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Abstract. Necessary conditions for the Newton polygon associated with a general differential
equation algebraic in the unknown function and its Schwarzian derivative are presented in the case
of existence of an admissible solution (in Nevanlinna sense). Moreover, an admissible solution is
shown to satisfy a stronger version of Nevanlinna’s defect relation.

1. Preliminaries

An algebroid function α is an element of the algebraic closure A of the
field M of meromorphic functions on C . The degree of α is the degree of its
minimal polynomial over M . Finitely many algebroid functions α(i) , i = 1, . . . , r ,
with minimal polynomials Pi can be associated with meromorphic functions on a
Riemann surface X of finite number of sheets. Namely, there are a (holomorphic
and proper) covering πX : X → C (of finite number of sheets) and meromorphic

functions α
(i)
X on X such that

π∗
X Pi

(
α

(i)
X

)
= 0, i = 1, . . . , r.

Here, π∗
X Pi is the polynomial obtained from Pi by replacing each coefficient p

by π∗
Xp = p ◦ πX . We call

(
πX ; α

(1)
X , . . . , α

(r)
X

)
a (simultaneous) realization of the

α(i) ; less exactly, we will also call the α
(i)
X realizations of the α(i) . We remark

that (πX , πX) is also a realization of an algebroid function π . If in (πX , αX)
the number of sheets of πX equals the degree of α , the realization will be called
minimal. A minimal realization always exists (see [Fo]). The ramification number
of αX in x ∈ X is the multiplicity of πX in x reduced by 1, i. e.

ram (x, αX) = mult (x, πX) − 1.

When there is no danger of confusion, we simplify our notation identifying
algebroid functions and their realizations and omitting the index X .

Now we recall the definitions of the functionals of Nevanlinna theory for al-
gebroid functions (see [Ul]). Let π: X → C be an arbitrary covering, where the
number of sheets is q < ∞ . If F : X → [0,∞] is continuous, F (y) = ∞ , and ζ
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a local coordinate around y , then we define the order of infinity of y to be the
infimum of the set

{
l ∈ [0,∞) | F ◦ ζ−1(z) = O(|z|−l), z → 0

}
∪ {∞}.

Let C X be the smallest set of continuous functions from X to [0,∞] that contains

all functions |f | where f : X → Ĉ is meromorphic, and is closed with respect to the
operations addition, division, and taking the maximum of two functions (see [Er]).
It is obvious that the points of infinity of functions in C X have integer orders.
These points will also be called poles. We are now ready to introduce the Nevan-
linna entities, which we are going to define for C X . Let Γr := π−1({z | |z| = r})
and Br be a finite subset of Γr such that the restriction of π to each connectivity
component of Γ′

r := Γr \ Br is injective. Denote the connectivity components by
γ1, . . . , γl , the restriction of π to γi by πi , and define si := π(γi) . Then the
proximity function of F ∈ C X is defined as

m(r, F ) :=
1

2πrq

l∑

i=1

∫

si

+

log F
(
π−1

i (z)
)
d|z|.

It is easy to see that m(r, F ) does not depend on the choice of Br . In order to
define counting functions n(r, F ) , n(r, F ) , and n1(r, F ) , let ∆r := π−1({z | |z| ≤
r}) and denote by n(r, F ) and n(r, f) the number of poles of F in ∆r , counting
and ignoring multiplicities, respectively, and denote by n1(r, F ) the number of
multiple poles of F in ∆r , ignoring multiplicities. Then

(1.1) N(r, F ) :=
1

q

∫ r

0

n(t, F )− n(0, F )

t
dt +

1

q
n(0, F ) log r

and N(r, F ) and N1(r, F ) analogous. As usual, we define the characteristic func-
tion to be

T (r, F ) := m(r, F ) + N(r, F ).

If α is an algebroid function with a realization (π, αX) we write

m(r, α) := m(r, |αX |),

N(r, α) := N(r, |αX |),

T (r, α) := T (r, |αX |).

