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Abstract. We show that if F is a θ -quasimöbius map of Sn into Rn+1 , then the comple-
mentary components of F (Sn) are c(θ) -uniform domains. In particular, if F is M bi-Lipschitz,
then the complementary components are c(M) -uniform domains.

Introduction

Let G be a homeomorphism from Sn into Rn+1 where n ≥ 1. The Jordan–
Brouwer separation theorem says that G(Sn) has two complementary components
and that G(Sn) is the boundary of each. We would like to understand what the
complementary components look like when we impose some condition on G that
ensures it does not distort too much. For example, G could be bi-Lipschitz.
This restriction does not improve the topological nature of the complementary
components in that it is possible to have bi-Lipschitz embeddings of the sphere
that are wild, that is, at least one of the complementary components is not a
topological ball. For example, both the Alexander horned sphere and the boundary
of the fattened Artin–Fox wild arc are bi-Lipschitz images of S2 in R3 (see [G] for
the latter). However, we might expect the complementary components not only
to be connected in the topological sense, but also to satisfy some metric version of
connectivity, such as being uniform. This type of problem is what J. Väisälä calls
metric duality, that is, how metric properties of a compact set (such as G(Sn))
affect metric properties of its complement and vice versa. In [V4], he develops
a theory of metric duality and proves a theorem that is similar in spirit to the
Alexander duality theorem. As a consequence of that theorem, he proves the
following result:

Theorem (Väisälä). If G is a θ -quasimöbius map of Sn into Rn+1 , then the

complementary components of G(Sn) are c′ -uniform domains with c′ = c′(n, θ, c) .

Quasimöbius maps are a useful, Möbius-invariant class of maps introduced by
Väisälä in [V1]. They include both the bi-Lipschitz and the quasisymmetric maps.
The theorem above is true more generally. It holds when Sn is replaced by a com-
pact set in Rn+1 each of whose complementary components is c-uniform, homo-
logically trivial, and satisfies a certain higher-dimensional version of c-uniformity
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(see [V4] for the details). Väisälä has conjectured that even in this general case
the constant c′ appearing in the theorem is independent of the dimension n (see
[V3], [V4]). We will prove this conjecture in the case of Sn .

Theorem X. If G is a θ -quasimöbius map of Sn into Rn+1 , then the comple-

mentary components of G(Sn) are c0(θ) -uniform domains where c0(θ) = 322 θ(8) .

Every M bi-Lipschitz map is a θ -quasimöbius map with θ(t) = M4t . Thus,
we obtain:

Corollary. If G is an M bi-Lipschitz map of Sn into Rn+1 , then the

complementary components of G(Sn) are (8M)4 -uniform domains.

What follows is a sketch of the proof of Theorem X. We have to show that any
two points a, b in the same complementary component of G(Sn) can be joined
by a cigar shaped domain, having a and b as end points, that does not intersect
G(Sn) . In Section 1, we give all the definitions and show that we can assume that
a = ∞ . In Section 2, we use dyadic cubes to construct a set W∞ that contains
∞ , and whose boundary is close to G(Sn) . We then show that if b ∈ W∞ , then
there is a cigar joining b and ∞ outside G(Sn) . We show in Section 3 that if
b 6∈ W∞ then ∂W∞ , viewed as an n -cycle, is non-trivial in the complement of
{∞, b} . However, Section 4 shows that there is a homotopy that moves ∂W∞ into
G(Sn) without passing through ∞ or b . This implies that ∂W∞ is trivial in the
complement of {∞, b} . This contradiction proves that b ∈ W∞ , and we are done.

1. Preliminaries

We will use c (a1, . . . , am) to denote a constant that depends only on a1, . . .,
am , and is at least 1. The extended space Rn+1 ∪ {∞} , and the unit n -sphere
will be denoted by Rn+1 and Sn , respectively. We will write d(A, B) for the
distance between two sets A and B .

If a, b, c, d are in Rn+1 with a and d both being different from b and c , we
define their cross-ratio to be

|a, b, c, d| = |a − b| |c − d|
|a − c| |b − d| ,

with the obvious modification when one of the points is ∞ . The cross-ratio is a
positive, finite number and it is Möbius-invariant.

For M ≥ 1, we say that G is M bi-Lipschitz if

M−1 ≤ |G(a) − G(b)|
|a − b| ≤ M

for any two distinct points a and b in the domain of G .



