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Abstract. We describe interacting lattice models on the torus whose special feature is that
the macroscopic equation of the empirical density is a degenerate parabolic equation, namely the
equation of an ideal gas flowing isothermally through a porous medium. The models come in two
versions: one with continuous variables and one with particles on the sites. In the particle model a
degenerate equation is obtained only if the size of the particle vanishes in the limit, otherwise the
limiting equation is a nondegenerate equation that also governs the densities of certain exclusion
processes with speed change. We establish basic properties of these models such as attractiveness
and reversibility, and prove the hydrodynamic scaling limits for the empirical densities.

1. Introduction and results

The porous medium equation ∂tu = ∆(um) , m > 1, has for some time been
among the most intensely studied partial differential equations. A rich theory has
developed since the fundamental solutions were found in the early 1950’s in Russia,
but results connecting this equation with interesting stochastic dynamics are few.
This equation is a degenerate parabolic equation in the sense that when written
in the form ∂tu = ∇ ·

(
D(u)∇u

)
, the diffusion matrix D(u) vanishes for u = 0.

In this paper we describe some simple interacting lattice models whose empirical
densities obey the porous medium equation ∂tu = ∆(u2) in a hydrodynamical
scaling limit.

The stochastic model we study comes in two versions, one with continuous
variables (the stick model) and one with discrete variables (the particle model).
The stick model is a relative of the linear models discussed in Chapter IX of
Liggett’s monograph [L], in the sense that when an event takes place at some
time t , the new configuration ηt is a linear function of the old one ηt− . But the
rates are not uniform as in the linear models of [L], for an event takes place at a site
x at a rate proportional to the size of the variable η(x) . This model is not new.
It has been studied earlier in [SU], where H. Tanaka is credited for suggesting
the model. The particle model resembles the zero-range process introduced by
Spitzer [S], in that particles jump from a site with an intensity determined by the
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number of particles at that site. The difference is that now more than one particle
may jump simultaneously. The size of an individual particle will be an additional
parameter of the model, and only if this size vanishes in the limit do we get a
degenerate macroscopic equation.

Physically the porous medium equation with m = 2 represents the density
of an ideal gas flowing isothermally through a porous medium. Whether these
stochastic models can be given natural physical interpretations has yet to be de-
termined.

For background on hydrodynamical scaling limits and their context in statis-
tical physics we suggest the monograph of Spohn [Sp], and the lectures of De Masi
and Presutti [DP] for a survey of part of the mathematical theory. The papers
of Aronson [A] and Vasquez [V] present overviews of the theory of the porous
medium equation.

Our paper is intended as the first of a series of studies of interacting particle
systems that have zero range of interaction and lead to a degenerate macroscopic
equation. These stochastic models will be generalized in a future paper so that
porous medium equations with m 6= 2 appear. We present one proof here in fairly
complete technical detail so that similar arguments in later work can do with
sketchier proofs, but also with the hope of making our exposition an accessible
entry point into the mathematics of hydrodynamic limits. With a wider audience
in mind we have provided some explanations that a probabilist may find tedious.

The paper is organized as follows: In this section we describe the models and
state the scaling limits in Theorems 1, 2 and 3. Theorem 1 is about the stick
model with short-range interactions and the limit comes by diffusion scaling. In
Theorem 2 the stick model interacts over an intermediate range and a different
scaling is needed for the limit. It is possible to adjust the range of interaction so
that the scaling limit comes by hyperbolic scaling. Theorem 3 is about the particle
model. After presenting the theorems we describe earlier work relating the porous
medium equation to stochastic models. Section 1 concludes with a sketch of the
proofs. In Section 2 we study the stochastic models more closely. We show that
they are attractive in the interacting particle systems sense and ergodic on certain
hyperplanes of the state space. We describe the invariant measures, which are also
reversible for the process. In Section 3 we prove the scaling limits for the stick
model and in Section 4 for the particle model.

1.1. The short-range stick process. We begin with an informal descrip-
tion of the stick process. Fix a dimension d for the remainder of the paper. Let
the scaling parameter N be a large natural number. Write x = (x1, . . . , xd) for
the sites of the lattice Zd . Our process lives on the sites of the cube

Zd
N = {x ∈ Zd : 0 ≤ xi < N for i = 1, . . . , N}

with periodic boundary conditions, that is, coordinatewise addition in Zd
N is per-

formed modulo N . A state of the process is an assignment η =
(
η(x) : x ∈ Zd

N

)
of

nonnegative real numbers 0 ≤ η(x) < ∞ to each site x , which could be thought
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of as the lengths of vertical sticks sitting on the sites. Thus the state space of

the process is ΩN = [0,∞)Z
d
N . Fix a probability distribution p(z) on Zd such

that p(z) = p(−z) , thinking of p(y−x) as the step distribution of a random walk
on Zd . Let pN (x, y) be the step distribution induced on Zd

N given by

pN (x, y) =
∑

z:z≡ymodN

p(z − x)

where z ≡ y mod N is understood coordinatewise. The symmetry is preserved:
pN (x, y) = pN (y, x) .

The state evolves in time through events of the following type: When the
state of the process is η , each site x ∈ Zd

N has an independent exponential clock
with rate η(x) . When the clock at site x rings, pick a site y with probability
pN (x, y) , break off a uniformly distributed random piece from the stick at x , and
add this piece to the stick at y .

Here is a more precise description for the benefit of the reader not familiar
with the jargon of interacting particle systems: Suppose the state of the process
is η at some time t . To determine when the process moves from η to another
state, imagine given a collection {Tz : z ∈ Zd

N} of independent random variables,
where Tz has exponential distribution with expectation 1/η(z) . These are the
random clocks. Let x be the site whose clock rings first: Tx = minz∈Z

d
N
Tz .

(Since Zd
N is finite and the Tz ’s have continuous distributions, this description is

not problematic: The infimum of the Tz ’s is positive and it is realized at exactly
one site, almost surely.) It is conventional to construct processes so that their
paths are right-continuous in time. Thus we declare that the process remains at
η for the time interval [t, t+ Tx) , and at time t′ = t+ Tx it resides at a new state
η′ determined as follows: Pick y as indicated above and pick a random quantity
U uniformly distributed on [0, η(x)] , both independently of everything else. Then
set η′(x) = η(x) − U , η′(y) = η(y) + U , and η′(w) = η(w) for other sites w .
Now repeat this cycle, starting with the state η′ at time t′ and with new random
clocks independent of the past.

To achieve the correct parabolic or diffusion scaling, we speed up the dynamics
by a factor N2 . All this is codified in the generator LN that acts on bounded
continuous functions f on ΩN :

(1) LNf(η) = N2
∑

x∈Z
d
N

∫ η(x)

0

∑

y∈Z
d
N

pN (x, y) [f(ηu,x,y) − f(η)] du,

where the configuration ηu,x,y is defined, for x, y, w ∈ Zd
N and 0 ≤ u ≤ η(x) , by

(2) ηu,x,y(w) =






η(x) − u, w = x,
η(y) + u, w = y,
η(w), w 6= x, y.
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For a comprehensive treatment of the theory and machinery of interacting particle
systems we refer the reader to [L].

Let ηt = (ηt(x) : x ∈ Zd
N ) , with 0 ≤ t < ∞ the time variable, denote

the Markov process we have described, for a fixed N . Instead of running the
process on larger and larger cubes Zd

N as N increases, we shrink space by a
factor of N and imagine that the stick configuration approximates a density on
the d -dimensional torus Td = Rd/Zd . This notion is captured by the empirical
measure αN

t determined by the heights of the sticks. Let M denote the space
of finite nonnegative Borel measures on Td , topologized weakly by C(Td) . Then
αN

t is the M -valued random variable defined by

αN
t = N−d

∑

x∈Z
d
N

ηt(x) δx/N ,

in other words, the integral of a bounded Borel function φ on Td against αN
t is

given by

αN
t (φ) = N−d

∑

x∈Z
d
N

ηt(x)φ
( x
N

)
.

In general we will replace ‘t ’ with ‘• ’ to denote the whole path as a function of t
as opposed to a value at a particular time.

As initial data we assume given a nonnegative, bounded Borel function u0

on Td that serves as the initial macroscopic density of the sticks. This means
that, for large N , the empirical density of the sticks at time 0 approximates the
measure u0(ξ) dξ with high probability, where dξ denotes Lebesgue measure on
Td , for integration purposes identifiable with [0, 1)d . For this and certain technical
reasons we make the following precise assumption on the initial distributions µN

0

of the processes:

Assumption 1. The probability distributions µN
0 on ΩN satisfy these condi-

tions: The variables η(x) , x ∈ Zd
N , are independent exponential random variables

under µN
0 . There is a constant K0 bounding the expectations:

µN
0 {η(x)} ≤ K0 for all N and for all x ∈ Zd

N .

The expectations are chosen so that, as N → ∞ , αN
0 → u0(ξ) dξ in µN

0 -

probability, in the topology of M .

The precise choice of the expectations is immaterial. One can take

µN
0 {η(x)} = Nd

∫

(x/N)+[0,1/N)d

u0(ξ) dξ,

or simply µN
0 {η(x)} = u0(x/N) if u0 is continuous. We also need to make further

assumptions about p . Let p∗n denote the nth convolution power of p . In terms
of the random walk specified by p , p∗n(x−y) is the probability that, after starting
at x and taking n steps, the walker is at y .
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Assumption 2. The probability vector p satisfies
∑

z p(z)‖z‖4 <∞ and is

irreducible in the sense that for each z ∈ Zd there is an n such that p∗n(z) > 0 .

Fix a final time T < ∞ and set QT = [0, T ] × Td . Let PN denote the
distribution of the process on the path space DΩN

= D([0, T ],ΩN) , with the initial
distribution µN

0 . DΩN
is the space of right-continuous functions from [0, T ] into

ΩN that have a left limit at each point. It is a Polish space under the so-called
Skorokhod topology. This is a standard setting for stochastic processes, developed
for example in [B] and [EK]. Similarly, DM = D([0, T ],M ) is the space of M -
valued paths where αN

•
takes its values. Set

ai,j =
∑

z∈Zd

p(z)zizj for 1 ≤ i, j ≤ d,

where z = (z1, . . . , zd) denotes a vector in Zd . Write ξ = (ξ1, . . . , ξd) for an
element of Td . Here is the first scaling limit:

Theorem 1. Assume Assumptions 1 and 2 . Then there is a jointly mea-

surable function u(t, ξ) on QT such that, as N → ∞ , αN
•

→ u( • , ξ)dξ in PN -

probability, in the topology of DM .

Furthermore, 0 ≤ u(t, ξ) ≤ ‖u0‖∞ , the measure u(t, ξ)dξ is continuous in t ,
and u(t, ξ) is the unique weak solution of

∂u

∂t
=

1

2

∑

i,j

ai,j
∂2

∂ξi∂ξj
(u2)

on Td with initial condition u(0, ξ) = u0(ξ) .

The porous medium equation as a special case. Let p be the step probability
of symmetric nearest-neighbor random walk: p(±ei) = 1/2d for i = 1, . . . , d ,
where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc. Then the limiting equation is
the porous medium equation ∂tu = (2d)−1∆(u2) . The constant (2d)−1 can be
scaled away by multiplying the generator by 2d , in other words, by letting the
clocks ring at rate 2d η(x) instead of η(x) .

1.2. The long-range stick process. To specify the long range of interaction
fix a parameter 0 < α < 1 and let

VN = {x ∈ Zd : |xi| ≤ Nα for all i}.

To avoid unnecessary technicalities we consider only the simplest step distribution:
The receiving site y is chosen from x+ VN uniformly at random, again observing
periodic boundary conditions. Otherwise the dynamics of the N th process follow
the description given above for the short-range model. To get a meaningful scaling
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limit we have to compensate for the increased range by decreasing the time speed-
up: Nβ with β = 2(1 − α) turns out to be the correct time scaling. Thus the
generator of the N th process of the long-range model is

(3) LNf(η) = Nβ
∑

x∈Z
d
N

∫ η(x)

0

1

|VN |
∑

y∈x+VN

[f(ηu,x,y) − f(η)] du,

with the same conventions as in (1) above. Define the empirical measure αN
t and

the distributions µN
0 and PN of the process as before. For this model we have

the following scaling limit:

Theorem 2. Assume Assumption 1 . Then the conclusion of Theorem 1
holds for the sequence of processes with generators (3) and initial distributions

µN
0 , and the limiting equation is

∂u

∂t
=

1

6
∆(u2).

Remark on hyperbolic scaling. Setting α = 1
2

gives β = 1, so in this case
the hydrodynamic limit comes by hyperbolic scaling: both space and time are
scaled by the factor N . This is potentially of interest for the following reason:
Suppose the step distribution p(z) has nonzero expectation. We expect such an
asymmetric version of the stick model to obey a nonlinear conservation law under
hyperbolic scaling, as is the case for the simple exclusion and zero-range processes
(see [R]). Assuming this happens, we can then superimpose on the asymmetric
dynamics the long-range dynamics described by the generator (3) with α = 1

2
and β = 1, and obtain a system that obeys a viscous conservation law. Though
not with the usual diffusive part of the linear heat equation, but instead with a
nonlinear diffusive part from the porous medium equation. This superposition
of short-range asymmetric and long-range symmetric stochastic dynamics would
furnish a method for manufacturing stochastic models for viscous conservation
laws. An alternative way is to combine the symmetric dynamics with a weakly
asymmetric part, as has been done in [DPS], [G], and [KOV].

1.3. The particle process. For the particle models we shall consider
only the short-range case. The setting is identical to that of the stick model
except for the changes brought about by the discretization of the state space. Fix
again N for the moment and a parameter κ

N
> 0, the particle size. Let η(x)

denote the height of the stack of particles at site x , hence an element of the set
{kκ

N
: k = 0, 1, 2, . . .} . The state space is

Ω
(κ

N
)

N = {kκN : k = 0, 1, 2, . . .}Zd
N .

