining (3.25), (3.28) and (3.29), we have

(3.30)
(
Aω(Dr)

)1/4
δr,j ≤ (8cK2)1/4dr,j

3/4
(
vol

(
f(Rr,j)

))1/4
.

Summing (3.30) over j ,

(3.31)

(
Aω(Dr)

)1/4
k∑

j=1

δr,j ≤ (8cK2)1/4
k∑

j=1

dr,j
3/4

(
vol

(
f(Rr,j)

))1/4

≤ (8cK2)1/4

( k∑

j=1

dr,j

)3/4( k∑

j=1

vol
(
f(Rr,j)

))1/4

≤ (8cK2)1/4

( k∑

j=1

dr,j

)3/4(
vol

(
f
(
p−1(Dr)

)))1/4
.

So by (3.24),

(3.32)
k∑

j=1

δr,j ≤ (8cK2)1/4

( k∑

j=1

∆tj

)3/4( F (Dr)

Aω(Dr)

)1/4

.

Letting r → 0,

(3.33)
k∑

j=1

δj ≤
(
8cK2F ′(q)

)1/4
( k∑

j=1

∆tj

)3/4

,

where δj , limr→0 δr,j , i.e., the sub-Riemannian distance between f
(
γq(tj)

)
and

f
(
γq(tj+1)

)
. Hence f is absolutely continuous along γq , for q ∈ S1 . So f is

ACL.

Corollary 3.5. If a homeomorphism f : M1 → M2 satisfies (3.22) , then f
has horizontal derivatives almost everywhere on M1 in the sense that for any open

set U ⊂M1 with a smooth section X of HM1 on U and any smooth function h
on f(U) , X(h◦f) exists almost everywhere on U . Moreover f has L4

loc horizontal

derivatives.
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Proof. We need only prove the last statement for non-zero X . Using notations
as in the proof of Theorem 3.4, we will show X(h ◦ f) ∈ L4

loc along γq for q ∈ S
where F ′(q) exists. Without loss of generality, we assume γq: I = [a, b] →M1 is a
closed curve. Let t0 = a , t1, . . . , tN = b be a partition of I . For j = 0, 1, . . . , N−1,
define δr,j , δj, dr,j , and dj similarly. Then the same proof of (3.30) shows that

(3.34)
( δr,j

dr,j

)4

dr,j ≤ 8cK2 vol
(
f(Rr,j)

)

Aw(Dr)
,

when the partition of I is fine enough. Then

(3.35)
N−1∑

j=1

( δr,j

dr,j

)4

dr,j ≤ 8cK2 vol
(
f
(
p−1(Dr)

))

Aw(Dr)
.

Letting r → 0, we obtain

(3.36)

N−1∑

j=1

( δj
dj

)4

dj ≤ 8cK2F ′(q).

Letting max0≤j≤N−1 |tj+1−tj | → 0, by an elementary argument based on Fatou’s
lemma [11],

(3.37)

∫

γq

|f∗(X)|4 ≤ 8cK2F ′(q).

Note F ′ exists for almost all q ∈ Dr for a fixed small r > 0 and F ′ is integrable
over Dr by Lebesgue’s theorem. Taking integral of both sides of (3.37) over Dr

against ω ,

(3.38)

∫

p−1(Dr)

|f∗(X)|4 dv1 ≤ 8c1K
2

∫

Dr

F ′ω <∞.

Hence f has L4
loc horizontal derivatives.

4. Extremal quasiconformal homeomorphisms

In this section we will construct CR 3-manifolds M1 , M2 and a quasiconfor-
mal diffeomorphism f0: M1 → M2 such that K(f0) ≤ K(f) , for any C2 quasi-
conformal homeomorphism f : M1 →M2 homotopic to f0 . M1 to be constructed
is the quotient of the 3-dimensional Heisenberg group by a lattice. So we start
with the Heisenberg group.
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The 3-dimensional Heisenberg group H3 is the space R3 endowed with the
group structure defined by

(4.1) (x, y, t) (u, v, s) = (x+ u, y + v, t+ s+ 2yu− 2xv).

The standard contact structure on H3 is given by the contact form

(4.2) η̃ = −1
2y dx+ 1

2x dy + 1
4 dt.

