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Abstract. We continue the investigation of (p, c) -uniform domains in a normed space.
Special emphasis is on the basic properties of homological (p, c) -uniformity.

1. Introduction

1.1. This paper is a continuation to [Al], in which the first author introduced
the class of (p, c)-uniform domains, where p ≥ 0 is an integer and c ≥ 1. We recall
the definition. Suppose that E is a real normed space with dimE ≥ 2. A domain
G ⊂ E is homotopically (p, c)-uniform if every continuous map f : Sp → G has a
continuous extension g: B p+1 → G satisfying the lens condition

(1.2) d(x, |f |) ≤ cd(x, ∂G) for all x ∈ |g|,

and the turning condition

(1.3) d(|g|) ≤ cd(|f |).

Here |f | = im f , and d(A) is the diameter of a set A . Together these conditions
are called the uniformity conditions. For p = 0, we obtain the c-uniform domains
in the ordinary distance sense. The class defined above has been independently
considered by J. Heinonen and S. Yang [HY].

A homological version of the definition was also given in [Al]. The domain G
is homologically (p, c)-uniform if each reduced singular p-cycle f in G bounds a
chain g such that (1.2) and (1.3) are true; now |f | is the carrier of f .

To abbreviate terminology we shall often replace the word ‘homotopically’
and ‘homologically’ by ‘htop’ and ‘hlog’, respectively.

The main emphasis in this paper will be on the basic properties of homological
uniformity. Several results on hlog (p, c)-uniformity were given in [Al] only for
p = 1. Our first task is to extend these for arbitrary p . This is done in Section 3.
Before that, we develop in Section 2 a technique to construct singular homologies,
called the prismatic method. In the rest of the paper we shall consider relations
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between htop and hlog uniformity, some related topological properties, and p-
dimensional plumpness, which was introduced in [Al] in the homotopical case; a
homological version will be given in Section 6.

Part III of this investigation is under preparation. It will contain, for example,
results on cartesian products and planar sections of null-sets for htop and hlog
(p, c)-uniform domains.

We thank J. Partanen, who read the manuscript and made valuable remarks.
Part of this article was written while the first author was visiting the University
of Bielefeld in 1995–96. The hospitality of SFB 343 is hereby acknowledged.

1.4. Terminology and notation. The basic notation will be the same as in
the first part; see [Al, p. 6]. Throughout the paper, E will denote a real normed
space, and we shall usually assume that dimE ≥ 2. However, results dealing with
porosity are relevant also in the one-dimensional case. We let |a − b| denote the
distance between points a, b in any metric space X . Open and closed balls in X
are written as B(a, r) and B(a, r) . More generally, if A ⊂ X , we let B(A, r)
and B(A, r) denote the open and closed r -inflations of A . By a map we mean
a continuous function. The image set of a map f : A → B will be written as
|f | = fA . If f, g: A→ X are two maps, we set ‖f − g‖ = sup{|fa− ga| : a ∈ A} .

Our main reference on homology theory is the book [Ro] of J.J. Rotman.
We shall use reduced singular homology with integral coefficients. Let X be a
topological space and let p be an integer. The group Sp(X) of singular p-chains
is the free abelian group generated by all singular p-simplexes, that is, maps
σ: ∆p → X of the standard p-simplex ∆p . Thus each γ ∈ Sp(X) has a normal

representation γ =
∑

j∈J njσj , where J is a finite set, the singular simplexes
σj are all distinct, and the integers nj nonzero. We write σ < γ if σ is a
singular simplex appearing in the normal representation of the chain γ . The
normal representation can then be written in the form γ =

∑
σ<γ nσσ . The

carrier of γ is the set

|γ| = ∪{|σ| : σ < γ}.

For p = −1 there is a unique (empty) map σ: ∆−1 = ∅ → X , and we identify
S−1(X) = Z . For p ≤ −2 we have Sp(X) = 0. The boundary homomorphism
∂ = ∂p: Sp(X) → Sp−1(X) is defined in the well-known way. For a 0-chain
γ =

∑
σ<γ nσσ we have ∂γ =

∑
σ<γ nσ . The kernel of ∂p is the group Zp(X) of

p-cycles, and the pth homology group of X is Hp(X) = Zp(X)/ im∂p+1 . In the

literature, the group H0(X) is often written as H̃0(X) . It is a free abelian group
of rank m− 1 where m is the number of the path components of X . The group
H−1(X) is trivial unless X = ∅ , in which case H−1(X) = Z . We write z ∼ z′ if
the cycle z is homologous to z′ .

Suppose that Q(p) is a property of a set involving an integer p ≥ 0. We say
that a set A has the property Q(p) completely if A has the property Q(k) for
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all 0 ≤ k ≤ p . For example, a domain G is completely hlog (p, c)-uniform if it is
hlog (k, c)-uniform for all 0 ≤ k ≤ p .

A domain is hlog (p)-uniform if it is hlog (p, c)-uniform for some c ≥ 1. A
similar convention is applied to any property involving a pair (p, c) with p ∈ Z

and c ≥ 1.
To illustrate the difference between complete and noncomplete uniformity, we

consider the infinite cylinder Z = Bn−1 × R ⊂ Rn , n ≥ 3. It is not difficult to
show that Z is htop and hlog (p)-uniform for all 1 ≤ p ≤ n− 2, in fact, (p,

√
2 )-

uniform. However, Z is not (0)-uniform and hence not completely htop or hlog
(p)-uniform for any p .

It is possible to consider (p, c)-uniform domains G in the extended space
Ė = E ∪ {∞} with ∞ ∈ G . However, this essentially means that G \ {∞} is
(p, c)-uniform; see [Vä3 , 5.4]. In this paper we consider only the case G ⊂ E . All
closures and boundaries are taken in E , except when we are using the compactness
method in Ṙn .

2. Prisms

2.1. Summary of Section 2. We develop the prismatic method, which produces
homologies of a given singular cycle. It will be applied several times in later sec-
tions. The method can be regarded as an elaboration of the proof of the homotopy
axiom in singular homology.

2.2. Basic concepts. Let ∆ = [v0, . . . , vp] be a p-simplex in Rn with the

given order of vertices. We let ∆̃ denote the simplicial complex consisting of all
faces of ∆, including ∆. For I = [0, 1] we consider the prism ∆× I ⊂ Rn+1 . We
identify ∆ = ∆×{0} and write v′j = (vj , 1) for 0 ≤ j ≤ p . The vertices of ∆× I
are ordered as (v0, . . . , vp, v

′

0, . . . , v
′

p) . Let P∆ be the standard triangulation of
∆ × I . Its (p+ 1)-simplexes are

sj = [v0, . . . , vj , v
′

j, . . . , v
′

p],

0 ≤ j ≤ p . The ordering of the vertices of P∆ defines an orientation of P∆.
For any oriented simplicial complex K , we let C∗(K) =

(
Cp(K)

)
p∈Z

denote

the associated augmented chain complex with integral coefficients; see [Ro, p. 147].
We consider the case where ∆ is the standard p-simplex ∆p = [e0, . . . , ep] .

Let α0: C∗(∆̃
p) → C∗(P∆p) be the chain map induced by the inclusion ∆̃p ⊂

P∆p . Let X be a topological space and let σ: ∆p → X be a singular p-simplex
in X . By a prismoid of σ we mean a chain map

ϕ: C∗(P∆p) → S∗(X)

satisfying the condition

(2.3) σ = ϕα0∆
p;
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here ∆p is considered as an element (generator) of Cp(∆̃
p) . Figure 1 illustrates two

prismoids ϕ1, ϕ2 of a singular 1-simplex σ . The chain map ϕ1 maps all elementary
chains to elementary chains; the prismoid ϕ2 is somewhat more complicated.

e0

e'1e'0

e1

σ σ

P∆1 ϕ
1

ϕ
2

Figure 1

Let 0 ≤ q ≤ p− 1 and let ε: ∆q → ∆p be an order-preserving isometry onto
a q -face of ∆p . Then ε induces a chain map ε#: C∗(∆̃

q) → C∗(∆̃
p) . Moreover,

the map ε× id: ∆q × I → ∆p × I defines a simplicial map π = πε: P∆q → P∆p

and a chain map π#: C∗(P∆q) → C∗(P∆p) . The following functorial property is

easily verified: If ∆r ζ−→ ∆q ε−→ ∆p are order-preserving isometries onto faces,
then

(2.4) πεζ = πεπζ , (πεζ)# = πε#πζ#.