The clock at site x rings at rate η(x) , and then the number k of particles to move
is picked uniformly at random from {1, 2, . . . , η(x)/κ

N
} . The generator becomes

(4) LNf(η) = N2
∑

x,y∈Z
d
N

pN (x, y) κ
N

η(x)/κ
N∑

k=1

[
f(ηkκ

N
,x,y) − f(η)

]
.
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Concerning the particle sizes and initial distributions we make the following as-
sumption:

Assumption 1 ′ . There is a number κ ≥ 0 such that κ
N

→ κ as N → ∞ .

The probability distributions µN
0 on Ω

(κ
N

)

N satisfy these conditions: The variables

η(x) , x ∈ Zd
N , are independent geometrically distributed κ

N
Z+ -valued random

variables under µN
0 , there is a constant K0 such that µN

0 {η(x)} ≤ K0 for all

N and for all x ∈ Zd
N , and the expectations are chosen so that, as N → ∞ ,

αN
0 → u0(ξ) dξ in µN

0 -probability, in the topology of M .

More precisely, the initial probabilities of individual stack heights are given
by

µN
0 {η : η(x) = kκ

N
} =

κ
N

(
µN

0 {η(x)}
)k

(
κ

N
+ µN

0 {η(x)}
)k+1

for x ∈ Zd
N and k ≥ 0.

Though the state space of the particle process changes with N , the empirical
measure αN

t is M -valued for each N , so it makes again sense to ask about the
convergence of the random M -valued path αN

•
.

Theorem 3. Assume Assumptions 1′ and 2 . Then the statement of Theo-

rem 1 holds for the particle processes with generators (4) and initial distributions

µN
0 , with the limiting equation

(5)
∂u

∂t
=

1

2

∑

i,j

ai,j
∂2

∂ξi∂ξj
(κu+ u2).

In particular, in the case κ = 0 we get the same equation as in Theorem 1 .

1.4. Earlier related work. Let us first point out that the hydrodynamic
limit of the zero-range process does not yield a degenerate equation, at least un-
der the assumptions employed in [DP]. The diffusion constant of the macroscopic
equation is given by D(u) = z′(u) where z denotes fugacity (see Theorem 3.2.1
in [DP]). A computation shows that z′(u) > 0 for all u ≥ 0, and in particular
z′(0) = c(1) which is positive by assumption.

As far as we know, the earliest constructions of stochastic models for the
porous medium equation are by M. Inoue with an approach completely different
from ours. He applied difference schemes to construct diffusion processes whose
probability densities are solutions to the porous medium equation [I1] and particle
systems converging to solutions of the equation [I2].

The hydrodynamics of the basic stick model with symmetric nearest-neighbor
exchanges was studied by Y. Suzuki and K. Uchiyama [SU]. In their approach
this model is embedded in a family of not necessarily attractive processes. Hence
they do not make use of attractiveness and are led to arguments different from
ours. Both approaches have their advantages: The result in [SU] allows for more
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general initial distributions than our Theorem 1, subject to the restriction that this
initial distribution be absolutely continuous with respect to an i.i.d. exponential
distribution on the sticks. In other words, the initial stick heights must all be
strictly positive almost surely. Our Theorem 1 does not have this restriction. The
equality µN

0 {η(x)} = 0 is permitted, so the stochastic model may start with some
sites initially empty. This follows naturally from attractiveness, as the reader will
see in Section 3.6.

It is also believed that the porous medium equation is connected with lattice
gas dynamics at critical temperature, see Section II.3.3 in [Sp]. Rigorous results
in this direction have been obtained in [LOP], where the actual model studied is
a symmetric exclusion process with a weak asymmetry that involves interactions
over a microscopically long range. In the critical case the density profile f obeys
the macroscopic equation ∂tf = ∂ξ

[(
1
2
− 2f(1− f)

)
∂ξf

]
provided that the initial

profile f0 satisfies either 0 ≤ f0 <
1
2 or 1

2 < f0 ≤ 1. If we now set f = 1
2 − u or

f = 1
2

+ u , depending on the case, then u satisfies the porous medium equation.
For results about deterministic particles whose empirical density obeys the

porous medium equation in an infinite particle limit, see [O], [U], and their refer-
ences.

The equation (5) with κ > 0 also governs the densities of certain exclusion
processes with speed change. This example is one of a class treated by T. Fu-
naki, K. Handa, and K. Uchiyama [FHU], also presented in Section II.3.2 of [Sp].
Consider the configuration space {0, 1}N and the generator

LNf(η) = N2
N−1∑

x=0

c(x, x+ 1, η) [f(ηx,x+1) − f(η)]

with exchange rates

c(x, x+ 1, η) =
(
η(x) − η(x+ 1)

)2[
1 + α

(
η(x− 1) + η(x+ 2)

)]
,

where α is a constant satisfying 1 + 2α > 0, ηx,x+1 is the configuration got
from η by interchanging η(x) and η(x+ 1), and x+ 1 is taken modulo N . The
macroscopic equation for the empirical density of this process is ∂tu = ∂2

ξ (u+αu2)

on the unit circle. Taking α > 0 and multiplying the generator by α−1 then gives
(5) with κ = α−1 .

1.5. The proofs at a glance. Here is a sketch of the proof of Theorem 1.
Writing

Aφ =
∑

1≤i,j≤d

ai,j∂ξi
∂ξj

φ

for a smooth test function φ , the usual martingale arguments show that the equal-
ity

(6) αN
t (φ) − αN

0 (φ) =

∫ t

0

1

4
N−d

∑

x∈Z
d
N

Aφ
( x
N

)
η2

s(x) ds
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holds approximately, with high probability. In a cube x + ΛNε of intermediate
scale ε , N−1 ≪ ε≪ 1, the sticks are almost in equilibrium. They behave approx-
imately as i.i.d. exponential random variables with expectation given by the local
empirical mean

1

|ΛNε|
∑

y∈x+ΛNε

ηt(y).

Since Aφ is nearly constant across ΛNε , this turns (6) into

αN
t (φ) − αN

0 (φ) =

∫ t

0

1

2
N−d

∑

x∈Z
d
N

Aφ
( x
N

)(
1

|ΛNε|
∑

y∈x+ΛNε

ηs(y)

)2

ds,

and upon introducing χε,ξ , the characteristic function of the cube ξ + [0, ε)d in
Td normalized by the volume εd , we have that

αN
t (φ) − αN

0 (φ) =
1

2

∫ t

0

∫

Td

Aφ(ξ)
[
αN

s (χε,ξ)
]2
dξ ds,

again approximately and with high probability. In the limit N → ∞ , αN
t has

a density u(t, ξ) , and after also letting ε ց 0 we recover the weak form of the
differential equation:

∫

Td

u(t, ξ)φ(ξ) dξ −
∫

Td

u0(ξ)φ(ξ) dξ =
1

2

∫ t

0

∫

Td

Aφ(ξ) u2(s, ξ) dξ ds.

To prove the local equilibrium we use the method of entropy estimates devel-
oped by Guo, Papanicolau and Varadhan [GPV]. However, since the equilibrium
distribution is exponential, an entropy estimate alone cannot control higher mo-
ments. That is, if ν is an exponential distribution and µ some other probabil-
ity measure on [0,∞) , an entropy bound H(µ | ν) ≤ C does not guarantee that∫
s1+ε µ(ds) <∞ . To control moments we use a priori bounds that come from the

attractiveness of the stochastic process. The degeneracy presents another source
of trouble for the entropy estimate: Suppose the initial density u0 equals zero on
a set with nonempty interior. Then there will be sites at which the initial distri-
bution is a unit mass at zero. But δ0 is not absolutely continuous with respect
to a nondegenerate exponential distribution, and we would have infinite entropy.
Thus we prove Theorem 1 in two parts: We first assume that u0 is bounded away
from zero, and remove this assumption only at the very end.

The proof of Theorem 2 for the long-range model does not introduce anything
conceptually new, but some estimates need different proofs for the two cases. The
proof of Theorem 3 proceeds along similar lines, and in Section 4 we briefly touch
on those aspects of its proof that differ from the earlier arguments.

Acknowledgements. We gratefully acknowledge valuable advice from D. Aron-
son and from S.R.S. Varadhan, especially for suggesting the argument utilized in
Section 3.6. The second author also thanks the IMA at the University of Minnesota
and the Institut Mittag-Leffler for their hospitality.
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2. The stochastic processes

2.1. The stick process. We now take a closer look at the properties of
the Markov processes and begin with a concrete construction of the stick pro-
cess simultaneously for all initial states η on a single probability space. Such a
construction is called a coupling in the probability literature. Fix N and the dis-
tribution p . The time scale factor plays no role here, so we leave out N2 and Nβ

from (1) and (3), respectively, and then (3) becomes a special case of (1).
The probability space is constructed by first giving each site x ∈ Zd

N an
independent copy A x of a Poisson point process on the positive quadrant {(t, b) :
t ≥ 0, b ≥ 0} of the plane, with Lebesgue measure as the intensity measure. (Think
of the coordinate t as time and b as the height of the stick at x .) Next, for each
point (t, b) ∈ A x , pick a site y = yx

(t,b) with probability pN (x, y) independently
of everything else. These are the random choices needed.

Given an initial state η , the process ηt is defined as a D
(
[0,∞),ΩN

)
-valued

function of η and the random variables {A x} , {yx
(t,b)} . The distribution P η

of the process starting at η is then the probability measure on D
(
[0,∞),ΩN

)

induced by this function. Let

Tx = inf
{
t : (t, b) ∈ A

x, b ≤ η(x)
}

be the first time t that a point of A x is contained in the rectangle [0, t]× [0, η(x)] .
Take this to mean that the clock rang at x . Tx is exponentially distributed with
rate η(x) by the definition of a Poisson point process. Let x be the site whose
clock rang first and (t, b) ∈ A x the point that triggered the event. Let y = yx

(t,b)
be the receiving site chosen for this point. Declare ηs = η for 0 ≤ s < t , and the
new state ηt at time t is obtained by setting ηt(x) = b , ηt(y) = η(y) + η(x) − b ,
and by leaving the other sticks intact. Now start over again with ηt the current
state and consider the point processes on [t,∞)× [0,∞) . Note that a.s. there is no
other point with the same t -coordinate. Note also that, conditioned on b ≤ η(x) ,
b is uniformly distributed on [0, η(x)] , and hence the piece we broke off η(x) was
uniformly distributed. Each point process has only finitely many points in each
rectangle [0, t] ×

[
0,

∑
x η(x)

]
, so to determine the state at time t a new state

needs to be computed only finitely many times. Thus this construction defines the
process for all times 0 ≤ t < ∞ . It is also not hard to derive the generator from
this description and arrive at (1) without the N2 time scale factor.

With this coupling, proof of attractiveness reduces to a mere observation, and
the reader who already made this observation is invited to skip the next proof.
Given η and ζ in ΩN , let ηt and ζt denote the processes with initial conditions
η and ζ , respectively, constructed as above as functions on the probability space
of the point processes {A x} and the receiving sites {yx

(t,b)} . Let P η,ζ be the

probability measure on D
(
[0,∞),ΩN × ΩN

)
induced by the function (ηt, ζt) .

P η,ζ is the distribution of the joint process (ηt, ζt) starting at (η, ζ) .

Lemma 2.1. Assume η ≤ ζ (pointwise for all x). Then the joint process

constructed above satisfies P η,ζ{ηt ≤ ζt} = 1 for all t ≥ 0 .
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Proof. Pick and fix a realization of {A x} and {yx
(t,b)} . We shall argue that

ηt ≤ ζt , while true for t = 0 by assumption, continues to hold for all t > 0. It is
true for 0 ≤ t < ε for some ε > 0 because there is a strictly positive time before
the process jumps. Assume it is true for all times 0 ≤ t < s , and a clock rings
at x at time s . By assumption, ηs− ≤ ζs− , so if (s, b) is the point that triggered
the event, either b ≤ ηs−(x) ≤ ζs−(x) or ηs−(x) < b ≤ ζs−(x) . In the first case
ηs(x) = ζs(x) = b and ηs(y) = ηs−(y) + ηs−(x) − b ≤ ζs−(y) + ζs−(x) − b = ζs(y) ,
where y = yx

(t,b) is the receiving site; and similarly the inequality is preserved in
the second case. Thus ηt ≤ ζt holds for 0 ≤ t < s + ε where ε > 0 is the time
to the next jump after s . Again because only finitely many jumps take place in a
finite time interval, ηt ≤ ζt holds for all t and for each realization of {A x} and
{yx

(t,b)} , hence in particular with probability 1.

Next we characterize the invariant measures of the stick process and prove
that these measures are reversible for the dynamics. The total length

∑
x η(x) is

obviously conserved under the dynamics, hence it is natural to study the process
on the hyperplanes

ΩN,λ =

{
η ∈ ΩN :

∑

x

η(x) = λ

}

for λ ≥ 0. Each ΩN,λ supports a probability measure mλ that could be heuris-
tically described as ‘the conditional distribution of Lebesgue measure, given that∑

x η(x) = λ ’. Precisely speaking, we define the integral of a bounded Borel
function g on ΩN against mλ , for λ > 0, by

mλ(g) =
(Nd − 1)!

λNd−1

∫ λ

0

dη(x1)

∫ λ−η(x1)

0

dη(x2) · · ·
∫ λ−

∑
Nd

−2

i=1
η(xi)

0

dη(xNd−1)

× g

(
η(x1), η(x2), . . . , η(xNd−1), λ−

Nd−1∑

i=1

η(xi)

)
.

Here {x1, x2, . . . , xNd} is an arbitrary ordering of the sites in Zd
N . In the course of

the proof of the next lemma we show that the process is ergodic on each hyperplane
ΩN,λ and mλ is the unique invariant measure on ΩN,λ .