The contact bundle HH3 = Ker η̃ has two global sections

(4.3) X̃ =
∂

∂x
+ 2y

∂

∂t
, Ỹ =

∂

∂y
− 2x

∂

∂t

which span HH3 everywhere and are invariant under the left group translation.
The standard CR structure on H3 is

(4.4) J̃ : HH3 → HH3, X̃ 7→ Ỹ , Ỹ 7→ −X̃.

Note that dη̃ = dx ∧ dy , thus the sub-Riemannian metric on HH3 determined
by the area form dη̃ and the complex structure J̃ , i.e., the Levi form, is the one
making {X̃, Ỹ } orthonormal.

Next we study the geodesics on H3 with respect to this sub-Riemannian
metric. Since the metric is invariant under left group translations, it suffices to
study geodesics joining the origin O = (0, 0, 0) and a generic point q . Denote by p
the projection from H3 to the horizontal plane P , {t = 0} . It is easy to see that
if γ is a rectifiable curve in H3 with respect to the sub-Riemannian metric, p(γ)
is rectifiable with respect to the Euclidean metric on {t = 0} , and the respective
lengths of γ and p(γ) coincide. The characterization of the geodesics given in
the next theorem was first given by Korányi by studying the Euler–Lagrange
equations [3]. The following proof, which is due to Lempert [8], is a geometric
one.

Proposition 4.1. On H3 , any minimal geodesic connecting the origin O
and q ∈ H3 is either a straight line segment if q ∈ P , or an arc of a helix whose

projection to P is a circle if q /∈ P .

Proof. The conclusion is obvious if q ∈ P . Next we assume q /∈ P . We first
consider the case p(q) = O , i.e., q = (0, 0, t) for some t 6= 0. Let

(4.5) γ: [0, l] → H3, s 7→
(
x(s), y(s), t(s)

)

be any oriented rectifiable curve joining O and q . Then

(4.6) −2yx′ + 2xy′ + t′ = 0,
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almost everywhere on γ by (4.2). Thus

(4.7) t =

∫ l

0

t′ ds =

∫

p(γ)

2y dx− 2x dy = −4

∫

Ω

dx ∧ dy,

where Ω is the 2-chain on P so that ∂Ω = p(γ) . Now the sub-Riemannian length
of γ is equal to the Euclidean length of p(γ) . Obviously, the length of p(γ) is
the minimal only when Ω is a simply connected domain with fixed area 1

4
|t| .

Furthermore, p(γ) must be a circle if γ is a length minimizing geodesic joining O
and q , by the isoperimetric property on the Euclidean plane.

If p(q) 6= O , the above reasoning with some slight modifications can be ap-
plied. For instance, Ω is a 2-chain bounded by the union of p(γ) and the straight
line segment from p(q) to O .

Take σ, τ ∈ R , τ 6= 0. Let A = (1, 0, 0), B = (σ, τ, 0). Let Γ be the
discrete subgroup of H generated by {A,B} . Left group translations by elements
of Γ define a Γ-action. The CR structure on H is invariant under this Γ-action.
We consider the quotient space M1 , H/Γ. Let π: H → M1 denote the natural
projection. M1 has a contact structure with the contact form η satisfying π∗η = η̃
and a CR structure J1 inherited from J̃ . Hence M1 becomes a CR manifold. Let
X = π∗X̃ , Y = π∗Ỹ . Then with respect to the sub-Riemannian metric uniquely
determined by η and J1 , {X, Y } is orthonormal. Note also Z1 = 1

2 (X + iY ) ∈
T 0,1M1 . There is an R -action on H defined by

(4.8) (x, y, t) 7→ (x, y, t+ t′), for t′ ∈ R.