It is not difficult to prove that these definitions of m(r, α) etc. are independent
of the choice of the realization and coincide with the usual definitions. If the
realization of α is minimal, we get the counting function N ram (r, α) of ramifica-
tion points of α by replacing in (1.1) the pole order of αX by the ramification
number. We assume the reader acquainted with the standard theorems of Nevan-
linna theory, such as the fundamental theorems and the lemma on the logarithmic
derivative (see [Ul]).
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For two functions Φ, Ψ: (0,∞) → R , the expression

Φ(r) ≈ Ψ(r)
(
Φ(r) . Ψ(r)

)

means that there is an exceptional set E ⊂ (0,∞) of finite linear measure such
that Φ(r) = Ψ(r) (respectively Φ(r) ≤ Ψ(r)) holds outside E .

Let ϕ: (0,∞) → (0,∞) be a function of growth sufficiently fast to guarantee

log r = O
(
ϕ(r)

)
.

Then A ϕ consists of all algebroid functions γ that fulfill

T (r, γ) ≈ O
(
ϕ(r)

)
.

In particular, if ϕ(r) = log(r) , A log is the set of algebraic functions.
By the well-known properties of the characteristic functions, it is immediate

that A ϕ is an algebraically and differentially closed subfield of the field A of all
algebroid functions.

The Schwarzian derivative of a non-constant algebroid function α is

Sα :=
(α′′

α′

)′

−
1

2

(α′′

α′

)2

.

The article deals with differential equations having the form

(1.2) P (α, Sα) = 0,

where P is an irreducible polynomial in two unknowns over A ϕ . A solution α
of (1.2) is called admissible if

(1.3) ϕ(r) ≈ o
(
T (r, α)

)

and

(1.4) N ram (r, α) ≈ O
(
ϕ(r)

)
.

In particular, (1.3) holds whenever A ϕ = A log is the set of algebraic functions
and α is transcendental.

We now proceed to provide the algebraic background. Let K be an alge-
braically closed field of characteristic 0. Later, we will have K = A ϕ . If x
is transcendental over K and y is algebraic over K(x) then K(x) is a rational
function field and L = K(x, y) an algebraic function field over K . All rational
function fields over K are of course isomorphic. A discrete valuation of L over K
is a mapping

ν: L → R ∪ {∞}
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with the following properties (see [De, II §2]):

(i) ν(u) = ∞ if and only if u = 0.
(ii) ν(uv) = ν(u) + ν(v) .
(iii) ν(u + v) ≥ min{ν(u), ν(v)} (strong triangular inequality).
(iv) ν(L∗) is isomorphic to Z as an additive group, where L∗ = L \ {0} .
(v) ν(a) = 0 for each a ∈ K .

Since all valuations treated here will be discrete and over K , we will leave these
attributes out and merely speak of valuations. ν is said to be normal if ν(L∗) = Z .
The set of all normal valuations of L will be denoted by N (L) .

We remark that some authors, so in [Ca], define valuations in a different,
however equivalent, way. Namely, taking a valuation ν and a real number c ∈
(0, 1), the mapping

a 7→ cν(a)

would satisfy that definition of a valuation.
For a rational function field K(u) , u ∈ L , there is a bijection between K∪{∞}

and N
(
K(u)

)
. Namely, for a ∈ K , νu,a is defined in the following way: If

w = P (u)/Q(u) , where the power of (u−a) in P (u) is m and in Q(u) is n , then
νu,a(w) = m − n . For a = ∞ , νu,∞(w) = deg Q − deg P . Hence νu,a(w) is the
formal order of the zero of w in a .

For each polynomial P in two unknowns u and w over K and each a ∈
K ∪ {∞} , there is a geometrical construction called the Newton polygon of P
with respect to u and a (see [Ca]), and a finite sequence called the Newton type.
In order to obtain them, we first write P as a polynomial in w ,

P = P (u, w) =

n∑

j=0

Pj(u) wj,

where the coefficients Pj(u) are polynomials in u over K , thus elements of K(u) .
For each j with Pj 6= 0, we let νj := νu,a

(
Pj(u)

)
and mark the point (j, νj) in the

two-dimensional coordinate system. Taking the lower part of the convex hull of
the generated points, we get the Newton polygon. Say it consists of r edges. The
slopes µi of the edges are called Newton slopes; if the i-th edge ranges from ji−1

to ji = ji−1 + li , then li is called the range of the i-th edge, and the r -tuploid(
(li, µ1), . . . , (lr, µr)