Lemma 2.2. A probability measure µ on ΩN is invariant for the process

if and only if it is a mixture of the mλ ’s. Furthermore, each such mixture is

reversible for the process.

Before proving Lemma 2.2, we wish to point out that i.i.d. exponential distri-
butions are mixtures of mλ ’s. Let

(7) γr(dw) = I{w>0}
1

r
e−w/rdw

denote the exponential distribution with expectation r . Then

γ
⊗Z

d
N

r (dη) =
r−Nd

(Nd − 1)!

∫ ∞

0

mλ(dη)λNd−1e−λ/r dλ.
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The mixing measure is the law of
∑

x η(x) under γ
⊗Z

d
N

r , namely a gamma dis-
tribution with parameters 1/r and Nd . Furthermore, if λ/Nd → r as N → ∞ ,

then mλ converges weakly to γ⊗Z
d

r . This suggests that as we proceed towards
the scaling limit, the only relevant equilibria are the i.i.d. exponentials and their
mixtures. This becomes clear in the course of the proof: see Proposition 3.7 where
the local equilibrium is established.

Now for the proof of Lemma 2.2. First we show that on ΩN,λ any two initial
states eventually couple.

Lemma 2.3. Suppose η, ζ ∈ ΩN,λ . Then the joint process (ηt, ζt) can be

defined so that P η,ζ{ηt = ζt for all large enough t} = 1 .

Proof. We ask the reader to consider another equivalent way of constructing
the process: Instead of giving each site an individual clock, we take only one clock
whose rate is the sum of the stick lengths. When it rings, we pick the site x
that gives off a piece with probability proportional to its stick length, and then
proceed as before. Except that to couple two processes, the clock needs to ring at
a rate λt =

∑
x ηt(x) , where ηt(x) = ηt(x) ∨ ζt(x) . If the clock rings at time t ,

pick a site x with probability ηt−(x)/λt− , pick a random quantity B uniformly
distributed on [0, ηt−(x)] , and pick a site y with probability pN (x, y) . The new
state is defined by letting ηt(x) = ηt−(x)∧B and ηt(y) = ηt−(y)+[ηt−(x)−ηt(x)] ,
and similarly for ζt . Then ηt and λt are updated appropriately. In other words,
the taller one of ηt−(x) and ζt−(x) gives off a piece to the site y , and the shorter
may or may not, depending on whether it is above or below the cutoff height B .
We leave it to the reader to verify that the marginals of this joint process on the η
and ζ coordinates are indeed again processes with generator (1), without the N2 .
It is obvious that, if ηt = ζt for some time t , then ηt = ζt for all later times t too.
Note that earlier we denoted by U the piece of stick that was moved and now by
B the piece that remains.

The argument that ηt and ζt eventually couple proceeds as follows. Fix
a sequence x0, x1, x2, . . . , xs = x0 of sites such that every site appears at least
once and pN (xi, xi+1) > 0 for each i . Let γ = λ/4s2 . Rotate the labels of the
x0, . . . , xs so that η(x0) ≥ 4sγ . Such a site x0 must exist since

∑
x η(x) = λ .

Let Ei be the following event: When the ith clock rings, x = xi−1 , y = xi and
B ∈ [γ, 2γ] . (We continue to use x to denote the site that gives off a piece and
y to denote the receiving site.) Consider what happens to η on the intersection
E1 ∩ · · · ∩Es : For i = 1, . . . , s , as the ith clock rings, the stick at xi−1 is cut and
the piece is passed on to xi . At the ith ring site xi receives a piece of length at
least (4s − 2i)γ , hence the stick left at xi after the (i + 1)st ring has length at
least γ . Finally, after s rings, all sticks for η have length at least γ .

While we went through this cycle, somewhere a ζ -stick of length at least 4sγ
was cut. The piece was passed along, and each time it lost at most 2γ of its
length, hence after the s first rings, the ζ -stick at x0 has length at least 2sγ .
Now repeat the cycle, replacing γ with 1

2γ . In other words, let Es+j be the
event: When the (s + j)th clock rings, x = xj−1 , y = xj and B ∈ [ 1

2
γ, γ] . Let
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E = E1 ∩ · · · ∩ Es ∩ Es+1 ∩ · · · ∩ E2s . The point to notice is that after 2s rings
η = ζ on the event E . This is because the second round equalizes the η - and
ζ -sticks at each site in turn. Before the (s+ j + 1)st ring, both sticks at xj have
length at least γ , and after the (s + j + 1)st ring they have a common length
B ∈ [ 12γ, γ] , for j = 0, . . . , s− 1; the (2s)th ring puts the remaining total length
to the site x0 .

Let the superscript (i) denote a value after the (i− 1)st but before the ith
ring. At each ring 1 ≤ i ≤ s , assuming that E1 ∩ · · · ∩ Ei−1 occurred, the
probability of choosing x = xi−1 , y = xi , and B ∈ [γ, 2γ] equals

(8)
η(i)(xi−1)

λ
(i)

· pN (xi−1, xi) · γ

η(i)(xi−1)
≥ γ

2λ
· pN (xi−1, xi).

Note that B ∈ [γ, 2γ] has probability γ/η(i)(xi−1) at the ith ring due to the
conditioning on E1 ∩ · · · ∩Ei−1 because then η(i)(xi−1) ≥

(
4s− 2(i− 1)

)
γ ≥ 2γ .

Bound (8) works for s + 1 ≤ i ≤ 2s upon replacing γ by 1
2γ . Thus there is a

number ε0 > 0 such that, conditioned on E1 ∩ · · · ∩ Ei−1 and the ith ring, Ei

occurs with at least probability ε0 .

Now we include the clocks. Fix R > 0, and let Gi be the event: The clock
rings exactly once in the time interval

[
(i−1)R, iR

)
and when it rings Ei happens.

Let Ti denote an exponential clock with rate λ
(i)

. Conditioned on G1∩· · ·∩Gi−1 ,
the probability of Gi equals

∫ R

0

P η(i),ζ(i)(
Ei ∩ {Ti+1 ≥ R− t}

)
P η(i),ζ(i)

(Ti ∈ dt)

≥
∫ R

0

ε0 exp
[
−λ(i+1)

(R − t)
]
λ

(i)
exp

[
−λ(i)

t
]
dt ≥ ε1

for a constant ε1 > 0, uniformly over 1 ≤ i ≤ s , η(i) , and ζ(i) , because λ ≤
λ

(i) ≤ 2λ holds for all i . Gi is measurable with respect to the process on the time
interval

[
(i− 1)R, iR

)
, so the Markov property gives, with T = 2sR ,

P η,ζ{ηt = ζt for t ≥ T} ≥ P η,ζ(G1 ∩ · · · ∩G2s) ≥ ε2s
1 ≡ ε2.

This bound holds uniformly over all starting states (η, ζ) ∈ ΩN,λ × ΩN,λ ,
hence again by the Markov property

P η,ζ{ηkT 6= ζkT } ≤ (1 − ε2)P
η,ζ{η(k−1)T 6= ζ(k−1)T} ≤ · · · ≤ (1 − ε2)

k.

An application of the Borel–Cantelli lemma completes the proof.
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Proof of Lemma 2.2. We start by verifying the formula

(9) mλ

{∫ η(x)

0

h(u, ηu,x,y) du

}
= mλ

{∫ η(y)

0

h(u, η) du

}
,

valid for bounded Borel functions h on R×ΩN and all sites x and y , with ηu,x,y

defined by (2). The left-hand side equals

∫ λ

0

dη(x)

∫ λ−η(x)

0

dη(y) · · ·
∫ η(x)

0

du h(u, ηu,x,y)

=

∫ λ

0

du

∫ λ−u

0

dη(y)

∫ λ−η(y)

u

dη(x) · · ·h(u, ηu,x,y)

where we changed the integration order and ‘ · · ·’ denotes the integrals over all the
other sticks except η(x) and η(y) . Now do the change of variable

{
ω(x) = η(x) − u,
ω(y) = η(y) + u

and again change integration order. This yields the right-hand side of (9). To
prove that mλ is reversible, we need to show that

(10) mλ(f LNg) = mλ(gLNf).

The left-hand side equals

∑

x,y

pN (x, y)mλ

{∫ η(x)

0

f(η)g(ηu,x,y) du

}
−

∑

x,y

pN (x, y)mλ

{∫ η(x)

0

f(η)g(η) du

}
.

Consider a term in the first sum for fixed x and y . Define

h(u, η) = f(ηu,y,x)g(η) I{η(y)≥u}.

Then the integrand equals h(u, ηu,x,y) , and applying (9) shows that the first sum
equals

∑

x,y

pN (x, y)mλ

{∫ η(y)

0

f(ηu,y,x)g(η) du

}

which in turn equals

∑

x,y

pN (x, y)mλ

{∫ η(x)

0

f(ηu,x,y)g(η) du

}

by the symmetry of pN . The equation (10) follows. We have proved that the
mλ ’s, and consequently their mixtures too, are reversible invariant measures for
the dynamics.
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Let now µ be an arbitrary invariant probability measure for the process on
ΩN,λ and f a bounded Borel function on ΩN,λ . By the invariance,

|mλ(f) − µ(f)| =
∣∣∣
∫
Eη,ζ{f(ηt) − f(ζt)}mλ(dη)µ(dζ)

∣∣∣

≤ 2‖f‖
∫
P η,ζ{ηt 6= ζt}mλ(dη)µ(dζ) −→ 0

as t→ ∞ , by Lemma 2.3. Thus µ = mλ .
Finally, let µ be an invariant probability measure on ΩN . Let ν be the

distribution of
∑

x η(x) under µ , and µλ its conditional distribution on ΩN,λ .
To show that µ =

∫
mλ ν(dλ) , it suffices to show, by the previous paragraph, that

ν -almost every µλ is invariant. Let f be a function on ΩN and g a function on
[0,∞) . In the next calculation use the definitions of ν and µλ , the invariance of
µ and the fact that

∑
x η(x) is conserved:

ν{µλ(f) g(λ)} = µ

{
f(η) g

(∑

x

η(x)

)}
= µ

{
Eη

[
f(ηt)g

(∑

x

ηt(x)

)]}

= µ

{
Eηf(ηt) g

(∑

x

η(x)

)}
= ν

{
µλ

(
Eηf(ηt)

)
g(λ)

}
.

Thus µλ(f) = µλ

(
Eηf(ηt)

)
for ν -a.e. λ , and letting f vary over a countable

collection of functions that separates measures shows that almost every µλ is
invariant. This shows that µ is a mixture of mλ ’s and completes the proof of
Lemma 2.2.

2.2. The particle process. This analysis is considerably easier for the
particle models whose state spaces are countable, and we simply record the facts,
leaving the details to the reader. The particle processes are attractive. The in-
variant hyperplanes

ΩN,ℓ =

{
η ∈ Ω

(κ
N

)

N :
∑

x

η(x) = ℓκ
N

}

for integral ℓ are finite sets, and the unique invariant measure on ΩN,ℓ is the
uniform distribution mℓ that gives equal probability to each configuration. The
formula corresponding to (10) now reads

(11) mℓ

{η(x)/κ
N∑

k=1

h(kκ
N
, ηkκ

N
,x,y)

}
= mℓ

{η(y)/κ
N∑

k=1

h(kκ
N
, η)

}
.

The asymptotic analysis as N → ∞ will be slightly different for the cases κ = 0
and κ > 0. The former case returns to the stick model with the relevant equilibria
given by i.i.d. exponential distributions. For the latter case the equilibria will be
i.i.d. geometric distributions.
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3. Proofs of Theorems 1 and 2

Throughout this section, for each N at a time, the process ηt denotes either
the short-range or the long-range stick process with generator (1) or (3), respec-
tively, initial distribution µN

0 on ΩN and distribution PN on the path space DΩN
.

The distribution of the process on ΩN at time t is denoted by µN
t . The proofs of

Theorems 1 and 2 are carried out simultaneously with unified notation, and with
separate arguments furnished only when necessary. We first treat the case where
u0 is bounded away from zero:

Assumption 3. For some constant ε0 > 0 and all ξ ∈ Td , N ∈ N , and

x ∈ Zd
N , u0(ξ) ≥ ε0 and µN

0 {η(x)} ≥ ε0 .

Here is an outline of the proof:

3.1. Preliminaries. The topology of M . The a priori estimate. The martin-
gales governing the evolution of αN

t .

3.2. The distributions of αN
•

. The distributions of αN
•

are tight in DM ,
and every limit point P is supported by elements ω• ∈ C([0, T ],M ) such that
P(dω) ⊗ dt -almost every ωt has a density with respect to Lebesgue measure.
These are consequences of the a priori estimate alone.

3.3. The local equilibrium. We introduce an intermediate scale ε so that
N−1 ≪ ε ≪ 1 and prove that in a cube of size Nε the sticks behave almost
like i.i.d. exponential random variables. The entropy bound needed for this step
utilizes Assumption 3.

3.4. Further technicalities. The final steps needed for proving that weak
limits of the distributions of αN

•
are supported by weak solutions of the differential

equation.

3.5. Uniqueness. The weak convergence is upgraded to convergence in prob-
ability by showing that a solution to the differential equation is unique. This step
is independent of Assumption 3.

3.6. Removing Assumption 3. We let ε0 ց 0 in Assumption 3 and argue that
in the limit we recover Theorems 1 and 2 as stated.

3.1. Preliminaries. Let {φk} be a countable set of smooth functions on
Td such that φ1 ≡ 1, ‖φk‖∞ ≤ 1 for all k and the span of {φk} is dense in the
space C(Td) . Then the C(Td)-topology of M can be metrized by

(12) r(µ, ν) =

∞∑

k=1

2−k−1|µ(φk) − ν(φk)|.