This R -action is free and preserves the CR structures on H3 . The plane P can be
regarded as the quotient space of this R -action. The natural projection p: H3 →
P is isometric between the sub-Riemannian metric on H3 and the Euclidean
metric on P . The free R -action on H3 commutes with the Γ-action. Thus it
induces a free S1 -action on M1 so that M1 becomes a circle bundle over the
torus Σ1 , π(P ) . The torus Σ1 has a flat Riemannian metric inherited from the
Euclidean metric on P . Denote the natural projection by π1: M1 → Σ1 . Note
the S1 -action preserves the CR structure on M1 . We call such a bundle M1

π1→Σ1

a CR circle bundle over a flat torus.
Given a constant K ≥ 1, define a new CR structure M2 on the contact

structure of M1 by declaring that

(4.9) Z2 ,
1

2

(√
KX +

i√
K
Y

)
=
K + 1

4
√
K

(
Z1 +

K − 1

K + 1
Z1

)

is an (0, 1) tangent vector. Obviously, the identity mapping f0: M1 → M2 is
quasiconformal and K(f0)(q) = K for all q ∈M1 .
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Theorem 4.2. Let f : M1 → M2 be a C2 homeomorphism homotopic to

f0: M1 →M2 . Then K(f) ≥ K .

Note the CR structure on M2 is also invariant under the circle action. So if
S2 denotes the same smooth torus as S1 , but endowed with the complex structure
induced from CR structure on M2 , then M2

π1→S2 is also a CR circle bundle.

Lemma 4.3 (Strichartz, see [12, Lemma 3.2]). For any q in a sub-Riemannian

manifold M , there is an ε > 0 so that if q1, q2 ∈ M with d(q1, q) ≤ ε and

d(q2, q) ≤ ε , there exists a length minimizing curve joining q1 and q2 .

If α is a curve, denote by [α] the homotopy class with fixed end points of α .
Recall that l(α) is the length of α with respect to the sub-Riemannian metric
on M .

Lemma 4.4. Let α: [0, 1] → M be a curve on a compact sub-Riemannian

manifold connecting two points q1 and q2 , inf l(β) be taken over all β ∈ [α] .
Then this infimum is attained at a rectifiable curve α̃ ∈ [α] .

Proof. Let εq > 0 be a number for q ∈M determined by Lemma 4.3. Since M
is compact, we can cover M with finitely many balls B(qj ,

1
3εqj

) , j = 1, 2, . . . , k
with respect to the sub-Riemannian metric. Note any two points in the same
B(qj ,

1
3εqj

) can be joined by a length minimizing curve within B(qj, εqj
) .

Let L = inf l(β) over all β ∈ [α] . Let βn ∈ [α] be curves such that
limn→∞ l(βn) = L . Divide each βn by points pn0 = q1, pn1, pn2, . . . , pnN = q2 ∈
βn into subcurves τn1, τn2, . . . , τnN so that each τnj ⊂ B(qmnj

, r) for some integer
mnj with 1 ≤ mnj ≤ k . Here r denotes the radius 1

3εqmnj
for simplicity. Note

this N is uniform for all n by appropriately choosing βn .
Let σnj be a length minimizing curve in B(qmnj

, 3r) to join the end points
of τnj and σn = σn1σn2 · · ·σnN . Then since B(qmnj

, 3r) is simply connected,
σnj ∈ [τnj] , and hence σn ∈ [βn] = [α] . Furthermore

(4.10) L ≤ l(σn) ≤
N∑

j=1

l(σnj) ≤
N∑

j=1

l(τnj) = l(βn).

Therefore limn→∞ l(σn) = L .
Since M is compact, there is a sequence {nj} ⊂ N so that for each j =

1, 2, . . . , N−1, pnj is convergent to some point pj , when nj → ∞ . Note pj−1, pj ∈
B(qmj

, r) for some integer mj with 1 ≤ mj ≤ k . Connect pj−1, pj by a length
minimizing curve αj ⊂ B(qmj

, 3r) and let α̃ = α1α2 · · ·αN . Then α̃ ∈ [α] and

(4.11) l(α̃) = lim
ni→∞

l(σni
) = L.

The next two lemmas will be crucial to establish the extremality of f0 de-
scribed by Theorem 4.2.
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Lemma 4.5. The flow of diffeomorphisms ht generated by X on M1 pre-

serves the volume form dv1 = dη ∧ η .