)

is the Newton type of P with respect to u and a . The exact definition is this. If

j0 := min{j | Pj 6= 0}

and j1, . . . , js and µ1, . . . , µs are already defined, then either js = n , in which
case r := s finishes the construction, or

µs+1 := min
{νi − νjs

i − js

∣∣∣ i = js + 1, . . . , n
}

and

js+1 = js + ls := max
{
i
∣∣∣

νi − νjs

i − js

= µs+1

}
.
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2. Main results

The following theorems are in the line of the famous theorems of Malmquist
([Ma]) and Yosida ([Yo]) providing necessary conditions for the existence of an
admissible solution of an algebraic differential equation. More precisely, they are
generalizations of results due to K. Ishizaki [Is] concerning differential equations
of the form

Pm(α) (Sα)m + P0(α) = 0,

where m ∈ N , and Pm and P0 are polynomials with meromorphic coefficients.
Theorem 2.1 is exactly the same as in the cited article, except for the wider class
of differential equations to which it applies. The idea of the proof is also due
to K. Ishizaki; where he uses a result of A.Z. Mokhon’ko [Mo], we shall need
the corresponding generalization by A.E. Eremenko [Er]. However, Theorem 2.3,
which justifies the title of this article, will require considerably more work than
its counterpart in [Is]. The idea of using the theory of valuations is also due to
Eremenko ([Er]). A survey of the results of Malmquist, Yosida, and Ishizaki, and
of many related topics is presented in [La].

Theorem 2.1. Let α be an admissible solution of (1.2) , where P ∈ A ϕ[s, t]
is an irreducible polynomial of degree d in s and degree m in t . Then the

Nevanlinna deficiency sum fulfills the inequality

(2.1)
∑

c∈Ĉ

δ(c, α) ≤ 2 −
d

2m
.

An immediate consequence is:

Corollary 2.2. In the situation of Theorem 2.1 , we must have d ≤ 4m .

Notice that in the case of an algebraic differential equation having the ordinary
derivative instead of the Schwarzian derivative, the corresponding condition is
d ≤ 2m (see [Er]).

Theorem 2.3. Let

P = P (s, t) =
m∑

j=0

Pj(s) tj

be an irreducible polynomial over A ϕ , the leading coefficient of which has the

factorization

Pm(s) =
λ∏

i=1

(s − ci)
Λ∏

j=1

(s − γj),

where the ci are constants and the γj are non-constant algebroid functions in A ϕ .

For each γ ∈ {c1, . . . , cλ,∞, γ1, . . . , γΛ} , let P have a Newton type

(
(lγ,−Rγ

, µγ,−Rγ
), . . . , (lγ,0, µγ,0), (lγ,1, µγ,1), . . . , (lγ,rγ

, µγ,rγ
)
)



358 R. Hotzel and G. Jank

with respect to s and γ . Let the indication be in such a way that µγ,1 is the first

positive slope, i. e.

µγ,0 ≤ 0 < µγ,1.

Then if (1.2) has an admissible solution, the positive Newton slopes fulfill the

following conditions:

(a) For c ∈ {c1, . . . , cλ} ∪ {∞} and q = 1, . . . , rc : µc,q = 2/nc,q with nc,q ∈
{2, 3, . . .} .

(b) For γ = {γ1, . . . , γΛ} : rγ = 1 (i. e., there is only one positive Newton slope)
and µγ,1 = 2 .

(c) The numbers nc,q in (a) satisfy :

∑

c∈{c1,...,cλ,∞}

rc∑

q=1

lc,q

(
1 −

1

nc,q

)
≤ 2m −

∑

γ∈{γ1,...,γΛ}

lγ,1.

3. Lemmas

If L = K(x, y) is an algebraic function field and u ∈ L is transcendental over
K , then the restriction of any valuation ν of L to K(u) is a valuation of K(u) .
There is a positive integer e , called the ramification index, such that

ν(L∗) =
1

e
ν
(
K(u)∗

)
.

