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Abstract. We give a new proof and an extension of Gehring’s lemma using the real method
of interpolation.

1. Introduction

Let Ω be a domain in Rn and let f be a non-negative locally integrable mea-
surable function, then for any cube Q ⊂ Ω, with sides parallel to the coordinate
axes, we let

∫

−
Q

f(x) dx =
1

|Q|

∫

Q

f(x) dx.

We say that f satisfies a reverse Hölder inequality if for some p ∈ (1,∞) there
exists C ≥ 1 such that

(1)

(
∫

−
Q

f(x)p dx

)1/p

≤ C

∫

−
Q

f(x) dx

for every cube Q ⊂ Ω, with sides parallel to the coordinate axes.
A well known result in the theory of weighted norm inequalities due to Gehring

(cf. [4]) states that under such conditions f satisfies a higher integrability condi-
tion, namely there exists q > p such that f ∈ Lq

loc(Ω). More precisely, it is known
that if f satisfies (1) then, for sufficiently small ε > 0, and q = p+ε > p, we have

(
∫

−
Q

f(x)q dx

)1/q

≤ c

(
∫

−
Q

f(x)p dx

)1/p

for every cube Q ⊂ Ω, with sides parallel to the coordinate axes. There are by
now many versions and extensions of this result (cf. [3], [5], [9], [11], [16], [17]).
Let us also note that Muckenhoupt, in his celebrated paper [14], also proves a
similar result which in effect proves a rearrangement invariance property of Ap

weights (cf. [13] for a brief discussion). In this connection let us also recall the
well known fact that reverse Hölder conditions can be used to characterize A∞

1991 Mathematics Subject Classification: Primary 42B25, 46B70.



390 Mario Milman

(the union of the Ap classes of Muckenhoupt). Moreover, in the applications to
partial differential equations it is important to have some more flexibility in the
formulation of condition (1) (cf. [11], [6], [17]). For example [11] treats weighted
versions of (1) as well as conditions of the form

(2)

(
∫

−
Q

f(x)p dx

)1/p

≤ C

∫

−
2Q

f(x) dx

for every cube Q , with sides parallel to the coordinate axes such that 2Q ⊂ Ω.
The proofs of these results are based on real variable arguments related to

the Calderón–Zygmund decomposition and the scale structure of Lp -spaces.
A perusal of the arguments suggests the possibility that a more general prin-

ciple is at work here. In this note we propose to give a new proof and an extension
of Gehring’s inequality. First we reinterpret reverse Hölder conditions in the set-
ting of general real interpolation scales of spaces. In this set up Gehring’s lemma
appears as an inverse of the usual reiteration formulae of Holmstedt. Interpolation
theory then suggests the appropriate scaling of the general result. Our analysis
allows not only to extend Gehring’s inequality in several directions (e.g. weak type
reverse Hölder inequalities, reverse Hölder conditions in other interpolation scales,
etc.) but also provides a simple proof avoiding the use of Stieltjes integrals (cf.
[4], [16], [17]).

In what follows, by a cube we shall always mean one that has sides parallel
to the coordinate axes, moreover the letter C shall indicate constants that need
not be same in different occurrences.

2. Reformulation of Gehring’s inequality

In order to describe our results we reformulate (1) in a suitable form. Let us
assume from now on that Ω is a fixed open cube, and all the Lp -spaces are based
on Ω. Given x ∈ Ω, let Q ⊂ Ω be such that x ∈ Q , then (1) implies that

(3) Mpf(x) ≤ cMf(x)

where M = M1 is the maximal operator of Hardy–Littlewood associated with Ω
and

Mpf(x) = sup
x∈Q⊂Ω

(
∫

−
Q

|f(x)|p dx

)1/p

.

Taking rearrangements in (3) we see, in view of the equivalence (cf. [7]),

(4) (Mf)∗(t) ≈
1

t

∫ t

0

f∗(s) ds, 0 < t < |Ω|,
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that

(5)

{

1

t

∫ t

0

f∗(s)p ds

}1/p

≤ c
1

t

∫ t

0

f∗(s) ds.

Remark 1. Since we are not going to have explicit use for them in this
note it is appropriate to observe that covering lemmas and Calderón–Zygmund
decompositions are used to prove the equivalence (4).

Now, in order to see how the scale structure of the Lp -spaces enters in this
formulation let us recall a well known tool to construct real interpolation scales:
the K -functional. Let (A0, A1) be a pair of Banach spaces which, for convenience,
shall assume to be such that A1 ⊂ A0 . Then, for f ∈ A0 , t > 0, we let

K(t, f ; A0, A1) = inf
f=f0+f1, fi∈Ai

{‖f0‖A0
+ t‖f1‖A1

}.