Proof. This is obvious since the the flow of diffeomorphisms h̃s on H3 gen-
erated by X̃ is given by

(4.12) h̃s: (x, y, t) 7→ (x+ s, y, t+ 2sy), s ∈ R

which preserves the volume form dη̃ ∧ η̃ = dx ∧ dy ∧ dt .
We define a sub-Riemannian metric on M2 such that {

√
KX, Y/

√
K } is

orthonormal. Note this sub-Riemannian metric induces the same CR structure
on M2 . Denote the corresponding curve length by l2 . On a sub-Riemannian
manifold M , a geodesic γ: R →M is said to be (homotopically) conjugate point
free if for any [a, b] ⊂ R the curve γ|[a,b] is the unique length minimizing curve in
its homotopy class of curves with end points γ(a) and γ(b) .

Lemma 4.6. Integral curves of the vector field
√
KX are conjugate point

free geodesics on M2 .

Proof. Lifting the sub-Riemannian metric on M2 to its universal covering
H , we obtain a new sub-Riemannian metric on H . Let us call this new sub-
Riemannian manifold H2 . On H2 there is a characterization of geodesics similar
to Proposition 4.1.1. The trajectories of

√
K X̃ are exactly the straight geodesics

on H2 . Indeed, the sub-Riemannian metric is invariant under the R -action (4.8),
hence a rectifiable curve γ in H2 has the same length as p(γ) on P2 . Here
P2 is the plane P endowed with the flat Riemannian metric chosen such that√
K ∂/∂x, (1/

√
K )(∂/∂y) are orthonormal. Therefore the x -axis, which is the

trajectory of
√
K X̃ passing through O , is a conjugate point free geodesic. Note√

K X̃ and the sub-Riemannian metric are invariant under the group left transla-
tion. Hence any other trajectory of

√
K X̃ is also a conjugate point free geodesic.

The lemma follows from this fact.

Proof of Theorem 4.2. Let f : M1 →M2 be a C2 quasiconformal homeomor-
phism. For q ∈ M1 , let γq,a: [−a, a] → M1 be the integral curve of X so that
γq,a(0) = q . Let Γa = {γq,a | q ∈M1} . Then by Theorem 3.4,

(4.13) ModM1
(Γa) ≤ K(f)2 ModM2

(
f(Γa)

)
.

First note the length of γq,a is 2a , so 1/2a ∈ A(Γa) and

(4.14) ModM1
(Γa) ≤

∫

M1

( 1

2a

)4

dv1 =
( 1

2a

)4

vol (M1).

For σ ∈ A(Γa) ,

(4.15) 1 ≤
(∫

γq,a

σ

)4

≤
(∫

γq,a

1

)3(∫

γq,a

σ4

)
= (2a)3

∫

γq,a

σ4.
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That implies

(4.16)
1

(2a)3
≤

∫

γq,a

σ4 =

∫ a

−a

(
σ
(
γq,a(s)

))4
ds.

Integrating both sides of (4.16) against dv1 with respect to q over M1 ,

(4.17)

1

(2a)3
vol (M1) ≤

∫

M1

(∫ a

−a

(
σ
(
γq,a(s)

))4
ds

)
dv1

=

∫ a

−a

(∫

M1

(
σ
(
γq,a(s)

))4
dv1

)
ds

= 2a

∫

M1

σ4 dv1.

The last equality in (4.17) is due to Lemma 4.5, which implies that

(4.18)

∫

M1

(
σ
(
γq,a(s)

))4
dv1 =

∫

M1

σ4 h∗s(dv1) =

∫

M1

σ4 dv1

is independent of s . Therefore

(4.19)
( 1

2a

)4

vol (M1) ≤
∫

M1

σ4 dv1, ∀ σ ∈ A(Γa).

Combining (4.14) and (4.19), we get

(4.20) ModM1
(Γa) =

( 1

2a

)4

vol (M1).

Next we estimate ModM2

(
f(Γa)

)
in (4.13) for a quasiconformal homeomor-

phism f homotopic to f0: M1 → M2 . Since f is homotopic to f0 , there is a
continuous map H: [0, 1]×M1 →M2 so that

(4.21) H(0, q) = f0(q), H(1, q) = f(q), ∀ q ∈M1.

Let αq: [0, 1] → M2 be a curve given by t 7→ H(t, q) . Define G(q) = inf l2(β)
over all β ∈ [αq] . Then by Lemma 4.4, G(q) is attained at a rectifiable curve
α̃q ∈ [αq] .