Conversely, the following lemma shows that each valuation of K(u) has a contin-
uation (as a valuation) on L . It can immediately be deduced from three theorems
to be found in [Ca, VI §3, IX §2, VII §1].

Lemma 3.1. Let w ∈ L and P be the minimal polynomial of (u, w) , with

Newton type (
(l1, µ1), . . . , (lr, µr)

)

with respect to u and a . Then the normalized continuations of νu,a onto K(u, w)
(possibly a smaller field than L) can be listed in the form

νj
i , i = 1, . . . , r, j = 1, . . . , si,

such that the following statements hold: If ej
i are the corresponding ramification

indices, then:

νj
i (w)

ej
i

= −µi.(i)

si∑

j=0

ej
i = li.(ii)
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A divisor (of L over K ) is a mapping δ: N (L) → Z with δ(ν) = 0 for
almost all ν . The degree of δ is

Deg δ =
∑

ν∈N (L)

δ(ν).

For each ν ∈ N (L) , the characteristic divisor χν is defined by

χν(ν) = 1, χν(σ) = 0 for σ 6= ν.

For each w ∈ L , the associated divisor δw is defined by

δw(ν) = ν(w).

As usual, the negative part of a divisor δ is

δ−(ν) := −min{0, δ(ν)}.

The following lemma is a conclusion from the Riemann–Roch theorem (see [Er]).

Lemma 3.2. Let L be an algebraic function field over an algebraically closed

field K of characteristic 0 . Then there is a nonnegative integer g = g(L/K)
(called the genus of L) with the following property : For each integer k ≥ 2g and

each normal valuation ν ∈ N (L) there is an element w ∈ L such that

(3.1) δ−

w = k χν .

In the sequel, we fix k := 2g + 1 and call an element w satisfying (3.1) a
k -element for ν .

Lemma 3.3. Let w be a k -element for ν . Let u be another element of L
and Q be the minimal polynomial of (w, u) . Then the Newton type of Q with

respect to w and ∞ has the form ((l, µ)) (i. e., the Newton polygon consists of

one edge only), where

µ = −
ν(u)

k
.

Proof. The only normal valuation of K(w) to take a negative value at w is
νw,∞ . Thus the valuations of N (L) that take negative values at w are exactly
the normalized continuations of νw,∞ onto L . By the assumption, ν is the only
normal valuation with that property, so the only normalized continuation of νw,∞

onto L . This implies that there is only one such valuation of K(w, u) , too, which
is just the normalized restriction of ν to K(w, u) . Let us call it ρ . By Lemma 3.1,
the Newton type of Q can only be of the form ((l, µ)) , where

µ =
ρ(u)

−e
=

ρ(u)

ρ(w)
.
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Since ρ and ν differ by a factor only,

ν(u)

−k
=

ν(u)

ν(w)
=

ρ(u)

ρ(w)
= µ.

Remark 3.4. By the definition of νw,∞ , the fact that

Q(w, u) =
n∑

j=0

Qj(w)uj

has the Newton type ((l, µ)) with respect to w and ∞ is equivalent with

deg Qj ≤ deg Q0 − j µ, j = 0, . . . , n,(3.2)

deg Qn = deg Q0 − n µ.(3.3)

In the setting of algebroid functions, this implies two useful lemmas on k -
elements. For those, we assume L ≤ A to be an algebraic function field over
A ϕ , ν ∈ N (L) , and β a k -element for ν .

Lemma 3.5. Let ζ ∈ L be such that ν(ζ) ≥ 0 and let π: X → C be a

covering such that there are on X simultaneous realizations of β , ζ , and each

coefficient of the minimal polynomial Q of (β, ζ) . Then there is a continuous

function F ∈ C X which satisfies:

(i) T (r, F ) ≈ O
(
ϕ(r)

)
.

(ii) For each x ∈ X , it holds that |β(x)| ≤ F (x) or |ζ(x)| ≤ F (x) .

Proof. By Lemma 3.3 and Remark 3.4, it holds that

deg Qj ≤ deg Qn,

since µ = −ν(ζ)/k ≤ 0. Dividing by Qn(w) , we get

n∑

j=0

Qj(β)

Qn(β)
ζj = 0.