Thus, in view of the well known formulae (cf. [2])

K(t, f, L1, L∞) =

∫ t

0

f∗(s) ds

and

(6) K(t, f, Lp, L∞) ≈

{
∫ tp

0

f∗(s)p ds

}1/p

we see that (5) can be rewritten as

K(t, f, Lp, L∞) ≤ ct1−pK(tp, f, L1, L∞).

At this point let us also recall that, using the K method of interpolation, we have
the following characterizations, 1 < p < ∞ ,

Lp = (L1, L∞)1/p′,p;K

and moreover, if q > p

(7) Lq = (Lp, L∞)1−p/q,q;K.

Thus, we are led to consider the validity of the following implication

K(t, f, Lp, L∞) ≤ ct1−pK(tp, f, L1, L∞)(8)

implies that there exists

q > p such that K(t, f, Lq, L∞) ≤ Ct1−q/pK(tq/p, f, Lp, L∞).(9)
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In order to understand the hypothesis (8) we recall that, although (6) can
be obtained directly from the definitions, an equivalent computation of the K -
functional for the pair of (Lp, L∞) can be based on the reiteration theorem of
Holmstedt [8], which in this context gives

K(t, f, Lp, L∞) ≈

{
∫ tp

0

(

K(s, f, L1, L∞)s−1/p′)p ds

s

}1/p

.

Since for a fixed element f the K -functional, for any pair of spaces, is such that
K(t)/t decreases we see that we always have

K(t, f, Lp, L∞) ≥ ct
K(tp, f, L1, L∞)

tp
.

Our assumption on f in (8) thus guarantees that we have the equivalence

(10) K(t, f, Lp, L∞) ≈ t
K(tp, f, L1, L∞)

tp
.

Likewise, Holmstedt’s formula also implies

K(t, f, Lq, L∞) ≈

{
∫ tq/p

0

(

K(s, f, Lp, L∞)s−(1−p/q)
)q ds

s

}1/q

and the right hand side of (9) takes the form

K(t, f, Lq, L∞) ≈ t
K(tq/p, f, Lp, L∞)

tq/p
.

Combinig this with (10) we see that the conjectured estimate reads

K(t, f, Lp, L∞) ≈ t
K(tp, f, L1, L∞)

tp

implies the existence of q > p such that

K(t, f, Lq, L∞) ≈ t
K(tq/p, f, Lp, L∞)

tq/p

and using (10) once again (now applied on the right hand side of the previous
statement) we finally arrive to

K(t, f, Lp, L∞) ≈ t
K(tp, f, L1, L∞)

tp

implies the existence of q > p such that
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K(t, f, Lq, L∞) ≈ t
K(tq, f, L1, L∞)

tq
.

In this form Gehring’s inequality appears as a reverse inequality of a reiter-
ation theorem. What we seek to prove is that the validity of the estimate at one
“point” of the scale implies its validity for other nearby “points”. These consid-
erations suggest that a proof of a sharp version of Gehring’s inequality could be
based on the Holmstedt argument, i.e. via rescaling of good decompositions. More-
over, once framed in this context Gehring’s lemma becomes a purely interpolation
theory result with potentially wider applicability.

Theorem 1. Let (A0, A1) be an ordered pair of Banach spaces (i.e. A1 ⊂ A0 )
and suppose that f ∈ A0 is such that for some constant c > 1 , θ0 ∈ (0, 1) ,
1 ≤ p < ∞ , we have for every t ∈ (0, 1) ,

(11) K(t, f ; Aθ0,p;K , A1) ≤ ct
K(t1/(1−θ0), f ; A0, A1)

t1/(1−θ0)
.

Then, there exists θ1 > θ0 , such that for q ≥ p , 0 < t < 1 , we have

K(t, Aθ1,q;K, A1) ≈ t
K(t1/(1−θ1), f ; A0, A1)

t1/(1−θ1)
.

Remark 2. We remark that it is routine to formulate analogous results using
the E method. It was in fact the observation that the estimates in [11] were related
to the E method of interpolation that motivated our results.

3. Proof of the generalized Gehring inequality

While the content of Theorem 1 goes deep into the structure of real interpola-
tion scales the underlying estimates are elementary. Indeed, in view of Holmstedt’s
formula we can reduce the proof of our result to a simple analytic lemma.

