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Abstract. We develop a capacity theory based on the definition of Sobolev functions on
metric spaces with a Borel regular outer measure. Basic properties of capacity, including mono-
tonicity, countable subadditivity and several convergence results, are studied. As an application
we prove that each Sobolev function has a quasicontinuous representative. For doubling measures
we provide sharp estimates for the capacity of balls. Capacity and Hausdorff measures are related
under an additional regularity assumption on the measure.

1. Introduction

The purpose of this paper is to develop a capacity theory based on the def-
inition of Sobolev functions on metric spaces due to Haj lasz [Ha]. His definition
makes use of the fact that a smooth real-valued function u on Rn satisfies

(1.1) |u(x) − u(y)| ≤ c|x − y|
(

M |∇u|(x) + M |∇u|(y)
)

,

for every x, y ∈ Rn , where M f is the Hardy–Littlewood maximal operator of a
locally integrable function f defined by

M f(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy.

Here B(x, r) is the open ball with center x and radius r and |E| stands for the
Lebesgue measure of E . By the celebrated theorem of Hardy, Littlewood and
Wiener, the maximal operator M is bounded in Lp(Rn) for 1 < p < ∞ , and
hence an approximation procedure shows that for each function u belonging to
the Sobolev space W 1,p(Rn) , 1 < p < ∞ , the inequality (1.1) holds for every
x, y ∈ Rn \ E , x 6= y , with |E| = 0. The Sobolev space W 1,p(Rn) consists of
functions u ∈ Lp(Rn) whose first distributional derivatives also belong to Lp(Rn) .
Haj lasz showed in [Ha] that (1.1) also gives a sufficient condition for a function to
belong to the Sobolev space W 1,p(Rn) for 1 < p < ∞ and hence it can be taken
as a definition for the Sobolev function. Let (X, d) be a metric space with a Borel
regular outer measure µ . Recall, that the outer measure µ is Borel regular if it
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is a Borel measure and for every E ⊂ X there is a Borel set B ⊂ X such that
E ⊂ B and µ(E) = µ(B) . A function u ∈ Lp(X) belongs to the Sobolev space
W 1,p(X) , 1 < p < ∞ , if there is a non-negative function g ∈ Lp(Rn) such that

(1.2) |u(x) − u(y)| ≤ d(x, y)
(

g(x) + g(y)
)

for every x, y ∈ X \ F , x 6= y , with µ(F ) = 0. In the Euclidean case with the
Lebesgue measure this definition is equivalent to the standard definition of the
Sobolev space. Observe that in this case we may choose g = M |∇u| in (1.2), but
we cannot take g = |∇u| , in general. The space W 1,p(X) is endowed with the
Sobolev norm

(1.3) ‖u‖W 1,p(X) =
(

‖u‖p
Lp(X) + ‖u‖p

L1,p(X)

)1/p
,

where
‖u‖L1,p(X) = inf

{

‖g‖Lp(X) : g satisfies (1.2)
}

.

This norm enables us to define the Sobolev p-capacity of an arbitrary E ⊂ X by

(1.4) Cp(E) = inf
u∈A (E)

‖u‖p
W 1,p(X),

where
A (E) =

{

u ∈ W 1,p(X) : u ≥ 1 on a neighbourhood of E
}

.

Clearly, this generalizes the classical definition of the Sobolev p-capacity in the
Euclidean case with the Lebesgue measure which is analogous to definition (1.4)
except that the norm

(1.5) ‖u‖W 1,p(Rn) =
(

‖u‖p
Lp(Rn) + ‖∇u‖p

Lp(Rn)

)1/p

is used, see [FZ], [HKM, Section 2.35] and [K]. In the Euclidean case with the
Lebesgue measure the norms defined by (1.3) and (1.5), and hence also the capac-
ities, are equivalent. The capacity (1.4) shares many properties with the classical
Sobolev capacity. These include monotonicity, countable subadditivity and sev-
eral convergence results. All these are studied in detail in Section 3, where we
also prove that each function in W 1,p(X) has a p-quasicontinuous representative.
For the classical case, see [MK] and [HKM, Chapter 4]. In Section 4 we relate the
Sobolev capacity to various measures. Here an obvious choice is the measure µ .
If the measure µ is doubling, which means that there is c ≥ 1 so that

µ
(

B(x, 2r)
)