The complement of a quasimöbius sphere is uniform 401

Our discussion of quasimöbius maps is essentially taken from [V1]. Suppose
that W is a subset of Rn+1 that contains at least two distinct points, and that
f : W → Rn+1 is an embedding. Whenever τ = |a, b, c, d| is a cross-ratio of points
in W , τ ′ will denote the cross-ratio |f(a), f(b), f(c), f(d)| . We say that f is θ -
quasimöbius if θ: [0,∞) → [0,∞) is a homeomorphism, and τ ′ ≤ θ(τ) whenever
τ is a cross-ratio of points in W . Note that by choosing a = d and b = c , we have
τ ′ = τ = 1; thus 1 ≤ θ(1). Because |a, b, c, d| = |a, c, b, d|−1 , we get the double
inequality

1

θ(τ−1)
≤ τ ′ ≤ θ(τ).

It is easy to deduce from the left-hand inequality that f−1 is θ′ -quasimöbius in
f(W ) with θ′(t) = 1/θ−1(t−1) . If σ is a Möbius map, and f is θ -quasimöbius,
then both σ ◦ f and f ◦ σ are θ -quasimöbius. If f is M bi-Lipschitz, then it
is θ -quasimöbius with θ(t) = M4t . Also, if W is a uniform domain in Rn+1 ,
such as Rn+1 itself, then f being quasimöbius in W is equivalent to f being
quasiconformal in W (Theorem 5.6, [V1]).

A cautionary note: a variety of cross-ratios are used in the literature. For
example, quasimöbius maps are defined in [V1] using a different cross-ratio from
ours. By relabeling the points, however, one easily sees that the definitions are
equivalent.

We will use the distortion estimates of the next lemma in Section 4. A map F
satisfying the hypotheses of the lemma is actually θ(η)-quasisymmetric (Theorem
3.12, [V1]). This is a stronger conclusion than that of the lemma, except that the
lemma gives us explicit constants for the estimates we need.

Lemma 1.1. Let X and Y be bounded subsets of Rn+1 and let F be an

η -quasimöbius map from X into Y . Suppose that there are elements x1, x2 , and

x3 of X satisfying

|xi − xj | ≥ 1

2
diam X and |F (xi) − F (xj)| ≥ 1

2
diam Y , when i 6= j .

We then have the following estimates:

(i)
|F (p) − F (q)|

diam Y
≤ 2 η

(16|p − q|
diam X

)
, for any p, q ∈ X .

(ii) If |p − q| ≤ |p − r| , then |F (p) − F (q)| ≤ 4η(4) |F (p)− F (r)| .
Proof. There is no loss of generality if we assume that diam X = diam Y = 1.

If p = q , then (i) and (ii) are trivial. Henceforth we assume that p 6= q .
Due to the spacing of the xi ’s, if x is any element of X , then at least two of

the xi ’s are at least a distance 1

4
from x . Using this fact for p and q , we find that

we can choose two of the xi ’s, say x1 and x2 , so that |p−x1|, |q−x2| ≥ 1

4
. Thus

|p, q, x1, x2| ≤ 16|p−q| , and consequently |F (p), F (q), F (x1), F (x2)| ≤ η(16|p−q|) .
Simple manipulation of this inequality gives (i).



402 Paul MacManus

To prove (ii), assume that p, q, r are elements of X with |p − q| ≤ |p − r| .
At least two of the xi ’s are at least a distance 1

4
from q , and at least two of the

F (xi) ’s are at least a distance 1

4
from F (r) . It follows that we can choose one of

the xi ’s, say x1 , so that |q − x1|, |F (r)− F (x1)| ≥ 1

4
. We now have

|p, q, r, x1| =
|p − q||r − x1|
|p − r||q − x1|

≤
( |p − q|
|p − r|

)diam X

|q − x1|
≤ 4.

F being quasimöbius now implies that |F (p), F (q), F (r), F (x1)| ≤ η(4). From
this, (ii) follows easily.

