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Abstract. We refine a theorem of Beardon and Maskit by showing that a Kleinian group is
geometrically finite if and only if its limit set consists entirely of conical limit points and parabolic
fixed points.

1. Introduction

Consider a group G of Möbius transformations acting on the two sphere S2 .
Such transformations are identified with elements of PSL(2,C) in a natural way
and G is called Kleinian if it is discrete in this topology (i.e., the identity is
isolated in G). Such a group G also acts as isometries on the hyperbolic 3-ball
B3 . The group G is called geometrically finite if there is a finite sided fundamental
polyhedron for the group action in B3 . The limit set Λ ⊂ S2 is the accumulation
set of the orbit G(0) of 0 ∈ B3 . For z ∈ S2 let Γ(x, r) be the convex hull (in
Euclidean geometry) of {z} and {w ∈ B3 : |w| < r} . The point z is called a
conical limit point if there is a r < 1 such that z is an accumulation point of
Γ(r, x) ∩ G(0). The set of all conical limit points is denoted Λc .

The purpose of this note is to prove

Theorem 1.1. G is geometrically finite if and only if every point of Λ is

either a conical limit point or a fixed point of a parabolic element of G .

The proof actually shows something slightly stronger.

Corollary 1.2. G is geometrically finite if and only if Λ \ Λc is countable

(possibly empty).

Our result is very similar to a result of Beardon and Maskit. To explain the
difference, we need to recall a few facts about parabolic elements of G . A non-
identity Möbius transformation on S2 must have either one or two fixed points
on S2 . If it has two fixed points it must be conjugate to a transformation of the
form z → λz and is called elliptic or loxodromic depending on whether |λ| = 1
or |λ| 6= 1. If the Möbius transformation has only one fixed point it is called
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parabolic and must be conjugate to the transformation z → z + 1. If p is fixed
by some parabolic element of G then the set of parabolic elements in G fixing p
is a subgroup which is isomorphic to either Z or Z2 ; the point p is called rank
one or rank two respectively. Let Ω = S2 \ Λ denote the ordinary set of G . If
p ∈ Λ is a parabolic fixed point of an element g ∈ G , we say p is doubly cusped
if there are disjoint open disks D1, D2 in Ω which are tangent at p and which
are both invariant under g . If p is not doubly cusped, but there is a g -invariant
disk D1 ⊂ Ω, we say p is singly cusped. If neither condition holds we say p is not
cusped.

The fixed point of a parabolic element g ∈ G is clearly a limit point of G ,
but it is never a conical limit point. Beardon and Maskit’s theorem [1] says that
a Kleinian group is geometrically finite if and only if every limit point is either a
conical limit point, a rank two parabolic fixed point or a rank 1, doubly cusped
parabolic fixed point. Thus for groups with no parabolics our result says nothing
new, but it gives a cleaner statement when parabolics are present.

The idea for the proof of Theorem 1.1 comes from the work of J.L. Fernández
and M.V. Melián (personal communication) where they show that dim(Λ\Λc) = 1
when G is a Fuchsian group covering a Riemann surface of infinite area with no
Green’s function. I am grateful to Maria Melián for explaining their results to me
and to Dick Canary, Bernie Maskit and Yair Minsky for conversations about the
problem. I also thank the referee for carefully reading the manuscript and making
several helpful suggestions.

2. Proof of Theorem 1.1

The proof follows from two facts; the first is an easy lemma about hyperbolic
geometry in B3 and the second is a more difficult result of F. Bonahon [3] on
closed geodesics in hyperbolic 3-manifolds.

Lemma 2.1. Given θ > 0 there are C, M < ∞ so that the following is true.

Suppose γ is a piecewise geodesic path from a to b , that is, γ =
⋃n

j=1
γj ⊂ B3 is

a union of disjoint (except for endpoints) geodesic arcs, each of hyperbolic length

at least M and such that γj and γj+1 meet at an angle ≥ θ . Then γ is within

hyperbolic distance C of the geodesic arc connecting a and b . In particular, a

(one sided) infinite path with this property is within hyperbolic distance C of a

infinite geodesic, hence terminates at a single point of S2 and approaches that

point inside some nontangential cone.