Now we prove that G(q) is continuous on M1 . When q1 is close enough to
q on M1 , f0(q1) is close enough to f0(q) so that there exist a length minimizing
curve δ1 joining f0(q) , f0(q1) according to Lemma 4.3. Let δ2 = f(δ1) . Then

(4.22) δ1α̃q1
δ−1
2 ∈ [αq], δ−1

1 α̃qδ2 ∈ [αq1
].
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This implies

(4.23)
l2(α̃q) ≤ l2(δ1) + l2(α̃q1

) + l2(δ
−1
2 ),

l2(α̃q1
) ≤ l2(δ

−1
1 ) + l2(α̃q) + l2(δ2).

In other words,

(4.24) |G(q1) −G(q)| ≤ l2(δ1) + l2(δ2).

Thus there exists A > 0 so that

(4.25) G(q) ≤ A <∞, ∀ q ∈M1,

since M1 is compact.
For a curve γ: [a, b] → M1 , α̃γ(a)f(γ)α̃−1

γ(b) ∈ [f0(γ)] . By Lemma 4.6 and

(4.25),

(4.26) l2
(
f0(γ)

)
≤ l2

(
α̃γ(a)

)
+ l2

(
f(γ)

)
+ l2

(
α̃−1

γ(b)

)
≤ 2A+ l2

(
f(γ)

)
.

Applying (4.26) to γ = γq,a ∈ Γa , we obtain

(4.27) 2
√
K a ≤ 2A+ l2

(
f(γq,a)

)
.

Hence 1/(2
√
K a− 2A) ∈ A

(
f(Γa)

)
. So we have the following estimate:

(4.28) ModM2

(
f(Γa)

)
≤

∫

M2

( 1

2
√
K a− 2A

)4

dv2 =
( 1

2
√
K a− 2A

)4

vol (M2).

Note vol (M1) = vol (M2) 6= 0, so by (4.13), (4.20) and (4.28), we have

(4.29)
(√

K − A

a

)2

≤ K(f).

Letting a→ ∞ , we get that K ≤ K(f) .

Remark. In horizontal directions, the extremal quasiconformal homeomor-
phism f0 behaves as a stretching by the constant factor

√
K along trajectories of

X and a compressing by the same factor along trajectories of JX . The generator
T of the circle action is transversal to the contact bundle. In this transversal
direction T , f0 is equivariant under the circle action since it is simply the identity
mapping while M1 and M2 have the same circle action.
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[2] Hamenstädt, U.: Some regularity theorems for Carnot–Caratheodory metrics. - J. Dif-
ferential Geom. 32, 1990, 819–850.
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[6] Korányi, A., and H.M. Reimann: Quasiconformal mappings on the Heisenberg group.
- Invent. Math. 80, 1985, 309–338.

[7] Lempert, L.: On three dimensional Cauchy–Riemann manifolds. - J. Amer. Math. Soc.
5:4, 1992, 923–969.

[7] Lempert, L.: Private communication.

[8] Li, Zhong: Quasiconformal Mappings and their Applications in the Theory of Riemann
Surfaces. - Science Publisher, Beijing, 1988.

[9] Pinchuk, S.I., and Sh.I. Tsyganov: The smoothness of CR-mappings between strictly
pseudoconvex hypersurfaces. - Math. USSR-Izv. 35:2, 1990, 457–467.

[10] Rudin, W.: Real and Complex Analysis. - McGraw-Hill, New York, 1974.

[11] Strichartz, R.S.: Sub-Riemannian geometry. - J. Differential Geom. 24, 1986, 221–263.

[12] Tang, P.: Quasiconformal homeomorphisms on CR manifolds with symmetries. - Math.
Z. (to appear).

[13] Teichmüller, O.: Extremale quasikonforme Abbildungen und quadratische Differentiale.
- Abh. Preus. Akad. Wiss. Math.-Natur. Kl. 22, 1939, 1–197; or Gesammelte Abhand-
lungen - Collected Papers, edited by L.V. Ahlfors and F.W. Gehring, Springer-Verlag,
New York–Berlin, 1982, 335–531.
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