There are many ways to define uniform domains. For a discussion, see [V2].
For our purposes, we will use the Möbius-invariant definition given in [V2]. This
idea is due to Martio [M]. Suppose that K is a continuum in Rn+1 that contains
the distinct points a and b . Let γ denote the triple (K, a, b) . For 0 < r ≤ 1, we
make the following definitions:

cig1(γ, r) = {x ∈ Rn+1 : |x, y, a, b| < r, for some y ∈ K},
cig2(γ, r) = {x ∈ Rn+1 : |x, y, b, a| < r, for some y ∈ K},
cig(γ, r) = cig1(γ, r) ∪ cig2(γ, r).

The idea is that cig (γ, r) is shaped like a cigar, with K as its core and a and
b as its ends. It is wide in the middle and narrow at the ends. We will refer to
cig (γ, r) as an r -cigar joining a and b . If a = ∞ , and K is an infinite ray from
b , then cig (γ, r) is a cone with vertex b , with K as the central axis, and with
aperture 2 sin−1 r . For c ≥ 1, a domain Ω is said to be a c-uniform domain if for
each pair of points a, b ∈ Ω, there is a c−1 -cigar joining a and b that lies in Ω.
Thus, proving Theorem X means showing the following:

(1.1) If G is a θ -quasimöbius map from Sn into Rn+1 , and a and b are two points
in the same complementary component of G(Sn) , then there is a c0(θ) cigar
joining a and b that does not intersect G(Sn) .

It will be very useful to make a number of reductions to the problem. Henceforth,
M will denote G(Sn) . Take τ1 to be any Möbius map with τ1(a) = ∞ . The map
τ1 ◦ G is still θ -quasimöbius, and cigars are preserved by Möbius maps. Thus,
in (1.1) we can assume that a = ∞ . Note that this implies that M is bounded.
Now choose z1, z2, z3 ∈ M , with |zi − zj | ≥ 1

2
(diam M) whenever i 6= j , and let

xi = G−1(zi) . There is a Möbius map σ that maps Sn onto itself and maps ei ,
the unit vector in the ith direction, to xi (note: when n = 2 we take e3 to be
−e1 ). The map G◦σ is a θ -quasimöbius map from Sn onto M that maps ei to xi

for every 1 ≤ i ≤ 3. This allows us to assume that |G(ei) − G(ej)| ≥ 1

2
(diamM) ,

when 1 ≤ i < j ≤ 3. Now let τ2 be a similarity with the property that 0 ∈ τ2(M)
and the diameter of τ2(M) is 1

4
. Consideration of the map τ2 ◦ G allows us to
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further reduce the proof of (1.1) to the case where 0 ∈ M and the diameter of M

is 1

4
.
In summary, we have reduced the proof of Theorem X to proving the following

proposition:

Proposition 1.2. Suppose that G is a θ -quasimöbius map from Sn into

Rn+1 , that b and ∞ lie in the same complementary component of G(Sn) = M ,

and that the following two conditions hold:

(i) |G(ei) − G(ej)| ≥ 1

2
(diam M) , when 1 ≤ i < j ≤ 3 .

(ii) 0 ∈ M and diamM is 1

4
.

Then there is a c0(θ)−1 -cigar joining b and ∞ that does not intersect M.

2. Cubes

Henceforth we assume that G satisfies the hypotheses of Proposition 1.2.
We will write E for Rn+1 \ {∞, b} , and δ for the distance from b to M. If

δ > 1

4
, then there is an entire half-plane joining b and ∞ . Thus we only need to

consider the case where δ ≤ 1

4
.

Take Q0 to be the cube centred at 0, with sidelength 1. By a cube, we mean
a closed cube. Recall that a cube in Rn+1 of sidelength λ has diameter λ

√
n + 1.

Let β = 320 θ(8). The reason for this choice will become clear later. The three
estimates we will need are 10 ≤ β, 4 θ′(320β−1) ≤ 1

2
, and 92 θ(4) β−1 < 1, where

θ′ is as defined on p. 3.
Choose k0 so that

1

2
β−1δ < 2−k0

√
n + 1 ≤ β−1δ.

D will denote the family of dyadic cubes of sidelength 2−k0 . The diameter of any
element of D lies between β−1δ/2 and β−1δ . Note that Q0 is a union of elements
of D . Let

C = {Q ∈ D for which diam (Q) ≤ d(Q, M) and β−1d(Q, b) ≤ d(Q, M)},
W = {∞} ∪ ⋃

Q∈C

Q.

We will use the notation Σc to denote the complement of a set Σ.

Proposition 2.1. Any element of D that intersects ∂Q0 ∪Qc
0 is an element

of C .