≤ cµ
(

B(x, r)
)

holds for every x ∈ X and r > 0, then we provide quite precise capacity estimates
for balls in X . In this case our space is a special case of a space of homogeneous
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type in the sense of Coifman and Weiss, see [CW]. A nontrivial example of a
metric space with a doubling measure is given by vector fields in Rn satisfying
Hörmander’s condition with the Lebesgue measure, see [FGW], [NSW] and [CDG].
Moreover, if µ is regular with dimension s , which means that there are s > 0 and
c ≥ 1 so that

c−1rs ≤ µ
(

B(x, r)
)

≤ crs

for all x ∈ X and 0 < r ≤ diam(X) , then we prove counterparts of the classical
results relating the capacity and the Hausdorff measure. A similar problem on
Carnot groups is studied in [He]. In fact, if µ is regular with dimension s , then
the Hausdorff dimension of X equals s and µ and the s -dimensional Hausdorff
measures are bounded by constant times each other. As examples of regular metric
spaces we mention self-similar fractals with an invariant measure, the Carnot group
with the Carnot–Carathéodory metric and the bi-invariant Haar measure, see [FS].
For further examples we refer to [S1] and [S2].

2. Sobolev space

Let (X, d) be a metric space and let µ be a non-negative Borel regular outer
measure on X . In the following, we keep the triple (X, d, µ) fixed, and for short,
we denote it by X . Let 1 < p < ∞ . Then Lp(X) is the Banach space of all
µ-a.e. defined µ-measurable functions u: X → [−∞,∞] for which the norm

‖u‖Lp(X) =

(
∫

X

|u|p dµ

)1/p

is finite. Suppose that u: X → [−∞,∞] is µ-measurable. We denote by D(u)
the set of all µ-measurable functions g: X → [0,∞] such that

(2.1) |u(x) − u(y)| ≤ d(x, y)
(

g(x) + g(y)
)

for every x, y ∈ X \ F , x 6= y , with µ(F ) = 0. Note that the right hand side
of (2.1) is always defined for x 6= y . At the points x, y ∈ X , x 6= y , where the
left hand side of (2.1) is undefined we may assume that the right hand side is
+∞ . Following the original definition due to Haj lasz, the Dirichlet space L1,p(X)
consists of all µ-measurable functions u with D(u)∩Lp(X) 6= ∅ ; the space L1,p(X)
is endowed with the seminorm

(2.2) ‖u‖L1,p(X) = inf
{

‖g‖Lp(X) : g ∈ D(u) ∩ Lp(X)
}

.

The Sobolev space W 1,p(X) is the space of all functions u ∈ Lp(X) for which
D(u) ∩ Lp(X) 6= ∅ . It is clear that (2.2) defines a seminorm in W 1,p(X) . An
application of the the uniform convexity of Lp(X) implies that there is a unique
minimizer of (2.2); this means that the infimum is attained by a unique function
in D(u) ∩ Lp(X) . We equip the Sobolev space W 1,p(X) with the norm

(2.3) ‖u‖W 1,p(X) =
(

‖u‖p
Lp(X) + ‖u‖p

L1,p(X)

)1/p
.

Then W 1,p(X) is a linear space. In addition, it satisfies the following lattice
property.
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2.4. Lemma. Suppose that u1, u2 ∈ W 1,p(X) . If g1 ∈ D(u1) and g2 ∈
D(u2) , then

(i) u = max(u1, u2) ∈ W 1,p(X) and max(g1, g2) ∈ D(u) ∩ Lp(X) ,

(ii) v = min(u1, u2) ∈ W 1,p(X) and max(g1, g2) ∈ D(v) ∩ Lp(X) .

Proof. We prove the case (i) only. Let g = max(g1, g2) and suppose that
F1 and F2 are the exeptional sets for u1 and u2 in (2.1), respectively. Clearly
u, g ∈ Lp(X) . It remains to show that g ∈ D(u) . To see this, let A =

{

x ∈

X \ (F1 ∪ F2): u1(x) ≥ u2(x)
}

. If x, y ∈ A , then

|u(x) − u(y)| = |u1(x) − u1(y)| ≤ d(x, y)
(

g1(x) + g1(y)
)

.

Analogously, for x, y ∈ X \ A we obtain |u(x) − u(y)| ≤ d(x, y)
(

g2(x) + g2(y)
)

.
For the remaining cases, let x ∈ A and y ∈ X \ A . If u1(x) ≥ u2(y) , then

|u(x) − u(y)| = u1(x) − u2(y) ≤ u1(x) − u1(y) ≤ d(x, y)
(

g1(x) + g1(y)
)

.

If u1(x) < u2(y) , then

|u(x) − u(y)| = u2(y) − u1(x) ≤ u2(y) − u2(x) ≤ d(x, y)
(

g2(x) + g2(y)
)

.