Lemma 3.1. (M , r) is a complete separable metric space.

Proof. Let {µn} be a Cauchy sequence in the metric r . The sequence
{µn(φ1)} is Cauchy, hence converges. If limn→∞ µn(φ1) = 0, then µn → 0 in
the metric r . So suppose limn→∞ µn(φ1) = a > 0. An easy computation shows
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that the sequence {µ̃n} , µ̃n = µn/µn(φ1) , is also Cauchy in the metric r . The
measures µ̃n are elements of the space M1 of probability measures, which is
known to be compact since Td is compact (see [B] or [EK]). Thus r is complete
as a metric on M1 , and we have a measure µ̃ ∈ M1 such that µ̃n → µ̃ in the
r -metric. It follows that µn → aµ̃ in the r -metric.

Next we turn to the a priori estimates that give bounds over the moments of
the sticks, uniformly over t and N .

Lemma 3.2. Under Assumption 1 , there are constants Ck < ∞ such that

EN{ηk
t (x)} ≤ Ck for all t , N , and k .

First we show that products of exponential distributions dominate each other
stochastically if the sitewise expectations dominate each other (see Section II.2
in [L] for the definitions). We continue the convention of letting (η, ζ) denote an
element of ΩN × ΩN . Recall (7) for the definition of γr .

Lemma 3.3. Suppose µ =
⊗

x∈Z
d
N

γr(x) and ν =
⊗

x∈Z
d
N

γs(x) are two

products of exponential distributions on ΩN . If r(x) ≤ s(x) for all x , then there

exists a probability measure Q on ΩN ×ΩN such that Q{(η, ζ) : η ≤ ζ} = 1 , the

η -marginal of Q is µ , and the ζ -marginal of Q is ν .

Proof. For each x , define the distribution Qx of the pair
(
η(x), ζ(x)

)
so that

ζ(x) is distributed according to γs(x) and η(x) =
(
r(x)/s(x)

)
ζ(x) almost surely.

Take Q = ⊗x∈Z
d
N
Qx .

Proof of Lemma 3.2. Set ν =
⊗

x∈Z
d
N

γK0
where K0 is the constant appearing

in Assumption 1. Let Q be the measure given by Lemma 3.3 with marginals µN
0

and ν and supported by the set {(η, ζ) : η ≤ ζ} . For each such pair (η, ζ) ,
construct the process P η,ζ as in Lemma 2.1, and define a joint process PQ with
initial distribution Q by

EQ{f(η•, ζ•)} =

∫∫
Eη,ζ{f(η•, ζ•)}Q(dη, dζ).

Let Qt be the distribution of the joint process at time t , similarly µN
t and νt for

the processes started with µN
0 and ν , respectively. Then

Qt{η ≤ ζ} =

∫∫
P η,ζ{ηt ≤ ζt}Q(dη, dζ) = 1

by Lemma 2.1. The marginals of Qt are µN
t and νt by construction, and νt = ν

because ν is invariant by Lemma 2.2 and the remark following it. Again by
Theorem 2.4 on p. 74 in [L],

µN
t {ηk(x)} ≤ ν{ηk(x)} = Kk

0k! ≡ Ck.
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For the remainder of this subsection fix a smooth test function φ on Td . We
look for two processes z1(t) = zN,φ

1 (t) and z2(t) = zN,φ
2 (t) such that the processes

Mt = MN,φ
t = αN

t (φ) − αN
0 (φ) −

∫ t

0

z1(s) ds

and

Vt = V N,φ
t = M2

t −
∫ t

0

z2(s) ds

are martingales. It is well-known, and not hard to verify, that these are given
by z1(t) = LNf(ηt) and z2(t) = LN (f2)(ηt) −2f(ηt)LNf(ηt) , where f(η) =
N−d

∑
x∈Z

d
N

φ(x/N)η(x) . We start with the short-range model, so let LN be

given by (1). Thinking of φ as a periodic function on Rd , using the symmetry of
p and by Taylor expanding, we may write
(13)

z1(t) = N2−d
∑

x∈Z
d
N

∑

z∈Zd

p(z)
1

2
η2

t (x)
{
φ
(x+ z

N

)
− φ

( x
N

)}

=
1

4
N−d

∑

x∈Z
d
N

η2
t (x)

∑

z∈Zd

p(z)N2
{
φ
(x+ z

N

)
+ φ

(x− z

N

)
− 2φ

( x
N

)}

=
1

4
N−d

∑

x∈Z
d
N

η2
t (x)

∑

z∈Zd

p(z)

{ ∑

1≤i,j≤d

∂ξi
∂ξj

φ
( x
N

)
zizj +O(N−1‖z‖3)

}

=
1

4
N−d

∑

x∈Z
d
N

η2
t (x)Aφ

( x
N

)
+O(N−1) · σ3

1

4
N−d

∑

x∈Z
d
N

η2
t (x),

where
Aφ =

∑

1≤i,j≤d

ai,j∂ξi
∂ξj

φ

with ai,j =
∑

z∈Zd p(z)zizj , and σ3 =
∑

z∈Zd p(z)‖z‖3 , a finite constant by As-
sumption 2. The constant hidden in the error term O(N−1) depends on the size
of the third derivatives of φ . In particular, this estimate holds uniformly in t .
Unraveling the definition of z2(t) gives, also uniformly in t ,

(14)

z2(t) = N−2d
∑

x∈Z
d
N

1

3
η3

t (x)
∑

z∈Zd

p(z)N2
{
φ
(x+ z

N

)
− φ

( x
N

)}2

= N−2d
∑

x∈Z
d
N

1

3
η3

t (x)
∑

z∈Zd

p(z)
{〈

∇φ
( x
N

)
, z

〉
+O(N−1‖z‖2)

}2

= O(N−d) · σ4N
−d

∑

x∈Z
d
N

η3
t (x),



Stochastic dynamics for the porous medium equation 327

where σ4 =
∑

z∈Zd p(z)‖z‖4 , another finite constant by Assumption 2. These
estimates and the a priori bound are basic for everything that follows.

For the long-range model, the same computations give

(15) z1(t) =
1

12
N−d

∑

x∈Z
d
N

η2
t (x)∆φ

( x
N

)
+O(N−α) · N−d

∑

x∈Z
d
N

η2
t (x)

and

(16) z2(t) = O(N−d) · N−d
∑

x∈Z
d
N

η3
t (x).

Let us declare c = 1
4 for the short-range model, c = 1

12 for the long-range model,
and A = ∆ for the long-range model. Then the leading part of z1(t) is given by

cN−d
∑

x∈Z
d
N

η2
t (x)Aφ

( x
N

)

for both models.

3.2. The distributions of αN
•

. The distributions of αN
•

are probability
measures PN on DM , defined by PN (B) = PN{αN

•
∈ B} for Borel subsets B

of DM . We write ω• for a generic element of DM .

Lemma 3.4. The sequence {PN} is tight.

Proof. By Theorem 15.3 in [B] it is enough to show (i) compact containment,
that for any ε > 0 there exists a compact K ⊂ M such that

(17) PN{αN
t ∈ K for all 0 ≤ t ≤ T} ≥ 1 − ε,

and (ii) that, given positive ε1 and ε2 , there exists a 0 < δ < 1 and N0 such that

(18) PN
{

sup
|s−t|≤δ

r(αN
t , α

N
s ) ≥ ε1

}
≤ ε2

for all N ≥ N0 . (Theorem 15.3 in [B] is stated only for real valued processes, but
it is not hard to see that its proof and the proof of Theorem 14.4 on which it is
based both apply to complete metrics on arbitrary Polish spaces.)

Compact containment is immediate from conservation of total stick length:
αN

t (Td) = N−d
∑

x ηt(x) = N−d
∑

x η0(x) PN -a.s., and so

PN
{

sup
0≤t≤T

αN
t (Td) ≥ B

}
≤ B−1N−d

∑

x

µN
0 {η(x)} ≤ C/B,
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where the last inequality comes from Assumption 1. The sets M B = {ν ∈ M :
ν(Td) ≤ B} are compact for B < ∞ and (17) follows by taking K = M B for
B > C/ε .

Next we show that

(19) lim sup
δց0

lim sup
N→∞

EN
{

sup
|s−t|≤δ

|αN
t (φ) − αN

s (φ)|2
}

= 0

for an arbitrary smooth function φ on Td . Then (18) follows by Markov’s in-
equality and the definition (12) of the metric r . From

αN
t (φ) − αN

s (φ) = Mt −Ms +

∫ t

s

z1(u) du

we see that the integrand in (19) is bounded above by

(20) sup
|s−t|≤δ

2(Mt −Ms)
2 + sup

|s−t|≤δ

2

(∫ t

s

z1(u) du

)2

.

Bound the first term by sup0≤t≤T 8M2
t , then apply Doob’s inequality, the def-

inition of the martingale Vt , the bound (14) on z2(u) , and finally the a priori
estimate Lemma 3.2:

(21) EN
{

sup
0≤t≤T

M2
t

}
≤ CEN{M2

T} = C EN

{∫ T

0

z2(u) du

}
≤ CTN−d.

(C denotes a constant whose value changes from line to line.) For the second term
in (20) apply Schwarz’s inequality and (13) to get

sup
|s−t|≤δ

(∫ t

s

z1(u) du

)2

≤ sup
0≤s≤t≤(s+δ)∧T

(t− s)

∫ t

s

z2
1(u) du ≤ δ

∫ T

0

z2
1(u) du

≤ CδN−d
∑

x

∫ T

0

η4
u(x) du.

Now integrate and use the a priori bound to bound the expectation by CTδ . This
together with (21) gives

EN
{

sup
|s−t|≤δ

|αN
t (φ) − αN

s (φ)|2
}
≤ CT (N−d + δ),

which implies (19). For the long-range model, just use (15)–(16) instead of (13)–
(14).

Secondly we establish some properties of the limit points of {PN} .
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Lemma 3.5. Let P be a limit point of {PN} . Then P is supported

by continuous paths, ωt ≪ dξ for P(dω•) ⊗ dt -a.e. measure ωt , and for all

1 ≤ p <∞ ,

(22) E

{∫ T

0

∫

Td

up(t, ξ) dξ dt

}
<∞,

where the P(dω•) ⊗ dt ⊗ dξ -a.e. defined derivative u(ω•, t, ξ) = (dωt/dξ)(ξ) is

jointly measurable in the variable (ω•, t, ξ) , and E denotes expectation under P .

Proof. Let ∆(ω•) = supt r(ωt, ωt−) be the maximal jump of a path ω• ∈ DM .
It is a continuous function in the Skorokhod topology, hence

E {∆(ω•)} ≤ lim sup
N→∞

EN{∆(αN
•

)}.

It is obvious that ∆(ω•) ≤ sup|s−t|≤δ r(ωs, ωt) for all δ > 0, hence (19) implies
that E {∆(ω•)} = 0. In other words, P -a.e. ω• is continuous.

For the second part, let φ ≥ 0 be a bounded continuous function on Td , and
p > 0 an integer.
∫ T

0

EN{αN
t (φ)p} dt = N−pd

∑

x1,...,xp

φ
(x1

N

)
· · ·φ

(xp

N

)∫ T

0

EN{ηt(x1) · · ·ηt(xp)} dt

≤ CTN−pd
∑

x1,...,xp

φ
(x1

N

)
· · ·φ

(xp

N

)
= CT

(
N−d

∑

x

φ
( x
N

))p

,

where the inequality comes from the a priori bound. Letting N → ∞ along a
suitable subsequence gives

1

T

∫ T

0

∫
ωt(φ)p

P(dω) dt ≤ C

(∫

Td

φ(ξ) dξ

)p

.

The proof is then completed by an application of the following lemma.

Lemma 3.6. Let X and Y be two Polish spaces, µ and κ probability

measures on X and Y , respectively, and let y 7→ νy be a measurable map from

Y into the space of finite real-valued Borel measures on X , topologized weakly by

bounded continuous functions on X . Suppose that for some constants 1 < p <∞
and C <∞ and all bounded continuous f ≥ 0 on X ,

(23)

∫

Y

νy(f)p κ(dy) ≤ Cµ(f)p.

Then νy ≪ µ for κ-a.e. y , the derivative ϕy(x) = (dνy/dµ)(x) is jointly measur-

able in (x, y) and satisfies

(24)

∫

Y

µ{(ϕy)p}κ(dy) ≤ C.

Remark. To complete the proof of Lemma 3.5, take X = Td , Y = DM ×
[0, T ] , µ = dξ , κ = P ⊗ T−1 dt , and νy = ωt for y = (ω•, t) .
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Proof. We give a probabilistic proof, based on constructing a Radon–Nikodym
derivative from the martingale convergence theorem. Since (23) is preserved under
bounded pointwise convergence, it holds for all bounded Borel functions f ≥ 0
on X . Let {Bk} be an increasing sequence of finite partitions that generate BX ,
the Borel field of X . By taking f = IA for A ∈

⋃
k Bk in (23) we see that νy ≪ µ

on each Bk , outside a single κ-null set of y ’s. Set

ϕk(x, y) =
∑

A:A∈Bk

µ(A)>0

IA(x)
νy(A)

µ(A)
.

Then ϕy
k = (dνy/dµ)|Bk

and also ϕk = (dν/dµ⊗ κ)|Bk⊗BY
, where the measure ν

on X × Y is defined by ν(dx, dy) = νy(dx) κ(dy) and BY is the Borel field of Y .
Under the measure µ ⊗ κ , ϕk is a nonnegative martingale with respect to the
filtration {Bk ⊗BY } , hence there is a µ⊗κ-a.s. limit ϕ(x, y) = limk→∞ ϕk(x, y).