Proof. We will write A for ∂Q0 ∪ Qc
0 . Let Q be an element of D that

intersects A and choose z ∈ A ∩ Q . We have diam (Q) ≤ β−1δ ≤ 1/40. Because
z ∈ A , we get that 1/4 ≤ d(z, M) . The triangle inequality gives us d(Q, M) ≥
d(z, M)−diam (Q) . Combining these estimates, we find that diam (Q) ≤ d(Q, M) .
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It remains to prove the second estimate in the definition of C . Another
consequence of the inequalities in the previous paragraph is that d(Q, M) ≥
9 d(z, M)/10. Making use of this, we obtain

d(Q, b) ≤ d(z, b) ≤ d(z, M) + diam (M) + d(b, M)

≤ 1

2
+ d(z, M) ≤ 3d(z, M) ≤ 4d(Q, M) ≤ βd(Q, M).

The proposition implies that Qc
0 is contained in W . Because W is a union of

cubes of D , there is no distinction between components and path components, and
every component is also a union of cubes of D . We will refer to the unbounded
component of W as W∞ . Let C

∗ be those elements of C that lie in W∞ , and
that are also contained in Q0 . Define

W
∗ =

⋃

Q∈C
∗

Q.

Corollary 2.2.

(a) ∂Q0 lies in the interior of W∞ .

(b) ∂W , and hence ∂W∞ , lies in the interior of Q0 .

(c) W ∗ = Q0 ∩ W∞ .

(d) ∂W ∗ = ∂Q0 ∪ ∂W∞ .

Proof. Parts (a) and (b) follow immediately from the proposition. The in-
clusion W ∗ ⊆ Q0 ∩ W∞ is a trivial consequence of the definitions, while the
other direction follows from the proposition. Part (d) is a consequence of (a), (b)
and (c).

Lemma 2.3. If b ∈ W∞ , then the conclusion of Proposition 1.2 holds.

Proof. Let γ be a path in W∞ joining b and ∞ , and consider y ∈ γ . Some
element Q of C contains y . We then have |y − b| ≤ diam (Q) + d(Q, b) , and
d(Q, M) ≤ d(y, M) . Combining these with the definition of C , we see that

(1 + β)−1|y − b| ≤ d(y, M).

Consequently,

cig1

(
γ, (1 + β)−1

)
=

{
x :

|x − y|
|y − b| < (1 + β)−1

}

does not intersect M . Lemma 2.8 of [V2] implies that

cig2

(
γ, (2 + β)−1

)
= cig2

(
γ,

(1 + β)−1

1 + (1 + β)−1

)
⊆ cig1

(
γ, (1 + β)−1

)
.

We now have cig
(
γ, (2 + β)−1

)
⊆ cig1

(
γ, (1 + β)−1

)
, and so cig

(
γ, (2 + β)−1

)

does not intersect M.
In the previous section, we reduced the proof of Theorem X to proving Propo-

sition 1.2. The preceding lemma further reduces the proof to showing that b lies
in W∞ . The remainder of the paper is devoted to showing this.
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3. Some topology

Throughout this section we will assume that b 6∈ W∞ .
For k ≥ 0, Ak(X) will denote the free Abelian group generated by the set of

all singular k -cubes in X , and ∂k will denote the boundary operator from Ak(X)
into Ak−1(X) (see [Ma] for the definitions). Recall that ∂k−1∂k = 0. The groups
Ak(∂Q0) and Ak(∂W∞) are subgroups of Ak(E) .

For every Q ∈ D there is a unique dilation δ and a unique translation τ
such that τ ◦ δ maps the unit cube onto Q . This map is an element of An+1(E)
and we denote it by [Q] . W ∗ is represented in An+1(E) by

[W ∗] =
∑

Q∈C
∗

[Q].

It is easily verified that ∂n+1[W
∗] can be written as a sum of an element of

An(∂Q0) and an element of An(∂W∞) . We will write [∂Q0] and [∂W∞] respec-
tively for these elements. We then have

(3.1) 0 = ∂n∂n+1[W
∗] = ∂n[∂Q0] + ∂n[∂W∞].

In particular,
∂n[∂Q0] = −∂n[∂W∞].