Suppose that ϕ and ψ are prismoids of singular p-simplexes σ and τ , re-
spectively. We say that these prismoids are compatible if ϕπε# = ψπζ# whenever
0 ≤ q ≤ p− 1 and ε, ζ: ∆q → ∆p are order-preserving isometries onto faces such
that σε = τζ . Observe that this is a relevant property also in the case σ = τ ,
ϕ = ψ ; we may then say that ϕ is self-compatible. See Figure 2.

Let γ be a singular p-chain in X with normal representation γ =
∑

σ<γ nσσ .
A prism of γ is a chain map

ϕ =
∑

σ<γ

nσϕσ: C∗(P∆p) → S∗(X)

such that

(1) ϕσ is a prismoid of σ for each σ < γ ,
(2) ϕσ and ϕτ are compatible for all pairs σ, τ < γ , including the case

σ = τ .

By a prism of the zero chain we mean the zero map. We see that a prismoid
of a singular simplex is a prism if and only if it is self-compatible.
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compatible not compatible self-compatible not self-compatible

σ τσ τ σ σ

Figure 2

2.5. Construction of prisms. We shall make use of prisms several times in
this paper to obtain homologies of given cycles and sometimes also prisms of more
general chains. The prisms will be constructed by a process where we start with
the 0-chains of P∆p and proceed by induction to higher-dimensional skeletons
of P∆p . We shall next explain this process.

Let X be a topological space and let

γ =
∑

σ<γ

nσσ

be a p-chain in X . We want to construct a prism ϕ =
∑

σ<γ nσϕσ of γ . The
aim of the construction usually is to get a chain γ1 = ϕα1∆

p , where the chain
map α1: C∗(∆̃

p) → C∗(P∆p) is induced by the natural embedding of ∆p onto
∆p × {1} , such that γ1 is in some sense better situated than γ .

Starting with 0-chains, let v be a vertex of P∆p . If v = ej for some 0 ≤
j ≤ p , we let ϕσv be the elementary 0-chain σv ∈ X . If v = e′j = (ej , 1),
we can choose ϕσv to be a rather arbitrary point in X . However, to ensure the
compatibility of the various ϕσ , we choose these points in a compatible way, which
means that ϕσe

′

j = ϕτe
′

k whenever σej = τek . The maps ϕσ are then extended
linearly to homomorphisms ϕσ: C0(P∆p) → S0(X) .

Assume that 0 ≤ q ≤ p and that we have defined the chain maps ϕσ: Cq(P∆p)
→ Sq(X) for all σ < γ . Let s be a (q + 1)-simplex of P∆p and let σ < γ . If

s ∈ ∆̃p , we set ϕσs = σεs ∈ Sq+1(X) , where εs: ∆q+1 → ∆p is the order-

preserving isometry onto s . Assume that s is not in ∆̃p . Then ∂s ∈ Cq(P∆p) ,
and thus ϕσ∂s is defined. The chain ϕσs ∈ Cq+1(X) must satisfy the condition
∂ϕσs = ϕσ∂s . In the applications this will be possible by some conditions which
are valid in the situation. Otherwise we can choose ϕσs rather arbitrarily, but
to ensure compatibility, we choose ϕσs = ϕτ t whenever ϕσ∂s = ϕτ∂t . We again
express this by saying that the chains ϕσs are chosen in a compatible way. The
maps ϕσ are extended linearly to homomorphisms ϕσ: Cq+1(P∆p) → Sq+1(X) .

After the case q = p we clearly have chain maps ϕσ: C∗(P∆p) → S∗(X) ,
which are prismoids of σ . It is a routine exercise to show that ϕ =

∑
σ<γ nσϕσ

is a prism of γ .



416 Pekka Alestalo and Jussi Väisälä

In the applications, at the step q = 0 of the induction, the 1-chains ϕσs can
usually be chosen to be singular 1-simplexes, but for q ≥ 1 we must in general
choose a more general chain.

2.6. Simple prisms. Every continuous map h: ∆p × I → X induces a chain
map h: C∗(P∆p) → S∗(X) in the following way: Let s be a q -simplex of P∆p ,
and let εs: ∆q → s be the order-preserving affine homeomorphism. Then hs is
the singular simplex hεs: ∆q → X .

Suppose that σ: ∆p → X is a singular p-simplex and that h: ∆p × I is a
continuous extension of σ . Then clearly h is a prismoid of σ , but h need not be
self-compatible. For example, if p = 1, then h is self-compatible if and only if
either σ(e0) 6= σ(e1) or h(e0, t) = h(e1, t) for all t ∈ I .

We say that a prism ϕ =
∑

σ<γ nσϕσ of a p-chain γ is simple if each ϕσ is

of the form hσ for some hσ: ∆p × I → X .
To construct a simple prism of a chain γ =

∑
σ<γ nσσ we can apply the

method of 2.5. Now the maps hσ are defined by skeletonwise induction. At the
first step, the points hσe

′

i are chosen in a compatible way, by which we mean that
hσe

′

i = hτe
′

j whenever σei = τej . Assume that the maps hσ are defined in the

q -skeleton of P∆p and that s is a (q + 1)-simplex in P∆p \ ∆̃p . Then hσ|∂s
is defined, and we must extend this map to s . These extensions are chosen in a
compatible way, that is, hσ|s = hτ |t whenever hσ|∂s = hτ |∂t .

We remark that the standard direct proof of the homotopy axiom of singular
homology makes use of simple prisms. Indeed, suppose that h: X × I → Y is a
homotopy connecting the maps f0, f1: X → Y . Let z =

∑
σ<z nσσ be a p-cycle

in X . Setting hσ = h ◦ (σ × id): ∆p × I → Y we obtain a simple prism of f0#z .
It follows from Theorem 2.10 below that f0#z is homologous to f1#z .

2.7. Preparations. We introduce some concepts and notation in order to state
and prove the main result 2.10 on prisms. Let ∆ = [v0, . . . , vp] be an ordered p-

simplex in Rn . As above, we let α0, α1: C∗(∆̃) → C∗(P∆) be the chain maps
induced by the vertex maps vj 7→ vj and vj 7→ v′j = (vj , 1), respectively. It is
well known that α0 and α1 are connected by a chain homotopy D = D∆ defined
as follows: For each q -face s = [u0, . . . , uq] of ∆, considered as an element of

Cq(∆̃), Ds is the (q + 1)-chain

Ds =

q∑

j=0

(−1)j [u0, . . . , uj , u
′

j, . . . , u
′

q]

in Cq+1(P∆). This map is extended linearly to a homomorphism D: Cq(∆̃) →
Cq+1(P∆) for each 0 ≤ q ≤ p . The chain homotopy law states that

(2.8) ∂D +D∂ = α1 − α0.
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The chain homotopy D has the following functorial property: Suppose that
Γ = [u0, . . . , uq] is another ordered simplex with q ≤ p and that ε: Γ → ∆ is an
affine order-preserving embedding onto a q -face of ∆. Then ε induces a chain map
ε#: C∗(Γ̃) → C∗(∆̃) . Moreover, the affine embedding ε×id: Γ×I → ∆×I induces
a simplicial map πε: PΓ → P∆ and a chain map πε#: C∗(PΓ) → C∗(P∆). Then
for each j ∈ Z we have the commutative diagram

Cj(Γ̃)

��

DΓ

//
ε#

Cj(∆̃)

��

D∆

Cj+1(PΓ) //
πε#

Cj+1(P∆).

Furthermore, if Γ1
ζ−→ Γ2

ε−→ ∆ are order-preserving affine embeddings, then
obviously

(2.9) π(εζ)# = πε#πζ#.

Suppose that γ is a singular p-chain in a topological space X and that ϕ is a
prism of γ . Let Dp: C∗(∆̃

p) → C∗(P∆p) be the above chain homotopy connecting
the chain maps α0, α1: C∗(∆̃

p) → C∗(P∆p) . We again consider ∆p as an element
of Cp(∆̃

p) . The chain
g(ϕ) = ϕDp∆p ∈ Sp+1(X)

will play a central role in the theory.
For 0 ≤ j ≤ p we let εj : ∆p−1 → ∆p denote the standard face map, which

embeds ∆p−1 onto the face of ∆p opposite to ej . Then εj×id induces a simplicial
map πj : P∆p−1 → P∆p as above, and we can define the chain maps

ε =

p∑

j=0

(−1)jεj#: C∗(∆̃
p−1) → C∗(∆̃

p),

π =

p∑

j=0

(−1)jπj#: C∗(P∆p−1) → C∗(P∆p).