The case x ∈ X \ A and y ∈ A follows by symmetry and hence

|u(x) − u(y)| ≤ d(x, y)
(

g(x) + g(y)
)

for all x, y ∈ X \ (F1 ∪ F2) with µ(F1 ∪ F2) = 0.

The following lemma shows that W 1,p(X) is closed under µ-a.e. convergence
in a certain sense.

2.5. Lemma. The function u belongs to W 1,p(X) if and only if u ∈ Lp(X)
and there are functions ui ∈ Lp(X) , i = 1, 2, . . ., such that ui → u µ -a.e. and

gi ∈ D(ui) ∩ Lp(X) such that gi → g µ-a.e. for some g ∈ Lp(X) .

Proof. If u ∈ W 1,p(X) , then the claim of the lemma is clear. To see the
converse, suppose that u, g ∈ Lp(X) , gi ∈ D(ui)∩Lp(X) and ui → u µ -a.e. and
gi → g µ-a.e. Then

(2.6) |ui(x) − ui(y)| ≤ d(x, y)
(

gi(x) + gi(y)
)

for all x, y ∈ X \ Fi with µ(Fi) = 0, i = 1, 2, . . . . Let A ⊂ X be such that
ui(x) → u(x) and gi(x) → g(x) for all x ∈ X \ A and µ(A) = 0. Write F =
A ∪

⋃∞
i=1 Fi ; then µ(F ) = 0. Let x, y ∈ X \ F , x 6= y . From (2.6) we obtain

|u(x) − u(y)| ≤ d(x, y)
(

g(x) + g(y)
)

and thus g ∈ D(u) ∩ Lp(X) . This completes the proof.
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Another important property of the Sobolev functions is the following Poincaré
inequality. The proof can be found in [Ha], but we present it here for the sake of
completeness. We use the familiar notation

fE =

∫

−
E

f dµ =
1

µ(E)

∫

E

f dµ

for µ-measurable E ⊂ X of positive and finite measure.

2.7. Lemma. If u ∈ W 1,p(X) and E ⊂ X is µ-measurable with 0 <

µ(E) < ∞ , then for every g ∈ D(u) ∩ Lp(X) we have

∫

E

|u − uE |
p dµ ≤ 2p diam(E)p

∫

E

gp dµ.

Proof. By the Hölder inequality

|u(x) − uE | ≤

∫

−
E

|u(x) − u(y)| dµ(y) ≤

(
∫

−
E

|u(x) − u(y)|p dµ(y)

)1/p

.

An integration completes the proof, because

∫

E

|u(x) − uE |
p dµ(x) ≤

∫

E

∫

−
E

|u(x) − u(y)|p dµ(y) dµ(x)

≤ 2p−1 diam(E)p

∫

E

(

g(x)p +

∫

−
E

g(y)p dµ(y)

)

dµ(x)

= 2p diam(E)p

∫

E

gp dµ.

3. Capacity

For 1 < p < ∞ , the Sobolev p-capacity of the set E ⊂ X is the number

Cp(E) = inf
u∈A (E)

‖u‖p
W 1,p(X),

where
A (E) =

{

u ∈ W 1,p(X) : u ≥ 1 on a neighbourhood of E
}

.

If A (E) = ∅ , we set Cp(E) = ∞ . Functions belonging to A (E) are called
admissible functions for E .

3.1. Remark. We can restrict ourselves in the definition of the capacity to
those admissible functions u for which 0 ≤ u ≤ 1. Indeed, if

A
′(E) =

{

u ∈ A (E) : 0 ≤ u ≤ 1
}

,
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then A ′(E) ⊂ A (E) implies

Cp(E) ≤ inf
u∈A ′(E)

‖u‖p
W 1,p(X).

For the reverse inequality, let ε > 0 and take u ∈ A (E) such that

‖u‖p
W 1,p(X) ≤ Cp(E) + ε.

Then v = max
(

0, min(u, 1)
)

belongs to A ′(E) and by Lemma 2.4 we have D(u) ⊂
D(v) . Therefore

inf
u∈A ′(E)

‖u‖p
W 1,p(X) ≤ ‖v‖p

W 1,p(X) ≤ ‖u‖p
W 1,p(X) ≤ Cp(E) + ε

and letting ε → 0 we obtain

inf
u∈A ′(E)

‖u‖p
W 1,p(X) ≤ Cp(E).

This completes the proof.

In the Euclidean case with the Lebesgue measure the Sobolev p-capacity
enjoys many desirable properties, one of the most important of which says that it
is an outer measure. This is also true in our context.