By elementary estimates (see [Er]), we obtain functions Fj ∈ C X , j = 0, . . . , n ,
such that

(i) T (r, Fj) ≈ O
(
ϕ(r)

)
.

(ii) For each x ∈ X , |β(x)| ≤ Fj(x) or
∣∣Qj

(
β(x)

)
/Qn

(
β(x)

)∣∣ ≤ Fj(x) .

Now let F := n maxj Fj . Then T (r, F ) ≈ O
(
ϕ(r)

)
is obvious. For the second

property, assume |β(x)| ≤ F (x) . Then

∣∣∣∣
Qj

(
β(x)

)

Qn

(
β(x)

)
∣∣∣∣ ≤

1

n
F (x), j = 0, . . . , n.
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In particular, F (x) ≥ n . Since ζ(x) is a zero of the polynomial
n∑

j=0

Qj

(
β(x)

)

Qn

(
β(x)

)ζj ,

we must have |ζ(x)| ≤ F (x) .

Let us fix some terminology. First, if n is a positive integer, we mean by a
pole of order −n a zero of order n . By a pole of order 0, we mean a point which
is neither a pole nor a zero. Second, let Q be a polynomial in two unknowns
over A ϕ , and π: X → C a covering such that there are on X realizations of all
the coefficients of Q . We will call a point x ∈ X special with respect to Q (and
the realizations of the coefficients) if it is a ramification point of π (i. e. a multiple
point) or if it is a zero or a pole of one of the realizations of the coefficients.

Lemma 3.6. Let η be an arbitrary element of L and Q the minimal polyno-

mial of (β, η) . Let π: X → C be a covering such that there are on X realizations

of β , η , and all the coefficients of Q , and let x ∈ X be non-special. Assume

further x to be a pole of order ω > 0 of βX . Then x is a pole of order

−
ν(η) ω

k
of ηX .

Proof. By Lemma 3.3 and Remark 3.4, we have

deg Qj ≤ deg Q0 − j µ, j = 0, . . . , n,

deg Qn = deg Q0 − n µ,

where

µ = −
ν(η)

k
.

As the sum
n∑

j=0

Qj(β) ηj

of meromorphic functions on X vanishes identically, it is trivial that the maximal
pole order in x of the summands Qj(β) ηj must occur at least twice. Since x is
non-special, this is only possible if x is a pole of ηX of order µω .

Next, we cite the result of Eremenko mentioned above.

Theorem 3.7 (Eremenko). Let α and β be algebroid functions, and

ϕ(r) ≈ o
(
T (r, α)

)
.

Assume that there is an irreducible polynomial P in two unknowns over A ϕ such

that P (α, β) = 0 . Then L := A ϕ(α, β) is an algebraic function field over A ϕ ,

and the following relation holds:
(
Deg δ−

β + o(1)
)
T (r, α) ≈ (Deg δ−

α) T (r, β).

The next lemma is a consequence of Lemma 3.1.
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Lemma 3.8. In the situation of Theorem 3.7 , we have

Deg δ−

α = degβ P and Deg δ−

β = degα P.

So we get the following generalization of results by Valiron [Va] and A.Z.
Mokhon’ko [Mo].

Theorem 3.9. Let α and β be algebroid functions, and

ϕ(r) ≈ o
(
T (r, α)

)
.

Let P be an irreducible polynomial in two unknowns over A ϕ such that P (α, β) =
0 . Then (

degα P + o(1)
)
T (r, α) ≈ (degβ P ) T (r, β).

We finish this section by listing some properties of the Schwarzian derivative.
Let α be a non-constant algebroid function.

(a) If l is a Möbius transformation and α̃ = l ◦ α , then Sα̃ = Sα .
(b) Let π: X → C be a covering such that there is a realization of α , and therefore

also of Sα , on X . If x is a ramification point of π , the pole order of Sα at
x is at most 2 ram (x, π) . If y is not a ramification point, it is a pole if and
only if the order of α at x is greater than 1. In this case, the pole order is
always 2.

(c) The lemma on the logarithmic derivative immediately yields m(r, Sα) ≈
o
(
T (r, α)

)
.