If {ϕk} were uniformly µ ⊗ κ-integrable, then ϕk → ϕ would also hold in
L 1 (µ⊗ κ) , and consequently, for any m and A ∈ Bm ⊗ BY ,

ν(A) = lim
k→∞

∫

A

ϕk dµ⊗ κ =

∫

A

ϕdµ⊗ κ.

The filtration {Bk⊗BY } generates BX⊗BY , which in turn equals BX×Y by the
second countability of the topologies, hence the above implies that ϕ = dν/dµ⊗ κ .
In particular, since ν and µ ⊗ κ have a common Y -marginal, ϕy = dνy/dµ and
νy ≪ µ for κ-a.e. y .

It remains to prove the uniform integrability of {ϕk} and (24). For both it
suffices to show that µ⊗ κ(ϕp

k) ≤ C for all k .

µ⊗ κ(ϕp
k) = ν(ϕp−1

k ) =
∑

A:A∈Bk

µ(A)>0

∫∫
IA(x)

νy(A)p−1

µ(A)p−1
ν(dx, dy)

=
∑

A:A∈Bk

µ(A)>0

1

µ(A)p−1

∫
νy(A)p κ(dy) ≤ C

∑

A∈Bk

µ(A) = C.

3.3. The local equilibrium. Now fix a smooth function φ on Td . We
start by showing that, for any δ > 0,
(25)

lim
N→∞

PN

{
sup

0≤t≤T

∣∣∣ αN
t (φ) − αN

0 (φ) −
∫ t

0

cN−d
∑

x∈Z
d
N

η2
s(x)Aφ

( x
N

)
ds

∣∣∣≥ δ

}
= 0.

Using estimates (13) and (15) (for the short-range and long-range models, respec-
tively) the expression in | | ’s can be bounded by

sup
0≤t≤T

(
|Mt|+CN−1

∫ t

0

N−d
∑

x

η2
s(x) ds

)
≤ sup

0≤t≤T
|Mt|+CN−1

∫ T

0

N−d
∑

x

η2
s(x) ds
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for a constant C that depends on φ alone. The expectation of this quantity is
bounded by

EN
{

sup
0≤t≤T

M2
t

}1/2

+O(N−1),

which vanishes as N → ∞ as was shown in (21) above. This establishes (25).

Let ΛNε = {z ∈ Zd : 0 ≤ zi < Nε for i = 1, . . . , d} for ε > 0. Next we turn
(25) into

(26)

lim
ε→0

lim sup
N→∞

PN

{
sup

0≤t≤T

∣∣∣ αN
t (φ) − αN

0 (φ) −
∫ t

0

cN−d
∑

x∈Z
d
N

Aφ
( x
N

)

×
(

1

|ΛNε|
∑

y∈x+ΛNε

η2
s(y)

)
ds

∣∣∣≥ δ

}
= 0.

Of course, y ∈ x+ ΛNε is again interpreted with periodic boundary conditions of
Zd

N in mind. To prove (26), notice first that by changing the order of summation

N−d
∑

x

Aφ
( x
N

)(
1

|ΛNε|
∑

y∈x+ΛNε

η2
s(y)

)
= N−d

∑

x

η2
s(x)Aφ

( x
N

)

+O
(

sup
‖ξ−ξ′‖≤

√
dε

|Aφ(ξ) −Aφ(ξ′)|
)
· N−d

∑

x

η2
s(x).

By the a priori bound the expectation of the error term vanishes as ε → 0,
uniformly in N and t , so (26) follows from (25).

The next proposition establishes a weak form of local equilibrium, sufficient
for our needs: The empirical second moment of the sticks in the cube ΛNε is
asymptotically the same as for i.i.d. exponential random variables with expectation
given by the empirical mean:

Proposition 3.7.

(27)

lim
ε→0

lim sup
N→∞

EN

{∫ T

0

N−d
∑

x∈Z
d
N

∣∣∣
1

|ΛNε|
∑

y∈x+ΛNε

η2
t (y)

− 2

(
1

|ΛNε|
∑

y∈x+ΛNε

ηt(y)

)2 ∣∣∣ dt
}

= 0.

Proposition 3.7 will be proved via a number of intermediate results. Write
SΛ(η) = |Λ|−1

∑
x∈Λ η(x) for any set Λ ⊂ Zd

N , and similarly SΛ(η2) for the

average of squares. Define the probability measure µN on ΩN by

(28) µN =
1

T

∫ T

0

N−d
∑

x∈Z
d
N

µN
t ◦ θx dt,
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where µN
t is the distribution of the stick process at time t and θx are the trans-

lations defined on ΩN by (θxη)y = ηx+y , again modulo the cube Zd
N . Then µN

is a translation invariant measure that continues, by Lemma 3.2, to satisfy the a
priori bounds:

(29) µN{ηk(x)} ≤ TCk for all k, x, and N.

The claim (27) of the proposition now reads

(30) lim
ε→0

lim sup
N→∞

µN
{
|SΛNε

(η2) − 2S2
ΛNε

(η)|
}

= 0.

As a standing notational convention, ν always denotes a product probability mea-
sure under which the sticks are i.i.d. exponential random variables with expecta-

tion K0 . For example, on each ΩN , ν = γ
⊗Z

d
N

K0
, but we shall have occasion to

consider other sets of sites too besides the Zd
N ’s. The choice of K0 for the expec-

tation is technically convenient for then we have derivatives fN
t (η) = (dµN

t /dν)(η)
on ΩN that are bounded uniformly over both η and t . This holds for t = 0 by
Assumption 1, and for t > 0 by general principles: Suppose ν is invariant for a
Markov process and f0 = dµ/dν . If 1 ≤ p ≤ ∞ and q is the dual exponent, then
for 0 ≤ g ∈ L q (ν)

µt(g) = ν{f0E•g(ηt)} ≤ ‖f0‖Lp(ν)‖E•g(ηt)‖Lq(ν).

First with p = 1 this shows that µt ≪ ν . Letting ft = dµt/dν we see for all p
that ‖ft‖Lp(ν) is nonincreasing in t .

The relative entropy or Kullback–Leibler information H(Q | P ) of two prob-
ability measures Q and P is defined by

H(Q | P ) =

{
P

{dQ
dP

log
dQ

dP

}
if Q≪ P ,

∞ otherwise.

H(Q | P ) measures a certain statistical distance between Q and P . H(Q | P ) ≥
0 holds always and H(Q | P ) = 0 if and only if Q = P . A straightforward
computation shows that Assumptions 1 and 3 imply that the entropy bound

(31) H(µN
0 | ν) ≤ CNd

holds for all N with a constant C = C(K0, ε0) that depends only on the con-
stants of Assumptions 1 and 3. It is for the sake of (31) that we need to make
Assumption 3.

To handle simultaneously both the short-range and the long-range model, let
pN (x, y) be the uniform distribution on x+ VN for the long-range model, and let
β = 2 for the short-range model. For Borel functions f ≥ 0 on ΩN , set
(32)

σN (f) =
∑

x,y

pN (x, y) ν

{∫ η(x)

0

[
f(ηu,x,y) − f(η)

] [
log f(ηu,x,y) − log f(η)

]
du

}
.

The functional σN is nonnegative, convex, and translation invariant: σN (f) =
σN (f ◦ θx) . Set HN

t = H(µN
t | ν) .
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Lemma 3.8. (d/dt)HN
t = −1

2N
βσN (fN

t ) .

Proof. First let ε > 0 and deduce the conclusion for gε
t = (1 − ε)fN

t + ε by
direct calculation:

d

dt
ν
{
gε

t log gε
t

}
= ν

{
(1 + log gε

t ) LNg
ε
t

}

= ν
{
log gε

t LNg
ε
t + gε

t LN (log gε
t )

}
= −1

2
NβσN (gε

t )

by using reversibility, by substituting in (1) or (3), and by applying (9) to one
of the resulting terms. Nothing is problematic here since everything in sight is
bounded. Then write, for s < t ,

ν
{
gε

t log gε
t

}
− ν

{
gε

s log gε
s

}
= −1

2
Nβ

∫ t

s

σN (gε
u) du

and let εց 0. Calculus shows that the nonnegative integrand of σN (gε
t ) increases

as ε decreases, hence σN (gε
t ) ր σN (fN

t ) by monotone convergence as εց 0. On
the left-hand side we may apply dominated convergence as gε

t is bounded above
uniformly in ε and ξ log ξ ≥ −1/e holds for all ξ ≥ 0.

Let f
N

= dµN/dν . By the convexity of F (a, b) = (a − b)(log a − log b) and
the translation invariance of σN ,

σN (f
N

) ≤ 1

T

∫ T

0

σN (fN
t ) dt.

Hence by Lemma 3.8

(33) σN (f
N

) ≤ 2N−β

T
(HN

0 −HN
T ) ≤ CNd−β ,

where we used (31) and HN
T ≥ 0. For x ∈ Zd

N and functions g ≥ 0 on ΩN define

(34) DN
x (g) =

∑

y∈Z
d
N

pN (x, y) ν

{∫ η(x)

0

[
g(ηu,x,y) − g(η)

]2
du

}
.

Let gN =

√
f

N
. By the translation invariance of ν and f

N
, DN

x (gN) does not
depend on the site x . Hence, utilizing the inequality

(
√
u−

√
v )2 ≤ (u− v)(log u− log v),

we get

(35) DN
x (gN) = N−d

∑

z

DN
z (gN ) ≤ N−dσN (f

N
),
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and then from (33) our next fundamental bound

(36) DN
x (gN) ≤ CN−β

that controls the exchange of stick pieces between sites.
Now fix a positive integer L , large but much smaller than Nε , and choose

K = K(N,L, ε) so that Nε−L < KL ≤ Nε . Then our goal (30) is not affected by
replacing ΛNε by a union ΛKL = ∆1∪· · ·∪∆Kd of disjoint translates ∆i = xi+ΛL

of ΛL = {z ∈ Zd : 0 ≤ zi < L for i = 1, . . . , d} .

Lemma 3.9. For a constant C = C(K0) coming from the a priori bound

and for all N , K , and L ,

(37)

µN
{
|SΛKL

(η2) − 2S2
ΛKL

(η)|
}
≤ µN

{
|SΛL

(η2) − 2S2
ΛL

(η)|
}

+ C

(
K−2d

∑

1≤i,j≤Kd

µN
{
|S∆i

(η) − S∆j
(η)|2

})1/2

.

Proof. Write

∣∣SΛKL
(η2) − 2S2

ΛKL
(η)

∣∣ ≤
∣∣∣∣K

−d
Kd∑

i=1

S∆i
(η2) − 2K−d

Kd∑

i=1

S2
∆i

(η)

∣∣∣∣

+ 2

∣∣∣∣K
−d

Kd∑

i=1

S2
∆i

(η) −
(
K−d

Kd∑

i=1

S∆i
(η)

)2∣∣∣∣.

By translation invariance, the µN -expectation of the first right-hand-side term
above is bounded by the first term on the right-hand side of (37). For the second
term, apply the inequality

(38)

∣∣∣∣
1

n

∑

i

ξ2i −
(

1

n

∑

i

ξi

)2∣∣∣∣ ≤
(

1

n

∑

i

ξ2i

)1/2(
1

n2

∑

i,j

(ξi − ξj)
2

)1/2

,

take expectations and apply Schwarz’s inequality. (38) is true because

0 ≤ 1

n

∑

i

ξ2i −
(

1

n

∑

i

ξi

)2

=
1

n2

∑

i,j

ξi(ξi − ξj)

and Schwarz’s inequality again.

Showing that the two terms on the right-hand side of (37) vanish as first
N → ∞ , then ε → 0, and then L → ∞ are called the one-block and the two-
block estimate, respectively. These are our next tasks.
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3.3.1. One-block estimate. Here the goal is to show that

(39) lim
L→∞

lim sup
N→∞

µN
{
|SΛL

(η2) − 2S2
ΛL

(η)|
}

= 0.

The first observation is that it suffices to show that

(40) lim
L→∞

µL

{
|SΛL

(η2) − 2S2
ΛL

(η)|
}

= 0

for an arbitrary collection {µL} of limit points of {µN} on Ω = [0,∞)Z
d
+ . The

justification is twofold: Firstly, the a priori bound (29) implies that {µN} is tight,
so any subsequence µNj has a further convergent subsequence. Secondly, since
the a priori bound is uniform in N for each fixed L , the following general fact
applies: If νn → ν weakly, f ≥ 0 is a continuous function and supn νn(f2) <∞ ,
then νn(f) → ν(f) (proof elementary). This implies also that a limit point µL

continues to satisfy the a priori bound (29).
Fix a limit point µ of {µN} . For η ∈ Ω, let ηΓ denote its restriction to a

subset Γ ⊂ Zd
+
. Recall also (2).

Lemma 3.10. Suppose Γ is a finite subset of Zd
+ and q =

(
q(x) : x ∈ Γ

)
is

a fixed stick configuration on Γ . Then whenever x , y ∈ Γ and 0 ≤ u ≤ q(x) ,

(41) µ{η : ηΓ ≥ q} = µ{η : ηΓ ≥ qu,x,y}.

Proof. We start by proving that, for 0 ≤ a < b ≤ q(x) ,

(42) µ{η : ηΓ ≥ q} =
1

b− a

∫ b

a

µ{η : ηΓ ≥ qu,x,y} du.

Pick N large enough so that Γ ⊂ Zd
N . As before gN =

√
f

N
. By a change of

variable,

(43)

∣∣∣∣
∫ b

a

µN{η : ηΓ ≥ q} − µN{η : ηΓ ≥ qu,x,y} du
∣∣∣∣

=

∣∣∣∣
∫ b

a

∫

ΩN

I{ηΓ≥q}
{
f

N
(η) − f

N
(ηu,x,y)

}
ν(dη) du

∣∣∣∣

≤
∫

ΩN

I{ηΓ≥q}

{∫ b

a

∣∣fN
(η) − f

N
(ηu,x,y)

∣∣ du
}
ν(dη)

≤ ν

{∫ η(x)

0

∣∣fN
(ηu,x,y) − f

N
(η)

∣∣ du
}

≤
(
ν

{∫ η(x)

0

[
gN(ηu,x,y) − gN (η)

]2
du

})1/2

×
(
ν

{∫ η(x)

0

[
gN (ηu,x,y) + gN(η)

]2
du

})1/2

.