3.2. Theorem. The Sobolev p-capacity is an outer measure.

Proof. Clearly Cp(∅) = 0 and the definition of the capacity implies mono-
tonicity.

To prove countable subadditivity, suppose that Ei , i = 1, 2, . . ., are subsets
of X . Let ε > 0. We may assume that

∑∞
i=1 Cp(Ei) < ∞ . Next we choose

ui ∈ A (Ei) and gui
∈ D(ui) ∩ Lp(X) so that

‖ui‖
p
Lp(X) + ‖gui

‖p
Lp(X) ≤ Cp(Ei) + ε2−i,

for i = 1, 2, . . . . We show that v = supi ui is admissible for
⋃∞

i=1 Ei and g =
supi gui

∈ D(v) ∩ Lp(X) . First we observe that v, g ∈ Lp(X) . Then we define
vk = max1≤i≤k ui . By Lemma 2.4 the function gvk

= max1≤i≤k gui
belongs to

D(vk) ∩ Lp(X) . Since vk → v µ-a.e. and gvk
→ g µ-a.e., Lemma 2.5 yields

v ∈ W 1,p(X) . Clearly v ≥ 1 in a neighbourhood of
⋃∞

i=1 Ei . This implies that

Cp

(

∞
⋃

i=1

Ei

)

≤ ‖v‖p
W 1,p(X) ≤

∞
∑

i=1

(

‖ui‖
p
Lp(X) + ‖gui

‖p
Lp(X)

)

≤
∞
∑

i=1

Cp(Ei) + ε.

The claim follows by letting ε → 0.
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3.3. Remark. The Sobolev p-capacity is an outer capacity, that is,

Cp(E) = inf
{

Cp(O) : O ⊃ E, O open
}

.

Indeed, by monotonicity, Cp(E) ≤ inf{Cp(O) : O open, E ⊂ O} . To see the
inequality into the other direction, let ε > 0 and take u ∈ A (E) such that

‖u‖p
W 1,p(X) ≤ Cp(E) + ε.

Since u ∈ A (E) there is an open set O containing E such that u ≥ 1 on O ,
which implies

Cp(O) ≤ ‖u‖p
W 1,p(X) ≤ Cp(E) + ε.

The equality follows by letting ε → 0.

3.4. Lemma. If X ⊃ C1 ⊃ C2 ⊃ · · · are compact sets and C =
⋂∞

i=1 Ci ,

then

Cp(C) = lim
i→∞

Cp(Ci).

Proof. First we observe that monotonicity yields limi→∞ Cp(Ci) ≥ Cp(C) .
On the other hand, let O be an open set containing C . By the compactness of C ,
Ci ⊂ O for all sufficiently large i . Therefore limi→∞ Cp(Ci) ≤ Cp(O) and since
the Sobolev p-capacity is an outer capacity, see Remark 3.3, we obtain the claim
by taking infimum over all open sets O containing C .

3.5. Theorem. If O1 ⊂ O2 ⊂ · · · are open subsets of X and O =
⋃∞

i=1 Oi ,

then

Cp(O) = lim
i→∞

Cp(Oi).

Proof. Monotonicity implies limi→∞ Cp(Oi) ≤ Cp(O) . To prove the opposite
inequality, we may assume that limi→∞ Cp(Oi) < ∞ . Let ε > 0 and ui ∈ A (Oi) ,
i = 1, 2, . . ., and gui

∈ D(ui) ∩ Lp(X) be such that

‖ui‖
p
Lp(X) + ‖gui

‖p
Lp(X) ≤ Cp(Oi) + ε.

Now (ui) is a bounded sequence in Lp(X) and hence it has a weakly convergent
subsequence, which we denote again by (ui) . The sequence (gui

) is also bounded
in Lp(X) and hence, by passing to a subsequence, we may assume that ui → u

weakly in Lp(X) and gui
→ g weakly in Lp(X) . Using the Banach–Saks theorem

we see that the sequence vj = j−1
∑j

i=1 ui converges to u in Lp(X) and gvj
=

j−1
∑j

i=1 gvi
converges to g in Lp(X) . Now there is a subsequence of (vj) so

that vj → u µ -a.e. and gvk
→ g µ-a.e. The function u belongs to W 1,p(X) by

Lemma 2.5. On the other hand vj → 1 µ-a.e. in O and hence u ≥ 1 µ-a.e. there.
This means that u ∈ A (O) . By the weak lower semicontinuity of norms

Cp(O) ≤ ‖u‖p
Lp(X) +‖g‖p

Lp(X) ≤ lim inf
i→∞

(

‖ui‖
p
Lp(X) +‖gui

‖p
Lp(X)

)

≤ lim
i→∞

Cp(Oi)+ε

from which the claim follows by letting ε → 0.
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Before proving the next lemma we recall some terminology. We say that a
property holds p-quasieverywhere (p-q.e.), if it holds except of a set of p-capacity
zero.