The sets ∂W∞ and ∂Q0 are disjoint; thus An−1(∂Q0) and An−1(∂W∞) have only
the zero element in common. It now follows from the previous equation that

0 = ∂n[∂Q0] = ∂n[∂W∞].

Consequently, we can view [∂Q0] and [∂W∞] as elements of Hn(E) , the
nth singular homology group of E . These elements are denoted by 〈∂Q0〉 and
〈∂W∞〉 respectively. Recalling that ∂n+1[W

∗] = [∂Q0] + [∂W∞] , we see that
〈∂Q0〉 + 〈∂W∞〉 = 0. However, Hn(E) is an infinite cyclic group and the element
〈∂Q0〉 is a generator of Hn(E) , whence 〈∂W∞〉 6= 0.

The next lemma will be used to prove by contradiction that b ∈ W∞ .

Lemma 3.1. If P : ∂W∞ → M is a continuous map with the property that

the line segment joining each x ∈ X to P (x) does not contain b , then 〈∂W∞〉 = 0 .

Proof. Take i to be the injection from ∂W∞ into E . Then P and i give rise
to the induced homomorphisms P∗, i∗: Hn(∂W∞) → Hn(E) . 〈∂W∞〉 lies in the
range of i∗ .

Define h: ∂W∞ × I → E by

h(x, t) = (1 − t)x + tP (x).
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This is a homotopy between i and P . Theorem II.4.1 of [Ma] implies that P∗ = i∗ .
Thus, 〈∂W∞〉 lies in the range of P∗ .

Because b and ∞ lie in the unbounded component of M
c , there is a path

joining them that does not intersect M . In fact, we can find a Jordan arc γ that
joins b and ∞ and that does not intersect M . Now Hn(Rn+1 \γ) = 0 by Lemma

III.6.2 in [Ma]. Let P̃ be the map P viewed as a map from ∂W∞ into Rn+1 \ γ ,

and let j be the injection from Rn+1 \ γ into E . Then we have j∗P̃∗ = P∗ . But

P̃∗ = 0, since Hn(Rn+1 \ γ) = 0. Hence, P∗ = 0. It follows that 〈∂W∞〉 = 0.

4. Building the homotopy

In this section, we construct a map P satisfying the hypotheses of Lemma 3.1.
The set ∂W∞ is a finite union of n -faces of cubes in D . Let

Fk = {the k-faces of the n-faces that make up ∂W∞},
B = {the centres of the elements of each Fk, ∀ 0 ≤ k ≤ n},
Σk = B ∪ {the pointwise union of the elements of Fk}.

Note that Σ0 = B and Σn = W∞ . Define ρ on Σ0 by choosing, for each
s ∈ Σ0 , a nearest point w in M and setting ρ(s) = w . Instead of directly
extending ρ to a continuous map from ∂W∞ into M, we will first extend the map
τ = G−1 ◦ ρ: Σ0 → Sn to a continuous map from ∂W∞ into Sn . This extension
will have the property that if z ∈ F , where F ∈ Fn , then τ(z) is relatively
close to τ(cF ) , where cF is the centre of F . The estimates of Lemma 1.1 then
guarantee that G◦τ(z) is relatively close to G◦τ(cF ) = ρ(cF ) . We will show that
the line segment joining cF and ρ(cF ) is relatively far from b . Consequently, the
line segment joining z and G ◦ τ(z) is relatively far from b . Thus, G ◦ τ is the
desired extension. To make all of this precise we need some estimates, of course.
These are provided by the following lemma:

Lemma 4.1. If Q ∈ C , then

(4.1) 1 ≤ d(z, M)

d(Q, M)
≤ 2, for all z ∈ Q.

If Q ∈ C , and Q ∩ ∂W 6= ∅ , then we have the following estimates:

1 ≤ d(z, b)

d(Q, b)
≤ 2, for all z ∈ Q,(4.2)

1 ≤ β d(Q, M)

d(Q, b)
≤ 4,(4.3)

diam (Q) ≤ d(Q, M) ≤ β−1.(4.4)
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Proof. The left-hand inequalities of (4.1) and (4.2) are trivial, while the left-
hand inequalities of (4.3) and (4.4) follow from the definition of C . It remains to
prove the right-hand inequalities.

Let Q ∈ C , and z ∈ Q . We have d(z, M) ≤ diam(Q) +d(Q, M) ≤ 2 d(Q, M),
which gives us (4.1).