336 M. Ekhaus and T. Seppäläinen

The last factor on the last line contributes a constant which we ignore in the
sequel, as can be seen by bringing the square inside the [ ] ’s and using the a priori
bound. The first factor is controlled by the single-site Dirichlet form DN

x . For the
short-range model, pick a path x = x0 , x1 , . . ., xR = y in Zd such that

(44) A = inf
1≤i≤R

p(xi − xi−1) > 0.

This induces a path on Zd
N , again denoted by x = x0, x1, . . . , xR = y , with

pN (xi−1, xi) ≥ A for each i . Take

h(u, η) =
[
gN (ηu,x1,xR) − gN (ηu,x1,x0)

]2
I{η(x1)≥u}

in (9). Then

ν

{∫ η(x0)

0

[
gN(ηu,x0,xR) − gN(η)

]2
du

}

= ν

{∫ η(x1)

0

[
gN (ηu,x1,xR) − gN (ηu,x1,x0)

]2
du

}

≤ 2ν

{∫ η(x1)

0

[
gN (ηu,x1,xR) − gN (η)

]2
du

}

+ 2ν

{∫ η(x1)

0

[
gN(ηu,x1,x0) − gN (η)

]2
du

}
.

Iterating this R times gives the bound

ν

{∫ η(x)

0

[
gN(ηu,x,y) − gN (η)

]2
du

}

≤ C
R∑

i=1

ν

{∫ η(xi)

0

[
gN (ηu,xi,xi−1) − gN (η)

]2
du

}

≤ CA−1
R∑

i=1

∑

w

pN (xi, w)ν

{∫ η(xi)

0

[
gN (ηu,xi,w) − gN(η)

]2
du

}

≤ CDN
x (gN) ≤ CN−β .

Substituting this back into (43) proves for the short-range model that

(45) lim
N→∞

∣∣∣µN{η : ηΓ ≥ q} − 1

b− a

∫ b

a

µN{η : ηΓ ≥ qu,x,y} du
∣∣∣ = 0.

For the long-range model we have to proceed differently because the constant A
defined in (44) vanishes as N → ∞ . Let WN = (x + VN ) ∩ (y + VN ) . Then
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|WN |/|VN | → 1 as N → ∞ .

ν

{∫ η(x)

0

[
gN (ηu,x,y) − gN (η)

]2
du

}

= ν

{∫ η(x)

0

(
|WN |−1

∑

w∈WN

[
gN (ηu,x,y) − gN (ηu,x,w)

+ gN(ηu,x,w) − gN(η)
] )2

du

}

≤ 2

|WN |
∑

w∈WN

ν

{∫ η(x)

0

[
gN (ηu,x,y) − gN (ηu,x,w)

]2
du

}

+ ν

{∫ η(x)

0

[
gN (ηu,x,w) − gN (η)

]2
du

}

≤ C
1

|VN |
∑

z∈VN

ν

{∫ η(y)

0

[
gN (ηu,y,y+z) − gN(η)

]2
du

}

+ ν

{∫ η(x)

0

[
gN (ηu,x,x+z) − gN (η)

]2
du

}

≤ CDN
x (gN ) ≤ CN−β ,

where the passage to the second last line involved two applications of (9). Thus
(45) holds also for the long-range model.

From (45) we argue to (42) as follows: For all but countably many q ’s, µ{η :
ηΓ = q} = 0. For such q ’s (45) implies (42). Since (42) is preserved by increasing
limits q(n) ր q , it holds for all q .

Lastly we go from (42) to (41). If 0 ≤ u < q(x) , then let 0 ≤ a < b < q(x)−u .
By (42),

µ{η ≥ qu,x,y} =
1

b− a

∫ b

a

µ{η ≥ qu+w,x,y} dw

=
1

b− a

∫ b+u

a+u

µ{η ≥ qw,x,y} dw = µ{η ≥ q}.

If u = q(x) > 0, pick 0 ≤ a < b ≤ q(x) so that

µ{η ≥ qq(x),x,y} =
1

b− a

∫ b

a

µ
{
η ≥ (qq(x),x,y)w,y,x

}
dw

=
1

b− a

∫ q(x)−a

q(x)−b

µ{η ≥ qw,x,y} dw = µ{η ≥ q}.

Corollary 3.11. µ is a mixture of i.i.d. exponential distributions.
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Proof. Since interchanging the sticks q(x) and q(y) in Γ turns q into
qq(x)−q(y),x,y (if q(x) ≥ q(y)) it is clear from Lemma 3.10 that µ is exchangeable.
Thus there is a probability measure Q on the probability measures on [0,∞) such

that µ =
∫
ρ⊗Z

d
+ Q(dρ) . By Lemma 3.10,

(46)

∫
ρ[a,∞)kQ(dρ) = µ{η{x1,...,xk} ≥ (a, . . . , a)}

= µ{ηx1
≥ ka} =

∫
ρ[ka,∞)Q(dρ).

It follows that ρ[1/n,∞) < 1 for all n Q -a.s., for if Q{ρ : ρ[a,∞) = 1} = δ > 0
for some a > 0, then

δ ≤
∫
ρ[a,∞)kQ(dρ) = µ{ηx1

≥ ka} ց 0

as k ր ∞ , a contradiction. Hence there is a finite function rn(ρ) such that for
Q -a.e. ρ ,

ρ
[ 1

n
,∞

)
= exp

{
− 1

n rn(ρ)

}
.

Then by (46)

(47)

∫
ρ
[k
n
,
k + 1

n

)
Q(dρ) =

∫
ρ
[ 1

n
,∞

)k

− ρ
[ 1

n
,∞

)k+1

Q(dρ)

=

∫
e−k(n rn(ρ))−1 − e−(k+1)(n rn(ρ))−1

Q(dρ)

=

∫ {∫ (k+1)/n

k/n

e−w/rn(ρ)

rn(ρ)
dw

}
Q(dρ).

Setting Qn(B) = Q{ρ : γrn(ρ) ∈ B} for Borel sets B of probability measures
defines a sequence of measures Qn supported by exponential distributions. (Recall
that γr was defined as the exponential distribution with expectation r , see (7).)
Let f be a bounded uniformly continuous function on [0,∞) and

δn(f) = sup{|f(w)− f(w′)| : |w − w′| ≤ 1/n}.
Utilizing (47) we get

(48)

∫
ρ(f)Q(dρ) =

∞∑

k=0

f
(k
n

)∫
ρ
[k
n
,
k + 1

n

)
Q(dρ) +O

(
δn(f)

)

=

∫ { ∞∑

k=0

f
(k
n

) ∫ (k+1)/n

k/n

e−w/rn(ρ)

rn(ρ)
dw

}
Q(dρ) +O

(
δn(f)

)

=

∫
γrn(ρ)(f)Q(dρ) +O

(
δn(f)

)

=

∫
γ(f)Qn(dγ) +O

(
δn(f)

)
.
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Taking f(w) = w (truncate and pass to a limit in (48)) gives
∫
γ(f)Qn(dγ) = µ{η(x)} +O

( 1

n

)
≤ C

by the a priori bound, consequently

Qn{γ : γ(f) ≥ A} ≤ C/A

for all A > 0 and so {Qn} is tight, because γ 7→ γ(f) is a homeomorphism from

the set of exponential distributions onto [0,∞) . Let Q̃ be a limit point of {Qn} ,
still a measure supported by exponential distributions. Letting n → ∞ in (48)
along a suitable subsequence shows that, at least on a single site, µ behaves as
a Q̃-mixture of exponentials. But then for any finite set Γ ⊂ Zd

+
and x ∈ Γ,

Lemma 3.10 implies that

µ{η : ηΓ ≥ q} = µ

{
η : ηx ≥

∑

y∈Γ

q(y)

}
=

∫
γ

[∑

y∈Γ

q(y),∞
)
Q̃(dγ)

=

∫
γ⊗Z

d
+{η : ηΓ ≥ q} Q̃(dγ)

where the last equality used an elementary property of exponential distributions.
Since the class of sets {η : ηΓ ≥ q} is rich enough to determine a probability

measure, µ =
∫
γ⊗Z

d
+ Q̃(dγ) and the corollary is proved.

We are in a position to finish off the proof of the one-block estimate. Let

νr = γ
⊗Z

d
+

r be the i.i.d. exponential distribution on Ω with expectation r . Since

E

{∣∣∣∣
1

n

n∑

i=1

Xi −EX1

∣∣∣∣
2}

=
1

n
E

{
|X1 − EX1|2

}

holds for any square-integrable i.i.d. random variables, and exponential variables

satisfy the formulas E{(X−EX)2} = (EX)2 and E
{(
X2−E(X2)

)2}
= 20(EX)4 ,

we can estimate as follows:

νr

{
|SΛL

(η2) − 2S2
ΛL

(η)|
}
≤ νr

{
|SΛL

(η2) − 2r2|
}

+ 2νr

{
|r + SΛL

(η)| · |r − SΛL
(η)|

}

≤
∥∥SΛL

(η2) − 2r2
∥∥

L2(νr)
+ Cr

∥∥SΛL
(η) − r

∥∥
L2(νr)

≤ CL−d/2 r2 ≤ CL−d/2νr{η2(x)}.

Let µ =
∫
νr Q(dr) be the decomposition of the limit point µ we have been

considering. Then the above gives, together with the a priori bound,

µ
{
|SΛL

(η2) − 2S2
ΛL

(η)|
}
≤ CL−d/2µ{η2(x)} ≤ CL−d/2.

This estimate holds for all limit points µ with the same constant C ; hence it holds
uniformly over L in (40). We have established (39) and completed the one-block
estimate.
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3.3.2. Two-block estimate. In this subsection we prove

(49) lim
L→∞

lim sup
ε→0

lim sup
N→∞

K−2d
∑

1≤i,j≤d

µN
{
|S∆i

(η) − S∆j
(η)|2

}
= 0.

We remind the reader that Kd is the maximal number of disjoint translates of ΛL

that fit inside ΛNε , and ∆1, . . . ,∆Kd is a tiling of ΛKL with a maximal collection
of such translates. The first task is to get rid of the i, j -dependence in the integral
appearing in (49). Define a two-site Dirichlet form by

Dx,y(g) = ν

{∫ η(x)

0

[
g(ηu,x,y) − g(η)

]2
du

}
.

Set Dx,y = Dx,y(gN) where as before gN =

√
f

N
.

Lemma 3.12. There is a constant C such that Dx,y ≤ Cε2 for all N , ε ,
and x, y ∈ ΛNε .

Proof. We begin with the short-range model. Fix R > 0 and for all pairs z ,
w ∈ ΛR pick and fix a path z = z0, z1, . . . , zb(z,w) = w such that p(zi − zi−1) > 0
for i = 1, . . . , b(z, w) . Set

A = inf
z,w∈ΛR

inf
1≤i≤b(z,w)

p(zi − zi−1) and B = max
z,w∈ΛR

b(z, w).

Then A > 0 and B <∞ . For each pair z , w ∈ ΛR and for each N > R there is a
path z = z0, z1, . . . , zb(z,w) = w inside Zd

N such that pN (zi−1, zi) ≥ p(zi−zi−1) ≥
A .

Given x , y ∈ ΛNε , construct first a path x = w0, w1, . . . , wℓ = y so that each
consecutive pair wi−1 , wi is contained in a translate of ΛR . By proceeding along
each coordinate axis in turn, this can be achieved with

(50) ℓ ≤ 3dNε/R.

Now fill in between each pair wi−1, wi with translates of the paths constructed
earlier. This results in the path x = x0, x1, . . . , xm = y with m ≤ Bℓ and
p(xi − xi−1) ≥ A > 0 for each i .

[
gN (ηu,x,y) − gN (η)

]2
=

{ m∑

i=1

[
gN (ηu,x0,xi) − gN (ηu,x0,xi−1)

]}2

≤ m

m∑

i=1

[
gN(ηu,x0,xi) − gN(ηu,x0,xi−1)

]2
,
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hence an application of (9) and the above development gives

ν

{∫ η(x)

0

[
gN (ηu,x,y) − gN (η)

]2
du

}

≤ m
m∑

i=1

ν

{∫ η(xi−1)

0

[
gN (ηu,xi−1,xi) − gN (η)

]2
du

}

≤ m
m∑

i=1

1

p(xi − xi−1)

∑

z

pN (xi−1, z)

× ν

{∫ η(xi−1)

0

[
gN (ηu,xi−1,z) − gN (η)

]2
du

}

≤ A−1m2DN
x (gN) ≤ Cε2

by (36) and (50), remembering that β = 2 for this model. This proves the lemma
for the short-range model.

For the long-range model, arrange a sequence E0, E1, . . . , Em of cubes with
side length 1

4
Nα so that x ∈ E0 , y ∈ Em , and Ei ⊂ z + VN for each z ∈

Ei−1 for all i . This can be achieved with m ≤ CN1−αε . Consider a path
x = x0, x1, . . . , xm = y with xi ∈ Ei for all i . Reasoning as above, we get

Dx,y ≤ m

m∑

i=1

Dxi−1,xi
.

Sum over xm ∈ Em to get

Dx,y ≤ m
m−1∑

i=1

Dxi−1,xi
+ 4dN−αdm

∑

z∈Em

Dxm−1,z

≤ m

m−1∑

i=1

Dxi−1,xi
+ CmDN

xm−1
(gN).

Now iterate: sum over xm−1 ∈ Em−1, . . . , x1 ∈ E1 in turn, and use (36) together
with 2α+ β = 2.