(d) Items (b) and (c) imply

(3.4) T (r, Sα) ≈ 2 N1(r, α) + o
(
T (r, α)

)
+ O

(
N ram (r, π)

)
,

where α is identified with its realization on X .

4. Proof of the results

Let α be an admissible solution of (1.2). Then L = A ϕ(α, Sα) is an algebraic
function field over A ϕ . By the definition of an admissible solution respectively by
the ramification theorem of algebroid functions (see [Ul]), the counting functions of
the ramification points of α and of any element of A ϕ are of growth ≈ O

(
ϕ(r)

)
.

It is easy to see that the same applies for every element of L . For the proofs,
we assume that π: X → C is a covering such that there are on X realizations of
all algebroid functions involved. These are finitely many elements of L . We can
choose π in such a way that it is also an element of L , in particular

N ram (r, π) ≈ O
(
ϕ(r)

)
.

Proof of Theorem 2.1. By the assumption and Theorem 3.9, we obtain

T (r, Sα) ≈
( d

m
+ o(1)

)
T (r, α).
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With (3.4) and property (1.4) of an admissible solution, this yields

2 N1(r, α) ≈
( d

m
+ o(1)

)
T (r, α).

As an immediate consequence of the second fundamental theorem, we obtain for
q distinct values c1, . . . , cq ∈ Ĉ :

q∑

i=1

δ(ci, α) =

q∑

i=0

lim inf
r→∞

m(r, ci, α)

T (r, α)
≤ lim inf

r→∞

2 T (r, α) − N1(r, α)

T (r, α)

≤ lim inf
r→∞

2 T (r, α) − N1(r, α)

T (r, α)
≤ 2 −

d

2m
.

This implies (2.1).

Proof of Theorem 2.3. Let us first get rid of ν
∞

. The Möbius transformation

α̃ := l ◦ α,

yields a differential equation
P̃ (α̃, Sα̃) = 0

where the Newton type of P with respect to α and γ equals the Newton type of P̃
with respect to α̃ and l(γ) . By choosing l appropriately, we get a Newton polygon
with respect to ν

∞
consisting of one edge of slope 0. So we may as well assume that

we have this situation from the beginning. Let γ ∈ {c1, . . . , cλ, γ1, . . . , γΛ} and µ
be a positive slope of P with respect to α and γ with range l of the corresponding
edge. Lemma 3.1 yields: There are normalized continuations ν1, . . . , νs of να,γ

onto L with ramification numbers e1, . . . , es such that

νj(Sα)

ej
= −µ

and

(4.1)
s∑

j=0

ej = l.

Let ν ∈ {ν1, . . . , νs} and e = ν(α− γ) be the ramification number of ν . There is
a k -element β = βν for ν . We will collect some properties of β .

1. By Lemma 3.8, Deg δ−

α = degSα P = m . By the choice of β , Deg δ−

β = k .
So Theorem 3.7 yields

(4.2) T (r, β) ≈
( k

m
+ o(1)

)
T (r, α).
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2. Since ν(Sα) < 0, there is a positive integer n such that ν
(
β/(Sα)n

)
≥ 0.

By Lemma 3.5, there is f ∈ C X such that

(i) T (r, f) ≈ O
(
ϕ(r)

)
.

(ii) For each x ∈ X , |β(x)| ≤ f(x) or |(β/(Sα)n)(x)| ≤ f(x) .

This implies
m(r, β) ≈ O

(
ϕ(r)

)
+ m

(
r, (Sα)n

)
≈ o

(
T (r, α)

)
.

In combination with (4.2), this yields

(4.3) N(r, β) ≈
( k

m
+ o(1)

)
T (r, α).

3. In the sequel, special and non-special will always be used with respect
to the minimal polynomials of (β, α) and (β, Sα) simultaneously. We denote by
N spe (r, β) and Nnon (r, β) the counting functions of the poles of β that are special
respectively non-special. Let the minimal polynomial of (β, Sα) be

Q(β, Sα) =

p∑

j=0

Qj(β) (Sα)j .

By Lemma 3.3, the Newton polygon of Q with respect to β and ∞ consists of
one edge of positive slope. By Remark 3.4,

deg Q0 > deg Qj for j = 1, . . . , p.