3.6. Theorem. For each Cauchy sequence of functions in W 1,p(X) ∩ C(X)
there is a subsequence which converges pointwise p-q.e. in X . Moreover, the

convergence is uniform outside a set of arbitrary small p-capacity.

Proof. There is a subsequence of (ui) , which we still denote by (ui) , such
that

∞
∑

i=1

2ip‖ui − ui+1‖
p
W 1,p(X) < ∞.

For i = 1, 2, . . ., denote Ei =
{

x ∈ X : |ui(x)−ui+1(x)| > 2−i
}

and Fj =
⋃∞

i=j Ei .

By continuity 2i(ui − ui+1) is admissible for Ei , which implies

Cp(Ei) ≤ 2ip‖ui − ui+1‖
p
W 1,p(X)

and by subadditivity we obtain

Cp(Fj) ≤
∞
∑

i=j

Cp(Ei) ≤
∞
∑

i=j

2ip‖ui − ui+1‖
p
W 1,p(X).

Hence

Cp

( ∞
⋂

j=1

Fj

)

≤ lim
j→∞

Cp(Fj) = 0

and (ui) converges in X \
⋂∞

j=1 Fj . Moreover,

|uj − uk| ≤
k−1
∑

i=j

|ui − ui+1| ≤
k−1
∑

i=j

2−i ≤ 21−j

in X \Fj for every k > j , which means that ui convergence is uniform in X \Fj .
The theorem follows.

A function u: X → [−∞,∞] is p-quasicontinuous in X if for every ε > 0
there is a set E such that Cp(E) < ε and the restriction of u to X \ E is
continuous. By outer regularity (Remark 3.3), we may assume that E is open.
By [Ha, Theorem 3], W 1,p(X) is a Banach space and by [Ha, Theorem 5], C(X)∩
W 1,p(X) is a dense subspace of W 1,p(X) and hence completeness implies that
W 1,p(X) can be characterized as the completion of C(X)∩W 1,p(X) in the norm
defined by (2.3). This means that u ∈ W 1,p(X) if and only if there exist sequences
of functions ui ∈ Lp(X) ∩ C(X) and gi ∈ D(ui − u) such that ui → u and
gi → 0 in Lp(X) . We deduce from the previous theorem that the limit function
is p-quasicontinuous and hence each Sobolev function has a p-quasicontinuous
representative.

3.7. Corollary. For each u ∈ W 1,p(X) there is a p-quasicontinuous function

v ∈ W 1,p(X) such that u = v µ-a.e. in X .
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4. Capacity and measure

We are mainly interested in the sets of vanishing capacity, since they are in
some sense exceptional sets in the theory Sobolev spaces. Our first result is rather
immediate.

4.1. Lemma. µ(E) ≤ Cp(E) for every E ⊂ X .

Proof. If u ∈ A (E) , then there is an open O ⊃ E such that u ≥ 1 in O and
hence

µ(E) ≤ µ(O) ≤ ‖u‖p
Lp(X) ≤ ‖u‖p

W 1,p(X).

We obtain the claim by taking the infimum over all u ∈ A (E) .

In particular, sets of capacity zero are also of measure zero. From now on we
assume in this section that the measure is nontrivial, Borel regular and that there
is cd ≥ 1 such that

(4.2) µ
(

B(x, 2r)
)

≤ cd µ
(

B(x, r)
)

for all x ∈ X and r > 0. A measure satisfying the condition (4.2) is said to be
doubling and the constant cd is called the doubling constant. If µ is doubling,
then every open set has a nonzero measure. If 0 < r < R < ∞ and x ∈ X , then
iterating the doubling condition we get

(4.3) µ
(

B(x, R)
)

≤ c
(R

r

)s

µ
(

B(x, r)
)

,

where

(4.4) s =
log cd

log 2

and c depends only on the doubling constant cd . Observe that in the Euclidean
case with the Lebesgue measure s equals to the dimension of the space. Hence
(4.4) defines a dimension related to the doubling measure µ .