As far as this estimate and the a priori bound goes, the relative positions of
x and y , and consequenly of ∆i and ∆j , are immaterial, so we can simply think
of two disjoint cubes ΛL and Λ′

L and a probability measure on the sticks in the
union ΛL ∪ Λ′

L . N disappears, and instead of (49) we prove

(51) lim
L→∞

lim
ε→0

sup
µ∈NL,ε

µ
{
|SΛL

(η) − SΛ′

L
(η)|2

}
= 0,

where NL,ε is the class of probability measures µ on ΩΛL∪Λ′

L
that satisfy µ≪ ν ,

Dx,y(
√
f ) ≤ Cε2 for f = (dµ/dν) , and the a priori bound µ{ηk(x)} ≤ Ck , for all

x, y ∈ ΛL ∪ Λ′
L .
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For each L , let µL be a measure that satisfies

µL

{
|SΛL

(η) − SΛ′

L
(η)|2

}
= lim

ε→0
sup

µ∈NL,ε

µ
{
|SΛL

(η) − SΛ′

L
(η)|2

}
.

Existence of the µL ’s is justified as in the discussion following (40). Take Γ =
ΛL ∪Λ′

L in Lemma 3.10, and observe that the last bound in (43) is precisely what
we have control over with Lemma 3.12. Thus the proof of Lemma 3.10 goes through
again, and (41) holds for µL . In particular, the variables (η(x) : x ∈ ΛL ∪Λ′

L) are
exchangeable under µ . (But finite exchangeability does not imply a decomposition
into product measures, so Corollary 3.11 does not follow yet.)

Fix R , and for L ≫ R replace ΛL with a disjoint union Γ1 ∪ · · · ∪ ΓKd of
translates of ΛR , maximal with respect to the property of fitting inside ΛL . Let
Γ′

i be the translate inside Λ′
L that sits relative to Λ′

L as Γi sits relative to ΛL .
Then (51) follows from

(52) lim
R→∞

lim sup
L→∞

K−d
∑

i

µL

{
|SΓi

(η) − SΓ′

i
(η)|2

}
= 0,

which by exchangeability is equivalent to

(53) lim
R→∞

lim sup
L→∞

µL

{
|SΛR

(η) − SΛ′

R
(η)|2

}
= 0.

But any limit point of the µL ’s is infinitely exchangeable, hence we may prove

(54) lim
R→∞

sup
µ
µ
{
|SΛR

(η) − SΛ′

R
(η)|2

}
= 0,

where the supremum is over infinitely exchangeable µ that satisfy the moment
conditions µ{ηk(x)} ≤ Ck for all k . The proof can be completed as was done for
the one-block estimate.

We are ready to prove the local equilibrium:

Proof of Proposition 3.7. Combine (30), (37), (39), and (49).

Before utilizing (27) we wish to change it slightly. For ξ, θ ∈ Td , let

(55) χε,ξ(θ) = ε−dIξ+[0,ε)d(θ),

i.e. the indicator function of the ε-cube on Td with lower left corner at ξ , nor-
malized by the volume. Since y ∈ x + ΛNε if and only if y/N ∈ x/N + [0, ε)d ,
(27) is equivalent to
(56)

lim
ε→0

lim sup
N→∞

EN

{∫ T

0

N−d
∑

x∈Z
d
N

∣∣∣
1

|ΛNε|
∑

y∈x+ΛNε

η2
t (y) − 2

[
αN

t (χε,x/N )
]2∣∣∣ dt

}
= 0.
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By inserting (56) into (26) we get as conclusion of this subsection:

(57)

lim
ε→0

lim sup
N→∞

PN

{
sup

0≤t≤T

∣∣∣αN
t (φ) − αN

0 (φ)

− 2c

∫ t

0

N−d
∑

x∈Z
d
N

Aφ
( x
N

)[
αN

s (χε,x/N)
]2
ds

∣∣∣ ≥ δ

}
= 0.

3.4. Further technicalities. First we turn (57) into

(58)

lim
ε→0

lim sup
N→∞

PN

{
sup

0≤t≤T

∣∣∣αN
t (φ) − αN

0 (φ)

− 2c

∫ t

0

∫

Td

Aφ(ξ)
[
αN

s (χε,ξ)
]2
dξ ds

∣∣∣ ≥ δ

}
= 0.

This step requires the a priori estimate and the continuity of Aφ : For ξ ∈ x/N +
[0, N−1)d ,

∣∣∣Aφ(ξ)
[
αN

s (χε,ξ)
]2 − Aφ

( x
N

)[
αN

s (χε,x/N)
]2

∣∣∣ ≤ 2‖Aφ‖∞
(
N−d

∑

y

η(y)

)

×
(
N−d

∑

y∈Λ(x,Nξ,Nε)

η(y)

)
+

(
N−d

∑

y

η(y)

)∣∣∣Aφ(ξ) − Aφ
( x
N

)∣∣∣,

where Λ(x, y,K) = (x+ ΛK)∆(y + ΛK) . Integrate this bound over Td and note
that |Λ(x,Nξ,Nε)| = O

(
(Nε)d−1

)
. Then (58) follows from (57).

Lemma 3.13. For ψ ∈ C(Td) and fixed ε > 0 , ν 7→
∫
Td ψ(ξ)ν(χε,ξ)

2 dξ is

a continuous function of ν ∈ M .

Proof. Suppose νn → ν in the topology of M . Let 0 ≤ fk ≤ gk ≤ ε−d be
bounded continuous functions such that fk ր ε−dI(0,ε)d and gk ց ε−dI[0,ε]d on

Td , and let f ξ
k (θ) = fk(θ − ξ) , similarly for gξ

k . Then for all k ,

∫
ψ(ξ)ν(f ξ

k)2 dξ ≤ lim inf
n→∞

∫
ψ(ξ)νn(χε,ξ)

2 dξ

≤ lim sup
n→∞

∫
ψ(ξ)νn(χε,ξ)

2 dξ ≤
∫
ψ(ξ)ν(gξ

k)
2 dξ.

Thus it suffices to show that limk→∞
[
ν(gξ

k)−ν(f ξ
k )

]
= 0 for Lebesgue a.e. ξ . This

comes by a simple Fubini argument:

∫
lim

k→∞

[
ν(gξ

k) − ν(f ξ
k )

]
dξ =

∫ {∫
I[0,ε]d(θ − ξ) − I(0,ε)d(θ − ξ) ν(dθ)

}
dξ

=

∫ {∫
I[0,ε]d(θ − ξ) − I(0,ε)d(θ − ξ) dξ

}
ν(dθ) = 0.
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Let P be any limit point of {PN} . The probability in (58) equals

P
N{ω• ∈ DM : Φε(ω•) ≥ δ}

for a certain function Φε that is continuous on the support of P .
Since (58) holds for all δ > 0, it implies that

(59) lim
ε→0

P{ω• : Φε(ω•) ≥ δ} = 0,

again for all δ > 0. Now recall that according to Lemma 3.5 there exists a
P(dω•) ⊗ dt ⊗ dξ -a.e. defined jointly measurable function u(ω•, t, ξ) such that
ωt(dξ) = u(ω•, t, ξ) dξ . We suppress the ω• -argument from u(ω•, t, ξ) , and then
(59) may be written as

(60)

lim
ε→0

P

{
sup

0≤t≤T

∣∣∣∣ωt(φ) − ω0(φ)

− 2c

∫ t

0

∫

Td

Aφ(ξ)

(
ε−d

∫

ξ+[0,ε)d

u(s, θ) dθ

)2

dξ ds

∣∣∣∣ ≥ δ

}
= 0.

For a.e. ω• and s ,

lim
ε→0

(
ε−d

∫

ξ+[0,ε)d

u(s, θ) dθ

)2

= u2(s, ξ)

for a.e. ξ by Lebesgue’s differentiation theorem and (22). To extend this conver-
gence to the integral inside (60), introduce the maximal function

Mp(s, ξ) = sup
ε>0

ε−d

∫

ξ+[0,ε)d

up(s, θ) dθ.

Write E for expectation under the measure P .

Lemma 3.14.

E

{∫ T

0

∫

Td

M2(s, ξ) dξ ds

}
<∞.

Proof. Since M2
2 (s, ξ) ≤ M4(s, ξ) , the maximal theorem gives (see p. 91

in [Fo]):

∣∣{ξ : M2(s, ξ) > r}
∣∣ ≤

∣∣{ξ : M4(s, ξ) > r2}
∣∣ ≤ Cr−2

∫

Td

u4(s, ξ) dξ,

where | · | denotes Lebesgue measure on Td . Hence by (22)

E

{∫ T

0

∫

Td

M2(s, ξ) dξ ds

}
≤ E

{∫ T

0

∫ ∞

1

∣∣{ξ : M2(s, ξ) > r}
∣∣ dr ds

}
+ T

≤ C

∫ ∞

1

r−2 dr · E

{∫ T

0

∫

Td

u4(s, ξ) dξ ds

}
+ T <∞.
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This lemma and the dominated convergence theorem imply that

lim
ε→0

E

{
sup

0≤t≤T

∣∣∣
∫ t

0

∫

Td

Aφ(ξ)

(
ε−d

∫

ξ+[0,ε)d

u(s, θ) dθ

)2

dξ ds

−
∫ t

0

∫

Td

Aφ(ξ)u2(s, ξ) dξ ds
∣∣∣
}

= 0,

and consequently (60) turns into the statement

(61) P

{
sup

0≤t≤T

∣∣∣ωt(φ) − ω0(φ) − 2c

∫ t

0

∫

Td

Aφ(ξ)u2(s, ξ) dξ ds
∣∣∣ ≥ δ

}
= 0.

Letting δ ց 0 shows that P -a.e. ω• is a continuous M -valued path with a
derivative for a.e. t , and a weak solution of the equation ∂tu = 2cA(u2) . By the
uniqueness lemma of the next subsection P is supported by a single path. This
has two consequences: (i) It implies that ωt has a density u(t, ξ) for all t . For we
can reprove Lemma 3.5 for a fixed time t and conclude that ωt ≪ dξ for P -a.e.
ω• , in particular, for the unique ω• supporting P . (ii) It promotes the weak
convergence PN → P to convergence in probability of the DM -valued random
variables αN

•
to the path u(•, ξ) dξ as stated in Theorem 1. This comes from a

general fact: Weak convergence to a degenerate distribution implies convergence
in probability.

For Theorems 1 and 2, it remains to prove that u(t, ξ) ≤ ‖u0‖∞ for all
(t, ξ) ∈ QT . For any 0 ≤ φ ∈ C(Td) ,

∫

Td

φu(t) = lim
N→∞

EN{αN
t (φ)} = lim

N→∞
N−d

∑

x

φ
( x
N

)
EN{ηt(x)} ≤ K0

∫

Td

φ,

where the precise constant K0 of Assumption 1 comes from the last line of the
proof of the a priori estimate Lemma 3.2. But now note that it is perfectly possible
to choose the initial distribution so that K0 ≤ ‖u0‖∞ .

Thus with the uniqueness lemma we have proved Theorems 1 and 2 under
Assumption 3, that the initial density is bounded away from 0. This assumption
will be lifted after the uniqueness proof.

3.5. Uniqueness lemma.

Lemma 3.15. Let (ai,j) be a symmetric positive semidefinite matrix and set

Aφ =
∑

i,j

ai,j∂ξi
∂ξj

φ.

Suppose t 7→ ω(t, dξ) is a continuous M -valued path on 0 ≤ t ≤ T such that
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(i) there exists a jointly measurable function u(t, ξ) on QT such that ω(t, dξ) =
u(t, ξ) dξ for a.e. t ,

(ii)
∫ T

0

∫
Td u

3(t, ξ) dξ dt <∞ , and

(iii)
∫
Td φ(ξ)ω(t, dξ)−

∫
Td φ(ξ)ω(0, dξ) =

∫ t

0

∫
Td Aφ(ξ) u2(s, ξ) dξ ds for all smooth

φ on Td and for all 0 ≤ t ≤ T .

Then if σ(t, dξ) is another continuous M -valued path that satisfies the analogues

of (i)–(iii) and σ(0) = ω(0) , then σ(t) = ω(t) for all 0 ≤ t ≤ T .

Proof. Let σ(t, dξ) = v(t, ξ) dξ when the density exists. Let fε(ξ) = ε−df(ε−1ξ)
be a compactly supported, symmetric, smooth approximation to the identity. Set

uε(t, ξ) = [ω(t) ∗ fε](ξ) =

∫

Td

fε(ξ − θ)ω(t, dθ)

and similarly define vε(t, ξ) . Then uε (and also vε ) satisfies

∫

Td

ψ(ξ)uε(t, ξ) dξ −
∫

Td

ψ(ξ)uε(0, ξ) dξ =

∫ t

0

∫

Td

Aψ(ξ)[u2(s) ∗ fε](ξ) dξ ds

for all smooth ψ and all t . We wrote u2(s) for the function u2(s)(θ) = u2(s, θ) .
Subtracting the equation for vε from the equation for uε and writing φs

ε = u2(s)∗
fε − v2(s) ∗ fε (a well-defined smooth function on Td for a.e. s) gives

(62)

∫

Td

ψ
[
uε(t) − vε(t)

]
=

∫

Td

∑

i,j

ai,j(∂ξi
∂ξj

ψ)

(∫ t

0

φs
ε ds

)
.

Now take ψ = φt
ε for those a.e. t for which this makes sense and integrate over

0 ≤ t ≤ T to render the exceptional set of t ’s harmless. After an integration by
parts on the right-hand side we have

∫ T

0

dt

∫

Td

φt
ε

[
uε(t) − vε(t)

]
= −

∫

Td

∑

i,j

ai,j

∫ T

0

(∂ξi
φt

ε)

(∫ t

0

∂ξj
φs

ε ds

)
dt

= −
∫

Td

∑

i,j

ai,j

∫ T

0

∫ T

0

(∂ξi
φt

ε)(∂ξj
φs

ε)I{t≥s} dt ds.