Lemma 2. Let h: [0, 1] → R+ be an increasing function such that h(s)/s
is decreasing, and for θ ∈ (0, 1) let hθ(s) = s−θh(s) . Suppose that there exists

θ0 ∈ (0, 1) , p ≥ 1 , C > 1 , such that for every t ∈ (0, 1) we have

(12)

∫ t

0

hθ0
(s)p ds

s
≤ Chθ0

(t)p.

Then, there exists 1 > θ1 > θ0 , such that for q ≥ p , we have

∫ t

0

hθ1
(s)q ds

s
≤ Chθ1

(t)q.
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Before proving the lemma let us show how it can be used to prove Theorem 1.
Indeed, under the assumptions of Theorem 1 we have

K(t1−θ0 , f, Aθ0,p;K , A1)
p ≈

∫ t

0

(

s−θ0K(s, f, Ā)
)p ds

s
≤ C

(

t−θ0K(t, f, Ā)
)p

and therefore if we let h(s) = K(s, f, Ā) we can apply the previous lemma to
conclude that for suitable θ1 ∈ (0, 1), θ1 > θ0 , and q ≥ p

K(t1−θ1 , f, Aθ1,q;K, A1)
q ≈

∫ t

0

(

s−θ1K(s, f, Ā)
)q ds

s
≤ C

(

t−θ1K(t, f, Ā)
)q

as required.
Let us now proceed with the proof of the lemma. As a first step we shall

show that there exists a constant c ∈ (0, 1) such that s−chθ0
(s)p behaves like an

increasing function: more precisely we shall show that there exists c ∈ (0, 1) and
a constant K such that for every x, y ∈ (0, 1), x < y , we have x−chθ0

(x)p ≤
Ky−chθ0

(y)p . It is easy to see that if (12) holds, then there exists c ∈ (0, 1) such
that

(13)
c

t
≤

d

dt

(

log

∫ t

0

hθ0
(s)p ds

s

)

(cf. [14] and [15] for similar ideas in closely related contexts).
Let x, y ∈ (0, 1), with x < y , and integrate (13) from x to y , then we get

c log
y

x
≤ log

∫ y

0
hθ0

(s)ps−1 ds
∫ x

0
hθ0

(s)ps−1 ds

from where it follows readily that

(14) x−c

∫ x

0

hθ0
(s)p ds

s
≤ y−c

∫ y

0

hθ0
(s)p ds

s
≤ Cy−chθ0

(y)p.

On the other hand, by the monotonicity assumptions on h , we have

(15)

x−c

∫ x

0

hθ0
(s)p ds

s
= x−c

∫ x

0

(

s1−θ0

(h(s)

s

))p ds

s

≥ x−c
(h(x)

x

)p x(1−θ0)p

(1 − θ0)p
=

x−chθ0
(x)p

(1 − θ0)p
.

Combining (14) and (15) we finally obtain

x−chθ0
(x)p ≤ Ky−chθ0

(y)p.
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Let us now set q = p(1+ε) , θ1 = θ0+α , with ε ≥ 0 and where α ∈ (0, 1−θ0)
is such that α < c/p . Then,

hθ1
(s)q = hθ1

(s)p(1+ε) = hθ0
(s)p(1+ε)s−c(1+ε)sθ0p(1+ε)s−θ1p(1+ε)sc(1+ε)

and therefore we get
∫ t

0

hθ1
(s)q ds

s
=

∫ t

0

hθ0
(s)p(1+ε)s−c(1+ε)sθ0p(1+ε)s−θ1p(1+ε)sc(1+ε) ds

s

≤ K(1+ε)hθ0
(t)p(1+ε)t−c(1+ε)

∫ t

0

sθ0p(1+ε)s−θ1p(1+ε)sc(1+ε) ds

s
.

Now, the exponents in the last integral add up to

θ0p(1 + ε) − (θ0 + α)p(1 + ε) + c(1 + ε) − 1 = (−αp + c)(1 + ε) − 1

and by the choice of α , −αp + c > 0. Therefore,
∫ t

0

hθ1
(s)q ds

s
≤ K ′hθ0

(t)p(1+ε)t−c(1+ε)t(−αp+c)(1+ε) = K ′hθ1
(t)q

as we wished to show.

Example 3. In the special case of Lp spaces Theorem 1 gives, in particular,
that if

(
∫

−
Q

f(x)p dx

)1/p

≤ C

∫

−
Q

f(x) dx

for every cube Q ⊂ Ω, then, for sufficiently small positive ε , q = p+ε , 0 < t < |Ω| ,
we have

(16)

{

1

t

∫ t

0

f∗(s)q ds

}1/q

≤ C

{

1

t

∫ t

0

f∗(s)p ds

}1/p

.