4.5. Capacity estimates. Here we provide a sharp upper bound for the
p-capacity of a ball.

4.6. Theorem. Let x0 ∈ X and 0 < r ≤ 1 . If µ is doubling, then

(4.7) Cp

(

B(x0, r)
)

≤ cr−pµ
(

B(x0, r)
)

where c depends only on the doubling constant and p .
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Proof. Let 0 < r < R and define

u(x) =











R − d(x, x0)

R − r
, x ∈ B(x0, R) \ B(x0, r),

1, x ∈ B(x0, r),
0, x ∈ X \ B(x0, R),

and

g(x) =

{

1

R − r
, x ∈ B(x0, R),

0, x ∈ X \ B(x0, R).

We show that g ∈ D(u) . Let first x, y ∈ A = B(x0, R) \ B(x0, r) . Then

|u(x) − u(y)| =
|d(x, x0) − d(y, x0)|

R − r
≤

d(x, y)

R − r
.

Hence (2.1) follows in this case. Next let x ∈ A and y ∈ B(x0, r) . Now

|u(x) − u(y)| = 1 − u(x) =
d(x, x0) − r

R − r
.

Since d(x, x0) ≥ r > d(y, x0) , we have

d(x, x0) − r ≤ d(x, x0) − d(y, x0) ≤ d(x, y)

and (2.1) follows. The case y ∈ A and x ∈ B(x0, r) is completely analogous. If
x, y ∈ B(x0, r) or x, y ∈ X \B(x0, R) , then clearly (2.1) holds. For the remaining
cases, let y ∈ B(x0, r) and x ∈ X \ B(x0, R) . Now

|u(x) − u(y)| = 1 =
R − r

R − r
≤

d(x, y)

R − r
,

which implies (2.1). Finally, if x ∈ A and y ∈ X \ B(x0, R) , then

|u(x) − u(y)| = u(x) =
R − d(x, x0)

R − r

and since d(x, x0) < R < d(y, x0) , we obtain

R − d(x, x0) ≤ d(y, x0) − d(x, x0) ≤ d(x, y)

and (2.1) again holds. Thus g ∈ D(u) , u belongs to A
(

B(x0, r)
)

and

Cp

(

B(x0, r)
)

≤

∫

B(x0,R)

up dµ +

∫

B(x0,R)

gp dµ ≤
(

1 + (R − r)−p
)

µ
(

B(x0, R)
)

≤ c
(

1 + (R − r)−p
)

(R

r

)s

µ
(

B(x0, r)
)

.

This leads to (4.7) if we choose R = 2r .

Next we improve estimate (4.7) in the case p = s where s is defined by (4.4).
To this end, we need a simple equality which holds for any Borel measure µ .
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4.8. Lemma. If s > 0 , R > 0 and x0 ∈ X , then

∫

B(x0,R)

d(x, x0)−s dµ(x) = s

∫ R

0

µ
(

B(x0, ρ)
)

ρs+1
dρ + R−sµ

(

B(x0, R)
)

.

Proof. The Fubini theorem implies

∫

B(x0,R)

d(x, x0)−s dµ(x) = s

∫ ∞

1/R

ρs−1µ
({

x ∈ X : d(x, x0)−1 > ρ
})

dρ

+ R−sµ
({

x ∈ X : d(x, x0) < R
})

and the claim follows by changing variables in the first integral on the right hand
side.

4.9. Theorem. Let x0 ∈ X and 0 < r ≤ 1
2
. If µ is doubling and s is

defined by (4.4) , then

(4.10) Cs

(

B(x0, r)
)

≤ c
(

log
1

r

)1−s

r−sµ
(

B(x0, r)
)

where c depends only on the doubling constant.

Proof. Let 0 < r ≤ 1
2

and set B = B(x0, 1). Define

u(x) =











(

log
1

r

)−1

log
1

d(x, x0)
, x ∈ B \ B(x0, r),

1, x ∈ B(x0, r),
0, x ∈ X \ B,

and

g(x) =



















(

log
1

r

)−1 1

d(x, x0)
, x ∈ B \ B(x0, r),

(

log
1

r

)−1 1

r
, x ∈ B(x0, r),

0, x ∈ X \ B.