Observe that ε∆p−1 = ∂∆p .
With this notation we give the basic result of prism theory:

2.10. Theorem. Suppose that ϕ is a prism of a singular chain γ ∈ Sp(X) .
Then ψ = ϕπ is a prism of ∂γ . Setting γ1 = ϕα1∆

p we have

∂g(ϕ) + g(ψ) = γ1 − γ.

If γ is a cycle, then γ1 is also a cycle, and ∂g(ϕ) = γ1 − γ .
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Proof. Let γ =
∑m

i=1 niσi be the normal representation. We define an equiv-
alence relation in the set {1, . . . , m} × {0, . . . , p} by calling (i, j) equivalent to
(k, l) if σiεj = σkεl . Let G be the set of all equivalence classes and let H ∈ G .
Set

mH =
∑

(i,j)∈H

(−1)jni,

and let τH denote the map σiεj : ∆p−1 → X for (i, j) ∈ H . Then

∂γ =

m∑

i=1

p∑

j=0

(−1)jniσiεj =
∑

H∈G

∑

(i,j)∈H

(−1)jniσiεj =
∑

H∈G

mHτH ,

where the singular (p− 1)-simplexes τH are all distinct. However, this is usually
not a normal representation, since some numbers mH may be zero. In particular,
if ∂γ = 0, then mH = 0 for all H ∈ G .

By the compatibility condition of the prism ϕ =
∑m

i=1 niϕi , the chain map
ϕiπj#: C∗(P∆p−1) → S∗(X) does not change if (i, j) is replaced by an equivalent
pair. Given H ∈ G , we can therefore write ψH = ϕiπj# for all (i, j) ∈ H . Clearly
ψH is a prismoid of τH . Moreover,

ψ = ϕπ =
∑

H∈G

∑

(i,j)∈H

(−1)jniϕiπj# =
∑

H∈G

mHψH .

To prove that ψ is a prism of ∂γ it suffices to show that if H,K ∈ G ,
then the prismoids ψH and ψK are compatible. Assume that 0 ≤ q ≤ p − 1
and that εH , εK : ∆q → ∆p−1 are order-preserving isometries onto faces such that
τHεH = τKεK . Choose (i, j) ∈ H and (k, l) ∈ K . Writing πH = πεH

and
πK = πεK

we must show that ψHπH# = ψKπK# , that is,

(2.11) ϕiπj#πH# = ϕkπl#πK#.

Setting ζ = εjεH and η = εlεK we have σiζ = τHεH = τKεK = σkη . The
maps ζ, η = ∆q → ∆p are order-preserving isometries. By the compatibility of
the prismoids ϕi and ϕk we have ϕiπζ# = ϕkπη# . This implies (2.11) by (2.9),
and we have proved that ψ is a prism of ∂γ .

The chain homotopy law (2.8) and the chain map law ∂g = g∂ give

∂g(ϕ) = ∂ϕDp∆p = ϕ∂Dp∆p = ϕα1∆
p −ϕα0∆

p −ϕDp∂∆p = γ1 − γ−ϕDp∂∆p.

On the other hand, the functorial property of D implies

g(ψ) = ϕπDp−1∆p−1 = ϕDpε∆p−1 = ϕDp∂∆p,

and we obtain the formula of the theorem. The last statement is a direct conse-
quence.
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2.12. Metric conditions. In applications, the space X will always be metric,
and we want that the chains γ1, g(ϕ) and g(ψ) of 2.10 satisfy some metric con-
ditions. In particular, we want that g(ϕ) and g(ψ) are not too far from γ and
∂γ , respectively. Let pr1: ∆p × I → ∆p be the projection and let s be a simplex
of P∆p . Let γ =

∑m

i=1 niσi be the normal representation. The construction of
2.5 will be carried out in such a way that

(2.13) |ϕis| ⊂ B(σi pr1s, r)

for some r > 0 and for all s and i . It is then clear that |g(ϕ)| ⊂ B(|γ|, r) . We
show that also |g(ψ)| ⊂ B(|∂γ|, r) . Let x ∈ |g(ψ)| . With the notation of the proof
of 2.10, we have x ∈ |ψHt| for some p-simplex t ∈ P∆p−1 and for some H ∈ G
with mH 6= 0. Choose (i, j) ∈ H . Then ψH = ϕiπj# and τH = σiεj . Moreover,
πj = εj × id maps t onto a p-simplex s ∈ P∆p with pr1s = εj pr1t , and thus
σi pr1s = σiεj pr1t ⊂ |τH | . By (2.13) this implies

|ψHt| = |ϕis| ⊂ B(|τH |, r).

Since mH 6= 0, we have |τH | ⊂ |∂γ| , and hence x ∈ B(|∂γ|, r) . We have proved
the following result:

2.14. Theorem. Let X be a metric space and let γ ∈ Sp(X) be a chain

with normal representation γ =
∑m

i=1 niσi . Suppose that r > 0 and that ϕ =∑m

i=1 niϕi is a prism of γ such that (2.13) holds for all simplexes s ∈ P∆p and

for all 1 ≤ i ≤ m . Then, with the notation of 2.10, we have

|g(ϕ)| ⊂ B(|γ|, r), |g(ψ)| ⊂ B(|∂γ|, r).

3. Homological uniformity

3.1. Summary of Section 3. We extend the results of [Al] on hlog (1, c)-
uniformity to hlog uniformity of all orders. The central result is Theorem 3.10,
which states that complete hlog (p, c)-uniformity follows from lower-order unifor-
mity and an apparently weaker condition, which involves only ‘nicely’ situated
p-cycles. We apply this result to characterize the complements of completely hlog
(p, c)-uniform domains in Rn in terms of compact families of sets.

3.2. Remark. It is possible to characterize the hlog (p, c)-uniform domains
in terms of homology groups without mentioning cycles and chains. Let A be a
compact subset of a domain G ⊂ E , and let c ≥ 1. Set

W (A, c,G) =
{
x ∈ G : d(x,A) ≤ c

(
d(A) ∧ d(x, ∂G)

)}
.

Then the following conditions are quantitatively equivalent:
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(1) G is a hlog (p, c)-uniform domain.
(2) The homomorphism Hp(A) → Hp

(
W (A, c,G)

)
is zero for all compact

sets A ⊂ G .

More precisely, (1) implies (2) with the same constant c , and (2) implies (1)
with c 7→ 2c+ 1. The proof is straightforward.

We start with an elementary lemma, which is often useful when working with
uniform domains.

3.3. Lemma. Let U ⊂ E be open and let A ⊂ B be subsets of U satisfying

the lens condition

d(x,A) ≤ cd(x, ∂U)

for some c ≥ 1 and for all x ∈ B . Then d(A, ∂U) ≤ 2cd(B, ∂U) .

Proof. We may assume that A 6= ∅ and U 6= E . Write r = d(A, ∂U) and
let x ∈ B . If d(x,A) ≤ r/2, then d(x, ∂U) ≥ r/2 ≥ r/2c . If d(x,A) ≥ r/2, then
d(x, ∂U) ≥ d(x,A)/c ≥ r/2c . Hence d(x, ∂U) ≥ r/2c .

3.4. Properties HT and HT∗ . Let G ⊂ E be a domain and let p ∈ N ,
c ≥ 1, c′ ≥ 1. We recall from [Al, 4.3] that G is said to have property HT (p, c′, c)
if for each (reduced) singular p-cycle z in G with d(|z|) ≤ c′d(|z|, ∂G) there is
g ∈ Sp+1(G) such that

(3.5) ∂g = z, d(|g|) ≤ cd(|z|), d(x, |z|) ≤ cd(x, ∂G)

for all x ∈ |g| . This was proved in [Al, 4.5] to be quantitatively equivalent to
another condition HT′(p, c′, c) . For our present needs, it is convenient to introduce
a third condition, still quantitatively equivalent to HT (p, c′, c) . We say that G
has property HT∗(p, c′, c) if for each p-cycle z in G with d(|z|) ≤ c′d(|z|, ∂G)
there is g ∈ Sp+1(G) such that

(3.6) ∂g = z, d(|g|) ≤ cd(|z|), d(|z|, ∂G) ≤ cd(|g|, ∂G).