Now assume that Q ∈ C , and that Q ∩ ∂W 6= ∅ . Then one of the two cases
below must occur:

Case (i) One of the elements of D that touches Q , call it Q1 , violates the
first condition in the definition of C .

This means that d(Q1, M) < diam (Q1) . Then

(4.5) d(Q, M) ≤ diam (Q1) + d(Q1, M) < 2 diam (Q1) ≤ 2β−1δ.

This implies (4.4), because δ ≤ 1

4
. Making use of (4.5), we have

δ = d(b, M) ≤ d(Q, b) + diam (Q) + d(Q, M) ≤ d(Q, b) + 3β−1δ,

from which we obtain

(4.6) d(Q, b) ≥ (1 − 3β−1)δ ≥ 7δ

10
,

since β ≥ 10. Combining (4.5) and (4.6), we get (4.3). A final chain of inequalities
yields (4.2):

d(z, b) ≤ diam (Q)+d(Q, b) ≤ β−1δ+d(Q, b) ≤
(
1+

β−1

1 − 3β−1

)
d(Q, b) ≤ 2 d(Q, b).

Case (ii) All the elements of D that touch Q satisfy the first condition in
the definition of C , but one of them, which we will call Q2 , violates the second
condition in the definition of C .

We have d(Q2, M) < β−1d(Q2, b) , and diam (Q2) ≤ d(Q2, M) . First,

d(Q, M) ≤ diam (Q2) + d(Q2, M) ≤ β−1δ + β−1d(Q2, b).

Next we have

d(Q2, b) ≤ d(Q2, M)+diam (M)+d(b, M) ≤ β−1d(Q2, b)+
1

4
+δ ≤ β−1d(Q2, b)+

1

2
.

Combining this with our previous estimate, we obtain (4.4):

d(Q, M) ≤ β−1δ +
β−1

2(1 − β−1)
≤ β−1.
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To prove (4.2) and (4.3) we need to get an estimate on d(Q, b) , which we derive
thus:

1

2
δ ≤ β diam (Q2) ≤ βd(Q2, M) < d(Q2, b)

≤ diam (Q) + d(Q, b) ≤ β−1δ + d(Q, b) ≤ δ/10 + d(Q, b).

Consequently,

(4.7) 2δ/5 ≤ d(Q, b).

We can now prove (4.2):

d(z, b) ≤ diam (Q) + d(Q, b) ≤ β−1δ + d(Q, b) ≤
(
1 + 5

2
β−1

)
d(Q, b) ≤ 2 d(Q, b).

Finally, we prove (4.3):

β d(Q, M) ≤ β diam (Q2) + β d(Q2, M) < β diam (Q2) + d(Q2, b)

≤ β diam (Q2) + diam (Q2) + d(Q, b) ≤ (1 + β−1) δ + d(Q, b)

≤ 5

2
(1 + β−1)d(Q, b) + d(Q, b) ≤ 4 d(Q, b).

Corollary 4.2. Suppose that Q ∈ C and that Q∩∂W∞ 6= ∅ . If y, z ∈ Q∩Σ0 ,

then

|ρ(y)− y| ≤ 2 d(Q, M) and |ρ(y)− ρ(z)| ≤ 5 d(Q, M).

The corollary is an easy consequence of the definition of ρ , the right-hand
inequality of (4.1) and the left-hand inequality of (4.4).

Let F ∈ Fn . There is a unique Q ∈ C that contains F , because F ⊂ ∂W∞ .
From Corollary 4.2 and (4.4), we see that

|ρ(y) − ρ(cF )| ≤ 5 d(Q, M) ≤ 5β−1 = 20β−1 diam (M), for all y ∈ F ∩ Σ0.

Using estimate (i) in Lemma 1.1, we deduce that

|τ(y)−τ(cF )| = |G−1◦ρ(y)−G−1◦ρ(cF )| ≤ 2 θ′(320β−1) diam(Sn), ∀ y ∈ F∩Σ0.