By the symmetry of (ai,j)

2

∫ T

0

dt

∫

Td

φt
ε[u(t)∗fε−v(t)∗fε] = −

∫

Td

∑

i,j

ai,j

(∫ T

0

∂ξi
φt

ε dt

)(∫ T

0

∂ξj
φt

ε dt

)
.

The conclusion we derive from this, by (ai,j) ’s positive semidefiniteness, is that
for all ε > 0,

∫ T

0

dt

∫

Td

[u2(t) ∗ fε − v2(t) ∗ fε] [u(t) ∗ fε − v(t) ∗ fε] ≤ 0.
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Hypothesis (ii) gives sufficient integrability to let εց 0 and recover

∫

QT

[u2 − v2] [u− v] ≤ 0

which implies that u(t, ξ) = v(t, ξ) almost everywhere. Hence ω(t) = σ(t) for a.e.
t , and by continuity for all t .

3.6. Removing Assumption 3. Assume given an initial density u0 , not
necessarily bounded away fom zero, and initial distributions µN

0 satisfying As-
sumption 1. For ε > 0, the versions of the theorems thus far proved apply to
the initial densities uε

0 = u0 + ε with initial distributions µε,N
0 arranged to satisfy

µε,N
0 {η(x)} = µN

0 {η(x)}+ ε . Fix ε > 0 for the moment. Let QN be the coupling

of µN
0 and µε,N

0 given in Lemma 3.3. Let PN be the distribution of the joint
process with initial distribution QN , constructed as in the proof of Lemma 3.2
so that PN{(η•, ζ•) : η• ≤ ζ•} = 1, and the η• and ζ• marginals of PN are the

processes PN and P ε,N with initial distributions µN
0 and µε,N

0 , respectively. Let
PN be the distribution of

(αN
•
, αε,N

•
) =

(
N−d

∑

x

η•(x)δx/N , N
−d

∑

x

ζ•(x)δx/N

)

on the space DM × DM . The tightness proof did not depend on Assumption 3,
hence {PN} has tight marginals and consequently is itself tight. Let P be a limit
point with marginals P and Pε . We know that Pε is supported by the unique
path uε(t, ξ) dξ described in Theorem 1 or 2, whichever model we are talking
about. Nor did Lemma 3.5 depend on Assumption 3, and so P(dω•)⊗ dt -a.e. ωt

has a density v(t, ξ) . For all 0 ≤ a < b ≤ T and 0 ≤ φ ∈ C(Td) , the coupling
implies

PN

{∫ b

a

αN
t (φ) dt ≤

∫ b

a

αε,N
t (φ) dt

}
= 1,

hence in the limit

(63) P

{∫ b

a

∫

Td

v(t, ξ)φ(ξ) dξ dt ≤
∫ b

a

∫

Td

uε(t, ξ)φ(ξ) dξ dt

}
= 1.

(The random variable inside the probability is v(t, ξ) .) By considering all rational
a , b and a suitable countable set of functions φ we see that, for P -almost every
ω• , v(t, ξ) ≤ uε(t, ξ) almost everywhere on QT .

Coupling processes for different values of ε shows that uε is increasing in ε ,
hence the limit uε(t, ξ) ց u(t, ξ) exists as εց 0, and by applying dominated con-
vergence to the weak form of the differential equation we see that u(t, ξ) satisfies
the equation with initial data u0(ξ) . It remains to show that

P{ωt = u(t, ξ) dξ} = 1
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for all t . Since ωt and u(t, ξ) dξ are continuous in t (by Lemma 3.5 which is valid
for P ), it suffices to get this for a.e. t . Letting εց 0 through a countable set of
values gives a shrinking sequence of events in (63), hence P -a.s.,

(64) v(t, ξ) ≤ u(t, ξ) a.e. on QT .

Conversely, since the process preserves total stick length, P -a.s.

∫

Td

v(t) = ωt(T
d) = ω0(T

d) =

∫

Td

u0 =

∫

Td

u(t)

for those t for which the density v(t) exists. This and (64) force

v(t, ξ) = u(t, ξ) a.e. on QT ,

and we are done. In conclusion, P is supported by the unique path u( • , ξ) dξ ,
and Theorems 1 and 2 follow for the density u0 and initial distributions µN

0 .

4. Proof of Theorem 3

The proof for the particle models is basically the same as for the stick models.
The a priori estimate is again a consequence of attractiveness. Proceeding as in
Section 3.1 gives

z1(t) =
1

4
N−d

∑

x∈Z
d
N

ηt(x)
(
κ

N
+ ηt(x)

)
Aφ

( x
N

)

+O(N−1) · N−d
∑

x∈Z
d
N

ηt(x)
(
κ

N
+ ηt(x)

)

and EN{z2(t)} = O(N−d) . The results of Section 3.2 on tightness and the prop-
erties of the limit points of the distributions of αN

•
follow as before.

For each N , νN denotes a product measure under which the particle stacks at
different sites are {kκ

N
: k = 0, 1, 2, . . .} -valued, i.i.d. geometric random variables

with expectation K0 . Again we have derivatives fN
t (η) = dµN

t /dν
N (η) , bounded

by some constant K1 uniformly over N , η and t .
The entropy bound (31) is valid as long as κ

N
+ µN

0 {η(x)} ≥ ε0 > 0 holds
for some constant ε0 , uniformly over N and x ∈ Zd

N . Thus for the case κ = 0
we need to proceed as for the stick model, by first assuming u0 bounded away
from zero and then removing this assumption in the end, but for the case κ > 0
no such assumption is needed. The quantities σN (g) and DN

x (g) are defined as

in (32) and (34) except that the integral
∫ η(x)

0
du and u are replaced by the sum

κ
N

∑η(x)/κ
N

k=1 and kκ
N

, respectively. Then (36) follows from the entropy bound
as before, with β = 2.
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For the local equilibrium we need to prove

(65)

lim
ε→0

lim sup
N→∞

EN

{∫ T

0

N−d
∑

x∈Z
d
N

∣∣∣
1

|ΛNε|
∑

y∈x+ΛNε

ηt(y)
(
κ

N
+ ηt(y)

)

− 2
(
κSx+ΛNε

(ηt) + S2
x+ΛNε

(ηt)
)∣∣∣ dt

}
= 0.

As before SΓ(η) = |Γ|−1
∑

y∈Γ η(y) . Equation (65) follows from showing

(66)

lim
ε→0

lim sup
N→∞

EN

{∫ T

0

N−d
∑

x∈Z
d
N

∣∣∣Sx+ΛNε
(η2

t )

−
(
κSx+ΛNε

(ηt) + 2S2
x+ΛNε

(ηt)
)∣∣∣ dt

}
= 0.

Repeating Lemma 3.9, our tasks are again to prove the one-block estimate

(67) lim
L→∞

lim sup
N→∞

µN
{
|SΛL

(η2) − κSΛL
(η) − 2S2

ΛL
(η)|

}
= 0

and the two-block estimate

(68) lim
L→∞

lim sup
ε→0

lim sup
N→∞

K−2d
∑

1≤i,j≤d

µN
{
|S∆i

(η) − S∆j
(η)|2

}
= 0.

The measure µN was defined by (28).

4.1. One-block estimate, case κ = 0. Letting µL denote a limit point of
a subsequence of {µN} that realizes the lim supN→∞ in (67), we need to prove

(69) lim
L→∞

µL{|SΛL
(η2) − 2S2

ΛL
(η)|} = 0

exactly as in Section 3.3.1. Thus it suffices to show that Lemma 3.10 holds for
an arbitrary limit point µ of {µN} . Given q = (q(x) : x ∈ Γ) ∈ [0,∞)Γ , define
the configuration qN by qN (x) = [q(x)/κ

N
]κ

N
, where [ · ] denotes integer part.

Then we get

∫ b

a

µN{ηΓ ≥ qu,x,y} du = κ
N

[b/κ
N

]−1∑

k=[a/κ
N

]

µN{ηΓ ≥ q
kκ

N
,x,y

N } +O(κ
N

).

The error is O(κ
N

) , because for any x and any fixed constants a0 and a1 ,

µN{a0 ≤ η(x) < a0 + a1κN } ≤ K1a1 sup
k
νN{η(x) = kκN } = O(κN ).

Reasoning as in (43) yields

(70)

∣∣∣
∫ b

a

µN{η : ηΓ ≥ q} − µN{η : ηΓ ≥ qu,x,y} du
∣∣∣

≤ C

(
νN

{
κ

N

η(x)/κ
N∑

k=1

[
gN (ηkκ

N
,x,y) − gN (η)

]2
})1/2

+O(κ
N

).

Now proceed as in the proof of Lemma 3.10.
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4.2. One-block estimate, case κ > 0. Let µ be any limit point of {µN} .

It is a probability measure on {kκ : k = 0, 1, 2, . . .}Zd
+ . Let Γ be a finite subset

of Zd
+ and q = (k(x)κ : x ∈ Γ) a particle configuration on Γ, where k(x) are

nonnegative integers.

Lemma 4.1. For any x, y ∈ Γ and k ≤ k(x) ,

(71) µ{η : ηΓ = q} = µ{η : ηΓ = qkκ,x,y}.
Proof. Let qN = (k(x)κ

N
: x ∈ Γ) be the corresponding configuration for

the N th process. Proceeding as in (43), then constructing a suitable path from x
to y and using the bound (36) give, as in the proof of Lemma 3.10,

∣∣µN{ηΓ = qN} − µN{ηΓ = q
kκ

N
,x,y

N }
∣∣

≤ Cκ
−1
N

(
νN

{
κ

N

η(x)/κ
N∑

k=1

[
gN(ηkκ

N
,x,y) − gN(η)

]2
})1/2

≤ CN−1.

This suffices for (71).

Corresponding to Corollary 3.11 we now have:

Corollary 4.2. µ is a mixture of i.i.d. geometric distributions.

Proof. Exchangeability is immediate from (71), so there is a representation

µ =

∫
ρ⊗Z

d
+ Q(dρ)

of µ in terms of i.i.d. distributions. The integration variable ρ is a probability
measure on {kκ : k = 0, 1, 2, . . .} . Consider first a single site x , and a set
{x1, . . . , xm} of mutually distinct sites distinct from x . By (71),

µ{η(x) = mκ} =
∑

k1,...,km≥0

µ{η(x) = mκ, η(x1) = k1κ, . . . , η(xm) = kmκ}

=
∑

k1,...,km≥0

µ{η(x) = 0, η(x1) = (k1 + 1)κ, . . . , η(xm) = (km + 1)κ}

= µ{η(x) = 0, η(x1) ≥ κ, . . . , η(xm) ≥ κ}

=

∫
ρ(0)

(
1 − ρ(0)

)m
Q(dρ),

so the distribution µ{η(x) ∈ · } is a mixture of geometric distributions. But then

µ{ηΓ ≥ q} = µ

{
η(x) ≥ κ

∑

y∈Γ

k(y)

}
=

∫ (
1 − ρ(0)

)∑
y∈Γ

k(y)
Q(dρ)

=

∫ ∏

y∈Γ

(
1 − ρ(0)

)k(y)
Q(dρ),

and we see that µ is indeed a mixture of i.i.d. geometrics.
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The one-block estimate is now completed as was done in Section 3.1.1, utilizing
the fact that if X is a κZ+ -valued geometric random variable, then E(X2) =
κEX + 2(EX)2 .

4.3. Two-block estimates. This time we have to define the two-site Dirich-
let form separately for each N :

DN
x,y = νN

{
κ

N

η(x)/κ
N∑

k=1

[
gN (ηkκ

N
,x,y) − gN (η)

]2
}
.

The argument of Lemma 3.12 works again to give

DN
x,y ≤ Cε2

for all N , ε , and x, y ∈ ΛNε . As in Section 3.3.2, this bound allows us to deduce
(68) by proving

(72) lim
L→∞

lim sup
ε→0

lim sup
N→∞

sup
µ
µ
{
|SΛL

(η) − SΛ′

L
(η)|2

}
= 0,

where the supremum is over the class of probability measures µ on Ω
(κ

N
)

ΛL∪Λ′

L

that

satisfy µ≪ νN , DN
x,y ≤ Cε2 , and µ{ηk(x)} ≤ Ck for all x, y ∈ ΛL ∪ Λ′

L .
For each L , let µL be a measure that satisfies

µL

{
|SΛL

(η) − SΛ′

L
(η)|2

}
= lim sup

ε→0
lim sup
N→∞

sup
µ
µ
{
|SΛL

(η) − SΛ′

L
(η)|2

}
.

For the case κ = 0 the computation done in (70) shows that

∣∣∣
∫ b

a

µN{η : ηΓ ≥ q} − µN{η : ηΓ ≥ qu,x,y} du
∣∣∣ ≤ Cε+O(κ

N
).

Thus, as we let first N → ∞ and then ε → 0, Lemma 3.10 holds for µL and we
can complete the proof of the two-block estimate for the case κ = 0 as was done
in Section 3.3.2.

The pattern is clear by now so we leave the details of the two-block estimate
for the case κ > 0 to the reader.

After establishing the local equilibrium we have the analogue of (57) for the
particle model:

lim
ε→0

lim sup
N→∞

PN

{
sup

0≤t≤T

∣∣∣αN
t (φ) − αN

0 (φ) − 2c

∫ t

0

N−d
∑

x∈Z
d
N

Aφ
( x
N

)(
καN

s (χε,x/N)

+ [αN
s (χε,x/N)]2

)
ds

∣∣∣ ≥ δ

}
= 0.

The remaining technical steps follow as before, and with this we consider Theo-
rem 3 proved.
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