The proof is left to the reader. (We will only use the case θ = π/2.) The
axis Ag of a loxodromic element g ∈ G is the (infinite) hyperbolic geodesic in B3

which connects its two fixed points. Let ρ denote the hyperbolic metric on B3 and
let distρ(A, B) denote the hyperbolic distance between two sets. The following is
Bonahon’s result that in a geometrically infinite hyperbolic three manifold, there
is a sequence of closed geodesics which leaves every compact set (we also wish to
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allow Kleinian groups which may have elliptic elements, but Bonahon’s proof is
still valid in this case).

Theorem 2.2 [3]. If G is a geometrically infinite Kleinian group then there

is a sequence of loxodromic elements gj so that distρ

(

Agj
, G(0)

)

→ ∞ .

Proof of Theorem 1.1. By Beardon and Maskit’s theorem, if G is geomet-
rically finite then every limit point is either conical or a parabolic fixed point.
Therefore we need only show that if G is geometrically infinite, then there is a
limit point which is neither conical nor a parabolic fixed point.

Let F =
{

w ∈ B3 : ρ(w, 0) < distρ

(

w, G(0)
)}

. This is a convex fundamental
domain for G . Take the sequence of loxodromics {gj} ⊂ G given by Bonahon’s
theorem and let {Aj} denote the corresponding axes. By replacing each element
by a conjugate, we may assume that distρ(Aj , 0) is minimal over all choices of the
conjugate (the minimum occurs because G is discrete).

Since distρ(Aj, 0) → ∞ as j → ∞ , the Euclidean diameter of the sets Aj

tends to zero. By passing to a subsequence (which we still denote by {Aj}) we
may assume that the sets Aj converge to a point x ∈ S2 . Passing to yet another
subsequence, if necessary, we may also assume that

(2.1) dist
ρ

(

Aj+1, G(Aj)
)

≥ 10 dist
ρ

(Aj , 0) ≥ 10 max(M, 10),

where M is the constant in 2.1 with θ = π/2.
Let x1 ∈ A1 be the point closest to 0 and let L1 be the geodesic arc con-

necting 0 to x1 . In general, let xj ∈ Aj be the point closest to xj−1 and let Lj

be the geodesic arc which connects xj−1 to xj . Note that by the minimality of
its length, Lj meets Aj at angle π/2 (but we can make no estimate of its angle
with Aj−1 ).

Next we want to see that condition (2.1) implies that xj is “near the top” of
Aj , more precisely, there is a C < ∞ such that

(2.2) xj ∈ {w ∈ Aj : ρ(w, 0) ≤ dist
ρ

(Aj , 0) + C}.

Using simply hyperbolic geometry it is enough to show that the angle between
Aj and the geodesic arc [0, xj] is bounded away from zero. To do this we use
hyperbolic trigonometry. Given a hyperbolic geodesic triangle with vertices a, b, c ,
opposite edge lengths A, B, C and vertex angles α, β, γ , we have (cosine rule I,
p. 148 of [2]),

cos(γ) =
cosh(A) cosh(B) − cosh(C)

sinh(A) sinh(B)
.

Now let a = 0, b = xj−1 and c = xj . By (2.1), A, B, C ≥ 100 and A ≥ 10C ,
so cos(γ) is bounded uniformly away from 0 (in fact, is ≥ 9/10). Hence γ (the
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angle between [xj−1, xj] and [0, xj] ) is bounded uniformly away from π/2. Since
[xj−1, xj] meets Aj at angle π/2, we deduce that the angle between [0, xj] and
Aj is uniformly bounded away from zero, as desired.

We now construct an infinite path γ connecting 0 to Λ which satisfies the
conditions of Lemma 2.1 and which diverges from G(0) (i.e., its projection leaves
every compact set in M = B3/G). Lemma 2.1 implies this path is at bounded
hyperbolic distance from a geodesic ray and the endpoint of this ray on S2 will
be the desired point.

We will define γ as a limit of finite piecewise geodesic arcs {γn} where γn

connects 0 to some point in the orbit G(xn) . We begin by setting γ1 = L1 .
Suppose that we have defined γn with the properties that

(1) γn is a piecewise geodesic path connecting 0 to some point of G(xn) .
(2) Each geodesic piece of γn has hyperbolic length at least M (the constant in

Lemma 2.1 with θ = π/2).
(3) Adjacent geodesic pieces of γ make an angle larger than π/2 at their common

endpoint.
(4) The last geodesic segment in γn lies in G(Ln) .