Our choice of β implies that the right-hand side is bounded by 1

2
. Choose eF

to be an element of F ∩ Σ0 that maximizes |τ(y) − τ(cF )| , for y ∈ F ∩ Σ0 .
Define b(F ) to be the intersection of Sn and B(τ(cF ), |τ(eF ) − τ(cF )|) . Because
|τ(eF )−τ(cF )| is at most 1

2
, we know that there is a unique geodesic of Sn joining

any two points of b(F ) , and that this geodesic lies in b(F ) .
The map τ has already been defined on Σ0 , and we are going to extend it

to ∂W∞ (= Σn ) by defining it inductively on each Σk . For convenience, we will
denote any of the various extensions by τ also. We will say that g ∈ G if g is a
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continuous map from some subset A of W∞ into Sn , and g(A ∩ F ) ⊆ b(F ) for
any F ∈ Fn .

Assume that τ has been extended to a continuous map from Σk into Sn ,
and that τ ∈ G . This is certainly true for k = 0. Take Φ ∈ Fk+1 , c to be the
center of Φ, and F to be some element of Fn containing Φ. Our symbol for the
pointwise union of the k -faces of Φ is δkΦ. Now, let x ∈ δkΦ. The line segment
joining c and x will be denoted by [c, x] . The properties below are easily verified:

(i) [c, x] ∩ Σk = {c, x} .
(ii) Φ =

⋃
x′∈δkΦ

[c, x′] .
(iii) [c, x] ∩ [c, x′] = {c} , when x 6= x′ ∈ δkΦ.
(iv) Φ ∩ Σk = δkΦ ∪ {c} .

Because x ∈ Σk , our inductive assumption implies that τ(x) ∈ b(F ) . By def-
inition, τ(c) ∈ b(F ) . For 0 ≤ t ≤ 1, let γ(x, t) denote the point on the
geodesic joining τ(c) and τ(x) whose distance from τ(c) along the geodesic is
t times the length of the geodesic. We define τ , a map from [c, x] into Sn , by
τ
(
(1− t)c + tx

)
= γ(x, t) . Note that τ([c, x]) ⊂ b(F ) . Doing this for all x ∈ δkΦ,

and using the facts (i)–(iv) above, we see that we get a well-defined extension of
τ to Σk ∪ Φ. This extension is an element of G . We can do this for any element
of Fk+1 . If Φ′ is another element of Fk+1 , we have Φ ∩ Φ′ = δkΦ ∩ δkΦ′ ⊆ Σk .
This fact allows us to give a well-defined extension of τ to all of Σk+1 . This
extension is also an element of G . It follows by induction that we can extend τ
to a map of ∂W∞ that is an element of G . In particular, we have τ(F ) ⊆ b(F )
for any F ∈ Fn . We now define P to be G ◦ τ . This maps ∂W∞ into M , and is
a continuous extension of the map ρ defined earlier.

Lemma 4.3. For any x ∈ ∂W∞ , the line segment joining x and P (x) does

not contain b .

Proof. Let x ∈ ∂W∞ . Choose F ∈ Fn that contains x . We have τ(F ) ⊆
b(F ) . The definition of b(F ) and estimate (ii) of Lemma 1.1 give us the following
information:

|P (x) − P (cF )| =
∣∣G

(
τ(x)

)
− G

(
τ(cF )

)∣∣ ≤ 4θ(4)
∣∣G

(
τ(eF )

)
− G

(
τ(cF )

)∣∣

= 4θ(4)|P (eF ) − P (cF )| = 4θ(4)|ρ(eF ) − ρ(cF )|.

Denote the unique element of C that contains F by Q . Recalling the estimates
of Lemma 4.1 and Corollary 4.2, we obtain

|P (x) − x| ≤ |P (x) − P (cF )| + |P (cF ) − cF | + |cF − x|
≤ 4θ(4)|ρ(eF ) − ρ(cF )| + |ρ(cF ) − cF | + |cF − x|
≤ 20θ(4)d(Q, M) + 2d(Q, M) + diam (Q)

≤ 23θ(4)d(Q, M) ≤ 70 θ(4) β−1d(Q, b)

≤ 92θ(4)β−1|x − b| < |x − b|.



410 Paul MacManus

This completes the proof of the lemma.
We can now conclude the proof of Theorem X. As mentioned previously, it

suffices to show that b ∈ W∞ . Assume that this is not so. We saw in Section 3 that
this implies that 〈∂W∞〉 6= 0. However, Lemma 3.1 and the lemma just proven,
together imply that 〈∂W∞〉 = 0. This contradiction means that b must be an
element of W∞ , and so we are done.
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lyse Math. 50, 1988, 201–223.
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