3.7. Lemma. For a domain G ⊂ E , property HT(p, c′, c) implies

HT∗(p, c′, 2c) , and HT(p, c′, c) implies HT(p, c′, c′c2) .

Proof. The first part of the lemma follows from 3.3. Suppose that G has
property HT∗(p, c′, c) . Let z be a p-cycle with d(|z|) ≤ c′d(|z|, ∂G) . Choose g
satisfying (3.6), and let x ∈ |g| . Then

d(x, |z|) ≤ d(|g|) ≤ cd(|z|) ≤ c′cd(|z|, ∂G) ≤ c′c2d(|g|, ∂G) ≤ c′c2d(x, ∂G).

Hence (3.5) is true with c replaced by c′c2 .
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3.8. Lemma. Suppose that p ≥ 1 is an integer, that c, c1 ≥ 1 and that

G is a completely hlog (p − 1, c) -uniform domain in E . Write c′ = c′(c, p) =
8(2c)2p+1(1 + 2(4c)p) . Suppose also that G has property HT∗(p, c′, c1) and that

z is a p-cycle in G such that d(|z|, ∂G) ≥ r > 0 and d(|z|) > c′r . Then there is

a chain g ∈ Sp+1(G) such that writing z1 = ∂g + z , c0 = 4(4c)p(2c)p+1 = c0(c, p)
and c2 = c0 + 3c0c1 = c2(c, c1, p) we have

(1) |z1| ⊂ B(|z|, c0r) ,
(2) d(|z1|, ∂G) ≥ 2r ,
(3) |g| ⊂ B(|z|, c2r) ,
(4) d(|g|, ∂G) ≥ r/c2 .

Proof. Let z =
∑

σ<z nσσ be the normal representation. Let Sdz be the
barycentric subdivision of z ; see [Ro, p. 114]. Then |Sdz| ⊂ |z| and z − Sdz
bounds in |z| . Hence it suffices to prove the lemma with z replaced by Sdz .
Iterating this argument we see that we may assume that d(|σ|) ≤ r′ = 4(2c)p+1r
for all σ < z .

Following the method described in 2.5 we construct a prism ϕ =
∑

σ<z nσϕσ

of z . Starting with 0-chains, assume that v is a vertex of P∆p . If v ∈ ∆p , we
set of course ϕσv = σv . Suppose that v = e′j = (ej , 1). Since G is (0, c)-uniform,
it is 4c-plump by [Vä1 , 2.15]. Since r′ < c′r < d(|z|) < d(G) , we can choose the
point ϕσv ∈ G such that

|ϕσv − σej| ≤ r′, d(ϕσv, ∂G) ≥ r′/4c.

Moreover, the points ϕσe
′

j are chosen in a compatible way; see 2.5.
Proceeding inductively, assume that 0 ≤ q ≤ p − 1 and that the homomor-

phisms ϕσ: Cq(P∆p) → Sq(G) have been defined in such a way that the following
three conditions are satisfied for every q -simplex s ∈ P∆p and for every σ < z :

(i) |ϕσs| ⊂ B(|σ|, (4c)qr′) ,
(ii) d(|ϕσs|, ∂G) ≥ r/(2c)q ,
(iii) d(|ϕσs|, ∂G) ≥ r′/2(2c)q+1 whenever s ⊂ ∆p × {1} .

The conditions are easily verified for q = 0.
Let σ < z . To define ϕσ: Cq+1(P∆p) → Sq+1(G) assume that s is a (q+1)-

simplex of P∆p . If s ⊂ ∆p , we set of course ϕσs = σεs ; see 2.5. The conditions
(i), (ii), (iii) are easily verified for such s . Assume that s is not in ∆p . Now ϕσ∂s
is defined, and it is a q -cycle in G . If ϕσ∂s = 0, we set ϕσs = 0. If ϕσ∂s 6= 0, we
apply the hlog (q, c)-uniformity of G and Lemma 3.3 to find a chain ϕσs ∈ Sq(G)
such that

∂ϕσs = ϕσ∂s, d(|ϕσs|) ≤ cd(|ϕσ∂s|), d(|ϕσ∂s|, ∂G) ≤ 2cd(|ϕσs|, ∂G).

Moreover, the chains ϕσs are chosen in a compatible way; see 2.5.
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We show that the conditions (i)–(iii) hold for each (q + 1)-simplex s . We
may assume that ϕ∂s 6= 0. By the inductive hypothesis we have |ϕσ∂s| ⊂
B(|σ|, (4c)qr′) , which implies that |ϕσs| ⊂ B(|σ|, r′′) where

r′′ = (4c)qr′ + cd(|ϕσ∂s|).

Since d(|σ|) ≤ r′ , we have d(|ϕσ∂s|) ≤ r′ + 2(4c)qr′ , and hence r′′ ≤ (4c)q+1r′ ,
which proves (i).

By the inductive hypothesis we have d(|ϕσ∂s|, ∂G) ≥ r/(2c)q , which implies
that

d(|ϕσs|, ∂G) ≥ r/(2c)q+1,

and hence (ii) is true. Finally, if s ⊂ ∆p × {1} , we apply (iii) of the inductive
hypothesis and obtain d(|ϕσ∂s|, ∂G) ≥ r′/2(2c)q+1 , which yields

d(|ϕσs|, ∂G) ≥ r′/2(2c)q+2,

and hence (iii) is true for s .
As the last step of the induction we obtain chain maps ϕσ: Cp(P∆p) →

Sp(G) , σ < z . We shall continue by one step to ϕσ: Cp+1(P∆p) → Sp+1(G) , but
instead of uniformity, we shall apply the property HT∗(p, c′, c) .

Let s be a (p+1)-simplex of P∆p and let σ < z . We again have the p-cycle
ϕσ∂s in G . Assuming that ϕσ∂s 6= 0 we infer from (i) and (ii) that

d(|ϕσ∂s|)
d(|ϕσ∂s|, ∂G)

≤
(
1 + 2(4c)p

)
r′

r/(2c)p
= c′/2 < c′.

Hence property HT∗(p, c′, c1) gives a (p+ 1)-chain ϕσs such that ∂ϕσs = ϕσ∂s
and such that

(3.9)
d(|ϕσs|) ≤ c1d(|ϕσ∂s|) ≤ c1

(
1 + 2(4c)p

)
r′,

d(|ϕσs|, ∂G) ≥ d(|ϕσ∂s|, ∂G)/c1 ≥ r/c1(2c)
p.

These chains are also chosen in a compatible way. The construction of the prism
ϕ =

∑
σ<z nσϕσ has now been completed.

Setting z1 = ϕα1∆
p and g = g(ϕ) we have ∂g = z1−z by 2.10. We show that

the conditions (1)–(4) of the lemma are true. Since z1 = ϕs with s = ∆p × {1} ,
(1) follows from (i). The condition (2) follows from (iii), since r′/2(2c)p+1 = 2r .
To prove (3) let x ∈ |g| . Then x ∈ |ϕσt| for some (p + 1)-simplex t ∈ P∆p and
some σ < z . Now (i) implies that

|ϕσ∂t| ⊂ B
(
|σ|, (4c)pr′

)
= B(|σ|, c0r).

Since d(|σ|) ≤ r′ < c0r , this proves d(|ϕσ∂t)| ≤ 3c0r . By (3.9) we obtain
d(|ϕσt|) ≤ 3c0c1r . It follows that x ∈ B(|z|, c2r) , and (3) is proved.

Finally, (4) follows from (3.9), since d(|g|, ∂G) ≥ r/c1(2c)
p > r/c2 .
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We next extend [Al, 4.13] to uniform domains of all orders.

3.10. Theorem. Suppose that p ≥ 1 and that G ⊂ E is a completely hlog

(p−1, c) -uniform domain with property HT∗(p, c′, c1) , where c′ = c′(c, p) is given

in 3.8. Then G is hlog (p, c2) -uniform with c2 = c2(c, c1, p) .
The theorem is valid also in the case p = 0; the (−1, c) -uniformity is inter-

preted as c-plumpness.

Proof. The case p = 0 was given in [Vä1 , 2.15]. Assume that p ≥ 1, and
let z0 be a p-cycle in G . We look for a chain g ∈ Sp+1(G) with ∂g = z0 and
satisfying the uniformity conditions. Write

d0 = d(|z0|), r0 = d(|z0|, ∂G).