By definition, γn ends at some point x̃n = g(xn) ∈ Ãn = g(An) . As noted above,
the angle between γn and Ãn is π/2. The geodesic arc L̃n+1 = g(Ln) also meets
Ãn at x̃n . We do not know what angle it makes with the set Ãn , but there
are two possible ways to orient Ãn as a path and we choose an orientation so
that the angle is ≥ π/2. Follow Ãn in this orientation until we reach a point
yn = h(xn) ∈ Ãn ∩ G(xn) such that

ρ(yn, x̃n) ≥ M.

Let Sn be the arc of Ãn joining x̃n to yn . By our choice of direction along Ãn ,
Sn and h(Ln+1) meet at yn and have angle greater than π/2. Define γn+1 by
adjoining first Sn and then h(Ln) to γn . Clearly we have attained each of the
inductive assumptions.

The construction is easier to follow on M = B3/G ; choose a sequence of
closed geodesics Cj which leave every compact set, fix a point xi ∈ C1 and let Lj

be the shortest geodesic connecting Cj+1 to Cj and let xj be its landing point
on Cj+1 . By passing to a subsequence we may assume the arcs Lj are as long as
we want. We would like the path γ to just be the concatenation of the arcs {Lj} ,
but then we would have no control over the angles at which they meet. Therefore
between each Lj and Lj+1 we traverse the closed geodesic some integral number
of times. Making many turns gives us an arc as long as we wish and choosing one
of the two possible directions gives us angle ≤ π/2 with Lj+1 (the angle with Lj

is automatically π/2 by the minimality of Lj ).
By Lemma 2.1 our path γ ⊂ B3 terminates at a well defined point x ∈ S2 .

Since γ hits infinitely many loxodromic axes, its easy to see that x is a limit of
loxodromic fixed points and hence is in the limit set.
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Next we want to check that our path diverges to infinity in M = B3/G . The
parts of the path made up of the {Sn} are easy to handle, since

dist
ρ

(

Sn, G(0)
)

≥ dist
ρ

(An, 0) → ∞,

as n → ∞ .
The rest of the path is made of translates of the segments {Ln} . We would like

to say that each Ln is a subset of the fundamental domain F . This would be true
by convexity if its endpoints {xn−1, xn} were in F . This is true (by definition)
for x1 since it was defined to be the closest point on A1 to 0. In general, the
point xn is the closest point to xn−1 , not to 0. However, by (2.2), xn lies within
some bounded distance C of F and hence Ln must lie in a C -neighborhood of
F also. This implies

dist
ρ

(

Ln, G(0)
)

≥ dist(Ln, 0) − C.

Since the arcs An are assumed to be converging to a single point on S2 both
diam(Ln) and dist(Ln, S2) (both measured in the Euclidean metric) tend to zero.
This implies distρ(Ln, 0) → ∞ , as desired.

The fact that γ/G diverges to infinity in M immediately implies that its
endpoint is not a conical limit point. To see that the endpoint is not a parabolic
point we have two options. First, we note that we have many choices for the
segments Sn in each stage of the construction of γn . Suppose γ, γ′ are two
possible paths that agree until the choice of yn . Then the (doubly infinite) path
we obtain by (γ ∪ γ′) \ (γ ∩ γ′) satisfies the hypotheses of Lemma 2.1 (if the
two choices of yn are far enough apart). Thus it is within a bounded distance of
a hyperbolic geodesic and hence the endpoints of γ and γ′ on S2 are distinct.
Therefore we can construct uncountably many possible γ ’s with distinct endpoints
and hence uncountably many points in Λ \ Λc . Since the parabolic fixed points
are only countable, there must be a point of Λ\Λc which is not such a point. This
also proves Corollary 1.2.

A second way to see that γ does not terminate at a parabolic fixed point x is
to note that since γ approaches x through a non-tangential cone, it would even-
tually be contained in any horoball at x . Since the projection of γ to M = B/G
contains closed geodesics, this would mean the parabolic thin part corresponding
to x intersects closed geodesics, which contradicts the Margulis lemma, e.g., [3].
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