We show that gu ∈ D(u) . To see this, let x, y ∈ A = B \ B(x0, r) . If d(y, x0) ≤
d(x, x0) , then

|u(x) − u(y)| =
(

log
1

r

)−1

log
d(x, x0)

d(y, x0)
≤

(

log
1

r

)−1 d(x, x0) − d(y, x0)

d(y, x0)

≤
(

log
1

r

)−1 d(x, y)

d(y, x0)
≤

(

log
1

r

)−1

d(x, y)
( 1

d(x, x0)
+

1

d(y, x0)

)

.
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Here we used the elementary inequality log t ≤ t − 1 for t ≥ 1. By symmetry, a
similar estimate holds whenever d(x, x0) < d(y, x0) . For the remaining cases, let
next x ∈ A and y ∈ B(x0, r) . Now

|u(x) − u(y)| = 1 − u(x) =
(

log
1

r

)−1(

log
1

r
+ log

1

d(x, x0)

)

=
(

log
1

r

)−1

log
d(x, x0)

r
≤

(

log
1

r

)−1 d(x, x0) − r

r

≤
(

log
1

r

)−1 d(x, y) − d(y, x0)

r
≤

(

log
1

r

)−1 d(x, y)

r

≤
(

log
1

r

)−1

d(x, y)
(1

r
+

1

d(x, x0)

)

and hence (2.1) holds also in this case. By symmetry it holds for x ∈ B(x0, r) and
y ∈ A . For x, y ∈ B(x0, r) and x, y ∈ X \B inequality (2.1) is clear. If y ∈ X \B

and x ∈ A , then

|u(x) − u(y)| = u(x) =
(

log
1

r

)−1

log
R

d(x, x0)
≤

(

log
1

r

)−1 R − d(x, x0)

d(x, x0)

≤
(

log
1

r

)−1 d(y, x0) − d(x, x0)

d(x, x0)
≤

(

log
1

r

)−1 d(x, y)

d(x, x0)

and (2.1) holds also in this case. It remains to check (2.1) when x ∈ X \ B and
y ∈ B(x0, r) . Now

|u(x) − u(y)| = 1 =
d(x, y)

d(x, y)
≤

d(x, y)

1 − r
≤

(

log
1

r

)−1 d(x, y)

r

and hence (2.1) holds. Thus g ∈ D(u) and since u = 1 in B(x0, r) , the function
u belongs to A

(

B(x0, r)
)

. Now

∫

B

gs dµ =

∫

B(x0,r)

gs dµ +

∫

B\B(x0,r)

gs dµ.

The first integral on the right hand side is

∫

B(x0,r)

gs dµ =
(

log
1

r

)−s µ
(

B(x0, r)
)

rs
.

For the second integral we employ Lemma 4.8,
∫

B\B(x0,r)

gs dµ =
(

log
1

r

)−s
∫

B\B(x0,r)

d(x, x0)−s dµ(x)

=
(

log
1

r

)−s
(

s

∫ 1

r

µ
(

B(x0, ρ)
)

ρs+1
dρ + µ(B) − r−sµ

(

B(x0, r)
)

)

.
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Using (4.3), we obtain

∫

B

gs dµ =
(

log
1

r

)−s
(

s

∫ 1

r

µ
(

B(x0, ρ)
)

ρs+1
dρ + µ(B)

)

≤ cr−s
(

log
1

r

)−s(

s log
1

r
+ 1

)

µ
(

B(x0, r)
)

≤ cr−s
(

log
1

r

)1−s(

s +
1

log 2

)

µ
(

B(x0, r)
)

.

Clearly u ≤ g and hence

Cp

(

B(x0, r)
)

≤ 2

∫

B

gs dµ

which completes the proof.

4.11. Hausdorff measures. We recall the definition of Hausdorff measures.
Let E ⊂ X and suppose that h: [0,∞) → [0,∞) is a non-decreasing function so
that

lim
r↓0

h(r) = h(0) = 0.

For 0 < δ ≤ ∞ and E ⊂ X we define

H
h

δ (E) = inf

{ ∞
∑

i=1

h(ri) : E ⊂
∞
⋃

i=1

B(xi, ri), ri ≤ δ

}

.

Now
H

h(E) = lim
δ↓0

H
h

δ (E) = sup
δ>0

H
h

δ (E)

produces the standard (spherical) h-Hausdorff measure of E . If h(t) = ts for
0 ≤ s < ∞ , then we obtain the s -dimensional (spherical) Hausdorff measure
which we denote by H s . The Hausdorff dimension of a set E ⊂ X is

dim E = inf{s : H
s(E) = 0} = sup{s : H

s(E) = ∞}.

For the properties of Hausdorff measures we refer to [F, 2.10].
We say that a measure µ is regular with dimension s > 0, if there is c ≥ 1

such that

(4.12) c−1rs ≤ µ
(

B(x, r)
)

≤ crs

for each x ∈ X and 0 < r ≤ diam(X) . If µ is regular with dimension s , then µ is
doubling and it satisfies (4.3). Moreover, X has Hausdorff dimension s and there
is a constant c > 0 such that c−1H s(E) ≤ µ(E) ≤ cH s(E) for every E ⊂ X .