If d0 ≤ c′r0 , the desired g is given by HT∗(p, c′, c) and Lemma 3.7. Suppose that
d0 > c′r0 . By successive applications of 3.8 we get sequences

z0, . . . , zk ∈ Zp(G), g1, . . . , gk ∈ Sp+1(G)

such that ∂gi = zi − zi−1 and such that writing di = d(|zi|) , ri = d(|zi|, ∂G) we
have for all 1 ≤ i ≤ k

(1) |zi| ⊂ B(|zi−1|, c0ri−1) ,
(2) ri ≥ 2ri−1 ,
(3) |gi| ⊂ B(|zi−1|, c2ri−1) ,
(4) d(|gi|, ∂G) ≥ ri−1/c2 ,

where the constants c0 = c0(c, p) and c2 = c2(c, c1, p) are as in 3.8. We proceed
with the construction as long as we get an index k such that dk ≤ c′rk . We first
show that such an index exists. Assume that di > c′ri for 0 ≤ i ≤ k − 1. We
show that

(3.11) di ≤ d0 + 4c0ri−1 ≤ 2d0

for all i = 1, . . . , k .
By (1) we obtain di ≤ di−1 + 2c0ri−1 . By iteration and (2) this gives

di ≤ d0 + 2c0(ri−1 + · · ·+ r0) ≤ d0 + 2c0ri−1(1 + 2−1 + · · ·+ 21−i) ≤ d0 + 4c0ri−1,

which is the first inequality of (3.11). The second inequality follows by induction,
since assuming di−1 ≤ 2d0 and observing that c′ ≥ 8c0 we obtain

4c0ri−1 < 4c0di−1/c
′ ≤ di−1/2 ≤ d0.

If dk < c′rk , then (3.11) and (2) give

8c0 ≤ c′ < dk/rk ≤ d0/rk + 4c0rk−1/rk ≤ 2−kd0/r0 + 2c0.
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Since this gives a contradiction for large k , we can choose the smallest k ≥ 1 for
which dk ≤ c′rk . Then (3.11) holds for 1 ≤ i ≤ k .

By property HT∗(p, c′, c1) there is gk+1 ∈ Sp+1(G) such that

(3.12) ∂gk+1 = −zk, d(|gk+1|) ≤ c1dk, d(|gk+1|, ∂G) ≥ rk/c1.

Setting

g = −
k+1∑

i=1

gi

we have ∂g = z0 . We show that g satisfies the uniformity conditions in G with
some constant c3 = c3(c, c1, p) .

To prove the turning condition let x ∈ |g| . Then x ∈ |gi| for some 1 ≤ i ≤
k + 1. If i ≤ k , then (1), (2) and (3) yield

(3.13) d(x, |z0|) ≤ c2ri−1 + c0(r0 + · · · + ri−2) ≤ (c2 + c0)ri−1.

Since ri−1 < di−1/c
′ < di−1 ≤ 2d0 by (3.11) and since c2 ≥ c0 , we get d(x, |z0|) ≤

4c2d0 . If i = k + 1, then (3.12) and (3.11) give

d(x, |zk|) ≤ d(|gk+1|) ≤ c1dk ≤ 2c1d0.

Since |zk| ⊂ |gk| ⊂ B(|z0|, 4c2d0) by the first case, we have d(x, |z0|) ≤ (2c1 +
4c2)d0 in both cases. This gives the turning condition d(|g|) ≤ (1 + 4c1 + 8c2)d0 .

To prove the lens condition let again x ∈ |gi| for some 1 ≤ i ≤ k + 1. If
i ≤ k , then (4) implies d(x, ∂G) ≥ ri−1/c2 . By (3.13) we obtain

(3.14) d(x, |z0|) ≤ c2(c2 + c0)d(x, ∂G).

Assume that i = k + 1. Now (3.12) implies that

(3.15) d(x, ∂G) ≥ d(|gk+1|, ∂G) ≥ rk/c1.

Choose a point y ∈ |zk| . Then (1) and (2) yield

d(y, |z0|) ≤ c0(r0 + · · ·+ rk−1) ≤ c0rk.

By (3.12) and (3.15) this gives

d(x, |z0|) ≤ |x− y| + d(y, z0) ≤ d(|gk+1|) + c0rk

≤ c1dk + c0rk ≤ (c1c
′ + c0)rk.

≤ c1(c1c
′ + c0)d(x, ∂G).

This and (3.14) prove the lens condition.
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3.16. Uniformity and compactness. With the aid of Theorem 3.10, we shall
generalize the results of [Al, §6] on hlog (1)-uniform domains to hlog (p)-uniform
domains with arbitrary p . For p = 0 these results were known earlier.

We recall that an open set U ⊂ E is c-plump if for each x ∈ U and 0 < r <
d(U) there is z ∈ B(x, r) with B(z, r/c) ⊂ U . If, in addition, int(E \ U) = ∅ ,
the closed set E \ U is said to be c-porous.

We recall some notation and terminology of [Al, §6]. Let Kn
∞

be the family of
all compact sets A with ∞ ∈ A ⊂ Ṙn = Rn ∪ {∞} . Each closed subset A of Rn

will be identified with A ∪ {∞} and considered as an element of Kn
∞

. With the
Hausdorff metric induced by the spherical metric, Kn

∞
is a compact metric space.

For 0 ≤ p ≤ n−2, let HU(p, c) denote the family of all A ∈ Kn
∞

such that Rn \A
is a completely hlog (p, c)-uniform domain, and let HU(−1, c) be the family of all
sets A ∈ Kn

∞
such that Rn \A is c-plump. We set HU(p) = ∪{HU(p, c) : c ≥ 1} .

We fix a unit vector e1 ∈ Rn . A family H ⊂ Kn
∞

is stable if H is invariant
under similarities and if H2 = {A ∈ H : {0, e1} ⊂ ∂A} is compact in Kn

∞
. To

each H ⊂ Kn
∞

we associate the subfamily

σ(H) = ∪{L ⊂ H : L stable}.

A filtration of σ(H) is a function c 7→Mc , defined for c ∈ [1,∞) , such that

(1) c < d implies Mc ⊂Md ,
(2) each Mc is contained in a stable subfamily of H ,
(3) each stable subfamily of H is contained in some Mc .

For −1 ≤ p ≤ n− 2 let Dp be the family of all A ∈ Kn
∞

such that Hk(Rn \
A) = 0 for k ≤ p . By Alexander duality, a set A ∈ Kn

∞
is in Dp if and only if

Hq(A) = 0 for n − p − 1 ≤ q ≤ n , where Hq(A) denotes the qth reduced Čech
cohomology group of A . Observe that D−1 = Kn

∞
\ {Ṙn} .

3.17. Theorem. For every −1 ≤ p ≤ n − 2 we have σ(Dp) = HU(p) , and

the function c 7→ HU(p, c) is a filtration of σ(Dp) .

Proof. The case p = −1 is [Vä1 , 3.4]. Let p ≥ 0. The inclusion HU(p) ⊂
σ(Dp) was proved in [Al, 6.6]. In fact, the proof shows that each HU(p, c) is
contained in a stable subfamily of Dp . Conversely, assume that M ⊂ Dp is a
stable family. Using inductively [Al, 6.4], 3.7 and 3.10 we see that M is contained
in some HU(p, c) .

3.18. Corollary. A domain G ⊂ Rn is not completely hlog (p) -uniform if

and only if there is a sequence (αj) of similarities of Rn such that

(1) {0, e1} ⊂ αj∂G ,

(2) Ṙn \ αjG → A ∈ Kn
∞

, and either 0 ∈ intA or Hk(Rn \A) 6= 0 for some

0 ≤ k ≤ p .
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3.19. NUD sets. We recall that a closed set A ⊂ Rn is hlog (p, c)-NUD
(null-set for uniform domains) if intA = ∅ and if Rn \A is a hlog (p, c)-uniform
domain. For 0 ≤ p ≤ n− 2 let HN(p, c) denote the family of all completely hlog
(p, c)-NUD sets in Rn , and let HN(−1, c) be the family of all c-porous sets. We
set HN(p) = ∪{HN(p, c) : c ≥ 1} . Let Lp be the family of all closed sets in Rn

with topological dimension at most p .

3.20. Theorem. Let p ≥ −1 and q ≥ 0 be integers with p+q = n−2 . Then

σ(Lq) = HN(p) , and c 7→ HN(p, c) is a filtration of σ(Lq) .