So if we sort Q in powers of β , the coefficient of the highest power is a polynomial
in Sα of degree 0, which we can assume to be 1. It is elementary that the order of
a pole of β at a point x is bounded by the maximal pole order of the coefficients
ζi of Q (elements of A ϕ ) plus p times the pole order of Sα . But the pole order
of Sα is at most 2q , q being the number of sheets of π . This yields

N spe (r, β) ≤ 2qpN spe (r, β) +
∑

i

N(r, ζi) ≈ O
(
ϕ(r)

)
,

where the bar indicates counting ignoring multiplicities. So with (4.3), we obtain

Nnon (r, β) ≈
( k

m
+ o(1)

)
T (r, α).

4. By Lemma 3.6, each non-special pole of β of order ω is a zero of α− γ of
order

n =
e ω

k

and a pole of Sα of order µn . So we must have µn = 2, which yields

(4.4) µ =
2

n
.
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Notice that n is the same for all non-special poles, so

(4.5) N non (r, β) ≈
( e

mn
+ o(1)

)
T (r, α).

5. Let β̃ be a k -element for ν̃ 6= ν . We denote by Nβ̃(r, β) the counting

function of poles of β that are also poles of β̃ . By Lemma 3.5, there is f ∈ C X

fulfilling

(i) T (r, f) ≈ O
(
ϕ(r)

)
.

(ii) For each x ∈ X , |β(x)| ≤ f(x) or |β̃(x)| ≤ f(x) .

By item 4 of this proof, the order of non-special poles of β is bounded, so this
yields

Nβ̃(r, β) ≈ O
(
ϕ(r)

)
.

We now proceed to prove (a), (b), and (c). Item 4 of this proof covers half of
(a) and (b). For the rest, we only have to show that n ≥ 2 if γ is constant and
n = 1 if γ is non-constant, n being the order of the zero of α−γ at a non-special
pole of β .

In the constant case, if x is a non-special pole of β , then n is equal to the
multiplicity of α at x . Since Sα(x) = ∞ , we must have n ≥ 2.

If γ is non-constant, we have to show that there is a non-special pole of β
that is a simple zero of α − γ . By (4.5) and T (r, γ) ≈ O

(
ϕ(r)

)
, there is certainly

a non-special pole x where γ(x) 6= ∞ and γ′(x) 6= 0. By item 4, x is a zero
of α − γ and a pole of Sα , so α(x) = γ(x) 6= ∞ and α′(x) = 0. This yields
multiplicity n = 1.

For (c), we count the zeros of α′ and make use of the fact that

(4.6) N
(
r,

1

α′

)
.

(
2 + o(1)

)
T (r, α).

Denote by Nβ(r, 1/α′) the counting function of zeros of α′ that coincide with
non-special poles of β . If β belongs to a constant γ ,

(4.7) Nβ

(
r,

1

α′

)
≈ (n − 1)N non (r, β) ≈ (n − 1)

( e

mn
+ o(1)

)
T (r, α),

where n depends on β . If β belongs to a non-constant γ , we know by T (r, γ) ≈
O

(
ϕ(r)

)
that non-special poles are zeros of α′ except for some in the order of

O
(
ϕ(r)

)
(see the proof of (b) above). Thus

(4.8) Nβ

(
r,

1

α′

)
& N non (r, β) ≈

( e

m
+ o(1)

)
T (r, α).

By item 5, k -elements for different ν have few non-special poles in common, so
we may add the Nβ(r, 1/α′) to get a lower estimate of N(r, 1/α′) ,

∑

β

Nβ

(
r,

1

α′

)
+ O

(
ϕ(r)

)
. N

(
r,

1

α′

)
,
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where the sum ranges over the k -elements for all continuations of any positive
Newton slope of any ci or γj . With (4.7), (4.8), and (4.1), this yields

1

m

[( λ∑

i=1

ri∑

q=1

li,q

(
1 −

1

ni,q

))
+

Λ∑

i=1

Li,1 + o(1)

]
T (r, α) . N

(
r,

1

α′

)
.

In combination with (4.6), this yields (c).
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