380 Juha Kinnunen and Olli Martio

4.13. Theorem. Let h: [0,∞) → [0,∞) ,

h(t) =

{

ts−p, for s > p,
(

log
1

t

)1−s

, for s = p.

If µ is regular with dimension s , then for every E ⊂ X ,

Cp(E) ≤ cH h(E).

The constant c depends only on p and the constant in (4.12) .

Proof. Let B(xi, ri) , i = 1, 2, . . ., be any covering of E such that the radii
satisfy ri ≤

1
2 . Now (4.7) and (4.10) yield

Cp

(

B(xi, ri)
)

≤







c
(

log
1

ri

)1−s

, for s = p,

cr
s−p
i , for p < s,

and subadditivity implies

Cp(E) ≤
∞
∑

i=1

Cp

(

B(xi, ri)
)

≤ c

∞
∑

i=1

h(ri).

The claim follows by taking the infimum over all coverings by balls and letting the
radii tend to zero.

4.14. Corollary. Let h be as in Theorem 4.13 . If H h(E) = 0 , then

Cp(E) = 0 .

We next consider the converse of Theorem 4.13. We prove that if µ is reg-
ular with dimension s , then sets of p-capacity zero have Hausdorff dimension at
most s − p .

4.15. Theorem. If E ⊂ X with Cp(E) = 0 , then H t(E) = 0 for all

t > s − p .

Proof. Let E ⊂ X be such that Cp(E) = 0. Then for every i = 1, 2, . . .,
there is ui ∈ A (E) and gui

∈ D(ui) ∩ Lp(X) such that

‖ui‖
p
Lp(X) + ‖gui

‖p
Lp(X) ≤ 2−i.

Define u =
∑∞

i=1 ui and g =
∑∞

i=1 gi . We show that u ∈ A (E) . To this end, let

vk =
∑k

i=1 ui and gvk
=

∑k
i=1 gui

for k = 1, 2, . . . . Then gvk
∈ D(vk) ∩ Lp(X) ,

vk → u µ -a.e. and gvk
→ g µ-a.e. Since u, g ∈ Lp(X) we see from Lemma 2.5

that u ∈ W 1,p(X) and g ∈ D(u) . Moreover, u ≥ 1 µ-a.e. on a neighbourhood of
E which means that u is admissible for E .
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For every λ > 0 and for every x ∈ E there is rx such that µ-a.e. point of
B(x, rx) belongs to {x ∈ X : u(x) ≥ λ} and therefore

(4.16) lim sup
r↓0

∫

−
B(x,r)

u dµ = ∞.

Fix x ∈ E and assume that there is c < ∞ such that

lim sup
r↓0

r−t

∫

B(x,r)

gp dµ < c.

Next we choose R > 0 so small that
∫

B(x,r)

gp dµ < crt

for every 0 < r < R . Denote Bi = B(x, 2−iR) , i = 1, 2, . . . . Then by the
Poincaré inequality (Lemma 2.7) and the n -regularity assumption (4.12) we have

|uBi+1
− uBi

| ≤

∫

−
Bi+1

|u − uBi
| dµ ≤

µ(Bi)

µ(Bi+1)

(
∫

−
Bi

|u − uBi
|p dµ

)1/p

≤ c2−iR

(
∫

−
Bi

gp dµ

)1/p

≤ c(2−iR)(p−s+t)/p.

Hence, for k > j

|uBk
− uBj

| ≤
k−1
∑

i=j

|uBi+1
− uBi

| ≤ c

k−1
∑

i=j

(2−iR)(p−s+t)/p

and so
(

uBi

)

is a Cauchy sequence if t > s−p . This contradicts (4.16) and hence

E ⊂

{

x ∈ X : lim sup
r↓0

r−t

∫

B(x,r)

gp dµ = ∞

}

.

Let

Eλ =

{

x ∈ X : lim sup
r↓0

r−t

∫

B(x,r)

gp dµ > λ

}

.

Then E ⊂ Eλ for every λ > 0 and by [F, 2.10.19 (1)] we obtain

H
t(E) ≤

c

λ

∫

X

gp dµ

for every λ > 0, which implies H t(E) = 0.



382 Juha Kinnunen and Olli Martio

References

[CDG] Capogna, L., D. Danielli, and N. Garofalo: The geometric Sobolev imbedding for
vector fields and the isoperimetric inequality. - Comm. Anal. Geom. 2, 1994, 203–216.

[CW] Coifman, R., and G. Weiss: Analyse harmonique non-commutative sur certains espaces
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