Proof. The case p = −1, q = n− 1, is [Vä2 , 5.4]. Let p ≥ 0. In [Al, 6.10] it
was proved that the closure of HN(p, c) is a stable subfamily of Lq . Conversely,
let M ⊂ Lq be stable. By [HW, VIII.4F, p. 137], we have Lq ⊂ Dp . Hence
M ⊂ HU(p, c) for some c by 3.17, which implies that M ⊂ HN(p, c) .

3.21. Theorem. Suppose that A ∈ HU(p, c) and that f : A → Ṙn is a

θ -quasimöbius map with ∞ ∈ fA . Then fA ∈ HU(p, c1) with c1 = c1(c, θ) .

Proof. See [Al, 6.11]. The condition ∞ ∈ fA is unnecessary if we allow the
possibility ∞ ∈ G for uniform domains; see [Vä3 , 5.4].

3.22. Theorem. Let E be a normed space of dimension at least n with

n ≥ 3 . Let γ ⊂ E be an arc of c-bounded turning. Then γ is completely hlog

(n− 3, c1) -NUD with c1 = c1(c, n) .

Proof. This follows inductively from 3.7, 3.10, and [Al, 5.4].

3.23. Remark. Theorem 3.22 is valid in the case dimE = ∞ . However, one
can show that in this case, every compact set in E is htop (p, c0)-NUD for every
p ≥ 0 with a universal constant c0 . This will be proved in Part III.

4. Relations between homotopical and homological uniformity

4.1. Summary of Section 4. Roughly speaking, homotopical properties im-
ply the corresponding homological properties. For example, if a space X is p-
connected, it is also p-acyclic, that is, Hk(X) = 0 for 0 ≤ k ≤ p . The converse
is not true, but it is true for 1-connected spaces. This follows directly from the
Hurewicz theorem [Sp, 7.5.5].

In this section we consider quantitative versions of these results. We show
in 4.2 that a completely htop (p, c)-uniform domain is completely hlog (p, c1)-
uniform with c1 = c1(c, p) . The case p = 0 was given in [Al, p. 7] and the case
p = 1 in [Al, 1.7], both with c1 = 2c + 1. The converse is true for p = 0 [Al,
p. 7] but not for p ≥ 1, since for n ≥ 4, the complement of a BT arc in Rn is
completely hlog (n−3)-uniform by 3.22, but it need not be simply connected and
hence not htop (1)-uniform; see [Al, pp. 32–33].
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We conjecture that the converse of 4.2 is true for htop (1, c)-uniform domains.
In 4.5 we prove this conjecture in Rn , but the proof makes use of compact families
of sets, and hence the bound for the htop uniformity depends also on n .

4.2. Theorem. If a domain G ⊂ E is completely htop (p, c) -uniform, it is

completely hlog (p, c1) -uniform with c1 = c1(c, p) .

Proof. The easy case p = 0 was given in [Al, p. 7] with c1 = 2c + 1.
Proceeding inductively, we see that it suffices to prove that if G is completely
htop (p, c)-uniform, it is hlog (p, c1)-uniform with c1 = c1(c, p) . By 3.10, it
suffices to show that G has property HT∗(p, c′, c1) where c′ = c′(c, p) is given
in 3.8.

Let z ∈ Zp(G) be such that d ≤ c′r where d = d(|z|) and r = d(|z|, ∂G) .
We must show that z = ∂g for some g such that

(4.3) d(|g|) ≤ c1d, d(|g|, ∂G) ≥ r/c1.

Let z =
∑

σ<z nσσ be the normal representation. Fix a point a ∈ |z| . We use
the method described in 2.5 and 2.6 to construct maps hσ: ∆p × I → G such
that ϕ =

∑
σ<z nσhσ is a simple prism of z . For 0 ≤ q ≤ p + 1, let Kq be

the subcomplex of P∆p consisting of the simplexes s ∈ P∆p such that either
s ⊂ ∆p × {0, 1} or dim s ≤ q . For σ < z and y ∈ |K0| , define hσ(y) by
hσ(x, 0) = σ(x) and h(x, 1) = a . The compatibility condition of 2.6 is clearly
satisfied for the 0-simplexes in K0 . Proceeding inductively, assume that for some
0 ≤ q ≤ p , the maps hσ have been defined in |Kq| in such a way that setting
Aq = ∪{hσ|Kq| : σ < z} we have

(4.4) d(Aq) ≤ (2c+ 1)qd, d(Aq, ∂G) ≥ r/(2c)q.

Since A0 = |z| , (4.4) holds for q = 0. We extend these maps to |Kq+1| as follows:
Let s ∈ Kq+1 \ Kq and let σ < z . Then the map wσ

s = hσ|∂s is defined. By
(4.4) we have d(|wσ

s |) ≤ (2c + 1)qd and d(|wσ
s |, ∂G) ≥ r/(2c)q . Since G is htop

(q, c)-uniform, we can extend wσ
s to a map uσ

s : s→ G such that

d(|uσ
s |) ≤ cd(|wσ

s |) ≤ cd(Aq),

d(|uσ
s |, ∂G) ≥ r/(2c)q+1,

where the second inequality follows from 3.3. These maps are chosen for all s ∈
Kq+1 \ Kq and for all σ < z in a compatible way, that is, uσ

s = uτ
t whenever

wσ
s = wτ

t . It follows that

d(Aq+1) ≤ d(Aq) + 2cd(Aq) ≤ (2c+ 1)q+1d,
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d(Aq+1, ∂G) ≥ r/(2c)q+1,

and hence (4.4) holds for q 7→ q + 1.
After the step q = p we have the maps hσ: ∆p × I → X , which give a simple

prism ϕ =
∑

σ<z nσhσ of z . By 2.10 we have ∂g(ϕ) = z1−z where z1 is the cycle
ϕα1∆

p . Thus |z1| ⊂ {a} , and hence z1 = ∂g1 for a chain g1 with |g1| ⊂ {a} .
Setting g = g1 − g(ϕ) we have ∂g = z and |g| ⊂ Ap+1 . From (4.4) it follows that
g satisfies (4.3) with c1 = (2c+ 1)p+1 .

4.5. Theorem. If a domain G ⊂ Rn is completely hlog (p, c) -uniform and

htop (1, c) -uniform, then G is completely htop (p, c1) -uniform with c1 = c1(c, n) .

Proof. We use the notation of [Al, §6], partially recalled in 3.16. The com-
plement of G belongs to the family H = HU(p, c) ∩ U(1, c) . By 3.17 and by [Al,
6.8], there are stable families L ⊂ Dp and L′ ⊂ C1 such that H is contained in
L ∩ L′ , which clearly is a stable subfamily of Dp ∩ C1 . Since Dp ∩ C1 = Cp by
the Hurewicz theorem, the theorem follows from [Al, 6.8].

5. Turning conditions

5.1. Summary of Section 5. A metric space X is of c-bounded turning or
briefly c-BT if each pair a, b of points in X can be joined by an arc γ with
d(γ) ≤ c|a − b| . More generally, let p ≥ 0 be an integer. The space X is htop
(p, c)-BT if each map f : Sp → X extends to a map g: B p+1 → X such that
d(|g|) ≤ cd(|f |) . Thus c-BT is equivalent to htop (0, c)-BT.

In this section we give some improvements on the results of [Al] concerning
htop (p, c)-BT, and also study the corresponding homological property.

5.2. Basic concepts. We say that a metric space X is hlog (p, c)-BT if each p-
cycle z in X bounds a chain g with d(|g|) ≤ cd(|z|) . This implies that Hp(X) =
0. Furthermore, let a ∈ X and r > 0. It is easy to see that the homomorphism
Hp

(
B(a, r)

)
→ Hp

(
B(a, c1r)

)
is zero for c1 = 2c + 1. Conversely, if this is true

for all a and r , then X is hlog (p, c)-BT for any c > 2c1 . Consequently, the
property hlog (p, c)-BT is quantitatively equivalent to the property hlog outer
(p, c)-joinable [Vä3 ] together with the condition Hp(X) = 0.

In some cases these quantitative properties are unnecessarily strong, and they
can be replaced by the corresponding topological conditions. Let G be an open
set in E , and let p ≥ 0 be an integer. We say that G is p-LC rel E if each
neighborhood U of each point a ∈ ∂G contains a neighborhood V such that
every map f : Sp → V ∩ G is null-homotopic in U ∩ G . If this holds for all
0 ≤ p ≤ m , G is said to be LCm rel E .