If we fix a cube Q and localize we observe that

(
∫

−
Q

f(x)r dx

)1/r

=

{

1

|Q|

∫ |Q|

0

(fχQ)∗r(s)

}1/r

and thus we see that (16) gives

(
∫

−
Q

f(x)q dx

)1/q

≤ C

(
∫

−
Q

f(x)p dx

)1/p

.

Example 4. It is clear that the argument above can be also used to treat
weighted reverse Hölder conditions as long as we know that the equivalence (4) is
valid for the corresponding weighted local maximal functions. In particular this
applies to weights that satisfy a doubling condition (cf. [11]).
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Remark 3. It is not difficult to formulate the dual of Lemma 2 which can
be proven directly or by duality. The corresponding version of Theorem 1 that
obtains is thus associated with the Holmstedt formulae

K(t, f ; A0, Aθ0,p) ≈ t

(
∫ ∞

t1/θ1

(

s−θ1K(s, f ; Ā)
)p ds

s

)1/p

.

4. Examples

We conclude by giving explicit calculations in some concrete settings.

4.1. Weighted Lp spaces: p fixed and variable weights. We consider
weighted Lp(w) spaces defined by the norms

‖f‖Lp(w) =

{
∫

Ω

|f(x)|pw(x) dx

}1/p

.

Then, as is well known (cf. [2], [10])

K
(

t, f ; Lp(w0), L
p(w1)

)p
≈

∫

Ω

|f(x)|p min{w0(x), tpw1(x)} dx.

In particular,
Lp(w1−θ

0 wθ
1) =

(

Lp(w0), L
p(w1)

)

θ,p;K
.

Now, f satisfies a Gehring condition in this setting if there exists θ ∈ (0, 1), q ≥ 1,
and c > 0 such that

{
∫ t1/(1−θ)

0

(

s−θ

{
∫

Ω

|f(x)|p min{w0(x), spw1(x)} dx

}1/p)q
ds

s

}1/q

≤ ct

{∫

Ω
|f(x)|p min{w0(x), tp/(1−θ)w1(x)} dx

}1/p

t1/(1−θ)
.

4.2. Weighted Lp spaces: p varying. We consider pairs (Lp0
w0

, Lp1
w1

)
where 1 ≤ pi ≤ ∞, wi > 0, and

‖f‖Lp
w

=

{
∫

Ω

|f(x)w(x)|p dx

}1/p

.

It is convenient to assume that w0 = 1, (the general computation follows easily
once this case is at hand), then (cf. [10])

K(t, f ; Lp, L∞
w ) ≈

{
∫ tp

0

(

(fw)♯(p)(s)
)p

ds

}1/p
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where ♯(p) denotes non-increasing rearrangement with respect to the measure
w(x)−p dx .

In this case a typical Gehring condition for an element f reads: there exists
p > 1, c > 0, such that for every t > 0,

{
∫ tp

0

(

(fw)♯(p)(s)
)p

ds

}1/p

≤ t1−p

∫ tp

0

(fw)♯(1)(s)ds.

Analytic semigroups. Suppose that A is the generator of an analytic
semigroup in a Banach space X , and let DA denote the domain of A , then it is
well known (cf. [2], [13]) that

K(t, f ; X, DA) ≈
∥

∥

∥
AR

(1

t

)

f
∥

∥

∥

X

where R(t) = (A + tI)−1 .
An element f satisfies a Gehring condition if for some θ ∈ (0, 1), p ≥ 1, there

exists a constant c > 0 such that we have

{
∫ t1/(1−θ)

0

(

s−θ
∥

∥

∥
AR

(1

t

)

f
∥

∥

∥

X

)p ds

s

}1/p

≤ ct
‖AR(t−1/(1−θ))f‖X

t1/(1−θ)
.

Sobolev spaces. We consider the pair of Sobolev spaces
(

W k
p (Ω), W k

∞(Ω)
)

,
p ≥ 1, where Ω is a smooth domain. It is known (cf. [1] and [13]) that

K
(

t, f ; W k
p (Ω), W k

∞(Ω)
)

≈
∑

|α|≤k

{
∫ tp

0

(

(Dαf)∗(s)
)p

ds

}1/p

.

Therefore a typical Gehring condition for an element f with respect to the
pair

(

W k
1 (Ω), W k

∞(Ω)
)

reads: there exists p > 1, c > 0, such that

∑

|α|≤k

{
∫ tp

0

(

(Dαf)∗(s)
)p

ds

}1/p

≤ ct1−p
∑

|α|≤k

∫ tp

0

(Dαf)∗(s) ds.

Of course there are weak type variants, the formulation of which we leave to the
interested reader.
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