Replacing homotopy by homology, we obtain the concepts p-lc rel E and lcm

rel E . For example, G is p-lc rel E if for each a ∈ ∂G and for each neighborhood
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U of a there is a neighborhood V of a such that Hp(V ∩ G) → Hp(U ∩ G) is
zero.

These and related concepts have been extensively studied in the topological
literature since the thirties. See, for example, [EW] and [Wi].

5.3. Remarks. 1. The quantitative properties imply the topological properties
in the obvious way. For example, if G ⊂ E is completely hlog (p, c)-BT, G is lcp

rel E .
2. If X is hlog (0, c)-BT, X is c-BT. Conversely, a c-BT space is hlog

(0, 2c+ 1)-BT. The proofs are elementary.
3. If X is completely htop (p, c)-BT, then X is completely hlog (p, c1)-BT

with c1 = c1(c, p) . This can be proved by using similar techniques as in 4.2.
4. Let F ⊂ Rn be closed with intF = ∅ , and let 0 ≤ p ≤ n− 2 and c ≥ 1.

Set G = Rn \ F . Then the following conditions are equivalent:

(1) dimF ≤ n− p− 2,
(2) G is completely hlog (p,

√
2 )-BT,

(3) G is completely hlog (p)-BT,
(4) G is lcp rel Rn .

The implications (2) ⇒ (3) ⇒ (4) are trivial, and (4) ⇒ (1) ⇒ (2) follows from
[Ku, Th. 2′ , p. 9]. Indeed, assume that (1) is true and that z is a k -cycle in G
with k ≤ p . By Jung’s theorem [Fe, 2.10.41], |z| is contained in an open ball of
radius d(|z|)/

√
2. Since k < n− dimF − 1, it follows from [Ku, Th. 2′ , p. 9] that

z = ∂g for some chain g in B \ F . Since d(|g|) < d(|z|)
√

2, (2) is true.

5.4. Lemma. Suppose that U is open in E and LCp rel E . Suppose

also that X is a compact polyhedron with dimX ≤ p + 1 . Then for each map

f : X → U and for each ε > 0 there is a map g: X → U with ‖g − f‖ < ε .

Proof. Using the compactness of fX and the LCp -condition it is easy to
show that for every s > 0 there is t > 0 such that if y ∈ fX and 0 ≤ q ≤ p , then
each map ϕ: Sq → U ∩ B(y, t) is null-homotopic in U ∩ B(y, s) . The map g is
found by choosing a sufficiently fine triangulation of X , starting with the vertices
and proceeding by induction to skeletons of higher dimension.

5.5. Plumpness and porosity conditions. The definition of a c-plump open set
U ⊂ E was recalled in 3.16. This property could also be called (0, c)-plumpness,
since it is a special case of (p, c)-plumpness defined in [Al, 3.1]. In this paper we
shall call this property htop (p, c)-plumpness, since a hlog version will be given
in §6. We recall the definition. Let p ≥ 0 be an integer and let c ≥ 1. An open set
U ⊂ E is htop (p, c)-plump if for each map f : ∆p → U and for each 0 < r < d(U)
there is a map g: ∆p → U such that ‖g − f‖ ≤ r and d(|g|, ∂U) ≥ r/c .

It is essential that we consider maps f : ∆p → U and not only maps into U .
If the condition above is valid for every map f : ∆p → U , we say that U is htop
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inner (p, c)-plump. This is an absolute concept, which makes sense in any metric
space.

A closed set F ⊂ E is htop (p, c)-porous or htop inner (p, c)-porous if intF =
∅ and if U = Rn \ F satisfies the appropriate plumpness condition.

Trivially, htop (p, c)-plumpness and (p, c)-porosity imply the corresponding
inner condition. The converse is true for p = 0 with an arbitrary small change of
c , but not for p ≥ 1. For example, let F be a line segment in R3 . Then F is
htop (1)-porous and htop inner (2)-porous but not htop (2)-porous.

We next give a result in the converse direction:

5.6. Theorem. Suppose that U ⊂ E is open, LCp−1 relE and htop inner

(p, c) -plump. Then U is htop (p, c1) -plump for every c1 > c .

Proof. Let f : ∆p → U be continuous and let 0 < r < d(U) . Given c1 > c ,
we set ε = (1−c/c1)r . By 5.4 there is a map f ′: ∆p → U such that ‖f ′−f‖ ≤ ε .
Since U is htop inner (p, c)-plump, there is a map g: ∆p → U such that ‖g−f ′‖ ≤
r−ε and d(|g|, ∂U) ≥ (r−ε)/c = r/c1 . Since ‖g−f‖ ≤ r , the theorem follows.

We apply Theorem 5.6 to improve 4.8 and 3.10 of [Al]:

5.7. Theorem. Let G ⊂ E be a domain and let 1 ≤ p < dimE . Then the

following conditions are quantitatively equivalent:

(1) G is htop (p, c) -plump and completely htop (p− 1, c)-BT.
(2) G is htop inner (p, c) -plump and completely htop (p− 1, c)-BT.
(3) G is completely htop (p− 1, c) -uniform.

Proof. The implication (1) ⇒ (2) is trivial, and (1) ⇔ (3) was proved in [Al,
4.8]. Since htop (p− 1, c)-BT implies (p− 1)-LC rel E , (2) implies (1) by 5.6.

5.8. Theorem. Let D ⊂ E be a domain and let F be closed in E with

intF = ∅ . Suppose that 0 ≤ p < dimE , that D is htop (p, c) -BT and that E \F
is LCp rel E . Then G = D \ F is htop (p, c1) -BT for every c1 > c .

Proof. Let ε > 0. We show that G is htop (p, c+ ε)-BT. Let f : Sp → G be
continuous and nonconstant. Define f ′: Sp(1/2) → D by f ′(x) = f(2x) . Since
D is htop (p, c)-BT, there is an extension g′: B p+1 (1/2) → D of f ′ such that
d(|g′|) ≤ cd(|f ′|) = cd(|f |) . Write 4δ = εd(|f |) ∧ d(|g′|, ∂D) ∧ d(|f |, F ) . By 5.4,
there is a map g1: B

p+1 (1/2) → E \ F such that ‖g1 − g′‖ ≤ δ . We extend g1
to a map g: B p+1 → E by setting g

(
(1 − t)e/2 + te

)
= (1 − t)g1(e/2) + tf(e)

for e ∈ Sp and 0 ≤ t ≤ 1. By the choice of δ we have |g| ⊂ D ∩ (E \ F ) = G .
Moreover, g | Sp = f , and

d(|g|) ≤ d(|g1|) + 2δ ≤ d(|g′|) + 4δ ≤ cd(|f |) + 4δ ≤ (c+ ε)d(|f |).

Thus g is the required extension of f .
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5.9. The homological case. We shall give a homological version of 5.8 in 5.11.
The proof is based on Lemma 5.10 below, which can be regarded as a homological
version of Lemma 5.4. A homological version of 5.7 will be given in Section 6,
where we discuss homological plumpness.

5.10. Lemma. Suppose that U is open in E and lcp−1 rel E . Let γ ∈ Sp(U)
and let ε > 0 . Then there are g ∈ Sp+1(E) and γ1 ∈ Sp(U) such that

(1) |g| ⊂ B(|γ|, ε) ,
(2) |γ − γ1 − ∂g| ⊂ B(|∂γ|, ε) .

If γ is a cycle, (2) means that ∂g = γ − γ1 , and hence γ1 is also a cycle.

Proof. Let γ =
∑

σ<γ nσσ be the normal representation. Since |γ| is com-

pact, it follows from the lcp−1 -condition that for each r > 0 there is 0 < t(r) < r
such that the map Hk

(
B

(
a, t(r)

)
∩U

)
→ Hk

(
B(a, r)∩U

)
is zero whenever a ∈ |γ|

and 0 ≤ k ≤ p − 1. Set rp+1 = ε and define inductively the numbers rp, . . . , r0
by rq = t(rq+1)/2.

We first assume that d(|σ|) ≤ r0 for all σ < γ . We shall construct a prism
ϕ =

∑
σ<γ nσϕσ of γ by the method explained in 2.5. Thus we start with the

0-chains of P∆p and set ϕσv = σv for the vertices v = ej , 0 ≤ j ≤ p . For
v = e′j = (ej , 1) we let ϕσv be a point in U with |ϕσv − σej | ≤ r0 . These points
are chosen in a compatible way; see 2.5. Proceeding inductively, assume that
0 ≤ q ≤ p and that the chain maps ϕσ: Ck(P∆p) → Sk(E) have been defined for
all 0 ≤ k ≤ q in such a way that for each k -simplex s of P∆p and for all σ < γ
we have

(i) |ϕσs| ⊂ B(σpr1s, rk) ,
(ii) |ϕσs| ⊂ U whenever s ⊂ ∆p × {1} .

Let s be a (q + 1)-simplex of P∆p and let σ < γ . If s ⊂ ∆p , we follow the
procedure of 2.5 and set ϕσs = σεs , where εs: ∆q+1 → ∆p is the order-preserving
isometry onto s . Assume that s 6⊂ ∆p . Now ϕσ∂s is defined, and it is a cycle
in E . By (i) we have |ϕσ∂s| ⊂ B(σpr1s, rq) . We consider two cases.

Case 1. s ⊂ ∆p × {1} . Now |ϕσ∂s| ⊂ U by (ii). Choose a point a ∈ σpr1s .
Then (i) implies that |ϕσ∂s| ⊂ B(a, 2rq) , since rq + d(|σ|) ≤ rq + r0 ≤ 2rq .
Since 2rq = t(rq+1) , there is a chain ϕσs ∈ Sq+1(U) such that ∂ϕσs = ϕσ∂s and
|ϕσs| ⊂ B(a, rq+1) . Clearly ϕσs satisfies (i) and (ii) for k = q + 1.

Case 2. s 6⊂ ∆p ×{1} . Now we use the cone construction to define the chain
ϕσs ∈ Sq+1(E) such that ∂ϕσs = ϕσ∂s and such that |ϕσs| is contained in the
convex hull of |ϕσ∂s| . Since |ϕσ∂s| ⊂ B(σpr1s, rq) , the condition (i) holds for
k = q + 1.

The choices of the chains ϕσs for σ < γ are made in a compatible way;
see 2.5. The construction gives a prism ϕ =

∑
σ<γ nσϕσ of γ . With the notation

of 2.7 and 2.10 we then have ∂g(ϕ) + g(ψ) = γ1 − γ by 2.10. Moreover, (i) and
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2.14 imply that |g(ϕ)| ⊂ B(|γ|, ε) and |g(ψ)| ⊂ B(|∂γ|, ε) . Hence g = −g(ϕ)
and γ1 are the desired chains, and we have proved the lemma in the case where
d(|σ|) ≤ r0 for σ < γ .

The general case reduces to the case above by barycentric subdivision. Let
γ ∈ Sp(U) . It suffices to show that if the lemma holds with γ replaced by Sdγ , it
holds also for γ . Thus we may assume that there are g′ ∈ Sp+1(E) and γ1 ∈ Sp(U)
such that

|g′| ⊂ B(|Sdγ|, ε), |Sdγ − γ1 − ∂g′| ⊂ B(|∂Sdγ|, ε).

Let T : S∗(E) → S∗(E) be the chain homotopy given in [Ro, 6.13] satisfying
∂T +T∂ = id−Sd and |Tβ| ⊂ |β| for every singular chain β . Setting g = g′ +Tγ
we show that g and γ1 satisfy (1) and (2). First,

|g| ⊂ |g′| ∪ |Tγ| ⊂ B(|Sdγ|, ε) ∪ |γ| ⊂ B(|γ|, ε),

which gives (1). Next, we have T∂γ = γ − ∂Tγ − Sdγ , and hence

|γ − γ1 − ∂g| = |γ − γ1 − ∂g′ − ∂Tγ − Sdγ + Sdγ|
⊂ |γ − ∂Tγ − Sdγ| ∪ |Sd γ − γ1 − ∂g′|
⊂ |T∂γ| ∪B(|∂Sdγ|, ε).

Since |T∂γ| ⊂ |∂γ| and |∂Sdγ| = |Sd∂γ| ⊂ |∂γ| , this gives (2).

5.11. Theorem. Let D ⊂ E be a domain and let F be closed in E with

intF = ∅ . Suppose that 0 ≤ p < dimE , that D is hlog (p, c) -BT and that E \F
is lcp relE . Then G = D \ F is hlog (p, c1) -BT for every c1 > c .

Proof. Let ε > 0. We show that G is hlog (p, c1)-BT for c1 = c + ε .
Let z ∈ Zp(G) , and assume that d(|z|) > 0. Since D is hlog (p, c)-BT, there
is g′ ∈ Sp+1(D) such that ∂g′ = z and d(|g′|) ≤ cd(|z|) . Choose δ with 0 <
2δ < εd(|z|) ∧ d(|z|, F ) ∧ d(|g′|, ∂D) . By 5.10 there are h ∈ Sp+2(E) and g1 ∈
Sp+1(E \ F ) such that |h| ⊂ B(|g′|, δ) and |g′ − g1 − ∂h| ⊂ B(|z|, δ) . Write
β = g′ − g1 − ∂h and g = g1 + β = g′ − ∂h . Then ∂g = ∂g′ = z . Moreover,
|g| ⊂ |g′| ∪ |∂h| ⊂ B(|g′|, δ) ⊂ D and |g| ⊂ |g1| ∪ |β| ⊂ |g1| ∪ B(|z|, δ) ⊂ E \ F .
Since d(|g|) ≤ d(|g′|) + 2δ ≤ (c+ ε)d(|z|) , the theorem follows.

6. Homological plumpness

6.1. Summary of Section 6. We shall define a homological version of (p, c)-
plumpness. It turns out that most results of [Al] and §5 on htop (p, c)-plumpness
have homological versions.
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6.2. Definitions. Let 0 ≤ p < dimE be an integer and let c ≥ 1. An open set
U ⊂ E is hlog (p, c)-plump if for each chain γ ∈ Sp(U) and for each 0 < r < d(U)
there is γ1 ∈ Sp(U) such that

(1) |γ1| ⊂ B(|γ|, r) ,
(2) d(|γ1|, ∂U) ≥ r/c ,
(3) ∂γ1 ∼ ∂γ in B(|∂γ|, r) .

If the condition holds for all γ ∈ Sp(U), U is hlog inner (p, c)-plump. If F ⊂ E
is closed with intF = ∅ and if E \F is hlog (p, c)-plump, F is hlog (p, c)-porous.
Hlog inner (p, c)-porosity is defined in the obvious way.

A slightly stronger condition will be considered in 6.8.

6.3. Remarks. 1. The condition in 6.2 is relevant only if ∂γ 6= 0. Indeed, if
γ is a cycle, the condition holds with c = 1 and γ1 = 0.

2. We remind the reader that we are using the reduced theory. For p = 0,
the condition (3) of 6.2 should be understood as ∂γ1 = ∂γ ∈ Z . It is easy to see
that hlog (0, c)-plumpness is equivalent to htop (0, c)-plumpness, that is, ordinary
c-plumpness.

3. In [Al, 3.3.3] it was proved by an easy argument that htop (p, c)-plumpness
implies htop (q, c)-plumpness for all 0 ≤ q ≤ p . We do not know whether the
corresponding hlog result is true.

We first give homological versions of [Al, 3.4, 3.8, 3.9].

6.4. Lemma. Let U ⊂ E be open and hlog (p, c) -plump, let 0 < r < d(U) ,
and let γ ∈ Sp(U) be a chain such that d(|∂γ|, ∂U) ≥ (c + 1)r/c . Then there is

γ1 ∈ Sp(U) satisfying ∂γ1 = ∂γ and the conditions (1) and (2) of 6.2.

Proof. Let γ′1 be the chain given by 6.2. By 6.2(3), there is g ∈ Sp(E) such
that ∂g = ∂γ−∂γ′1 and |g| ⊂ B(|∂γ|, r) . We show that γ1 = γ′1 +g is the desired
chain. Clearly |γ1| ⊂ B(|γ|, r) and ∂γ1 = ∂γ . Moreover, for every x ∈ |g| we
have

d(x, ∂U) ≥ d(|∂γ|, ∂U)− d(x, |∂γ|) ≥ (c+ 1)r/c− r = r/c.

6.5. Theorem. Let U ⊂ E be hlog (p, c1) -plump and let F ⊂ E be hlog

(p, c2) -porous. Then V = U \ F is hlog (p, 3c1c2) -plump.

Proof. Let 0 < r < d(V ) and let γ ∈ Sp(V ) = Sp(U) . Then there is γ2 ∈
Sp(U) such that |γ2| ⊂ B(|γ|, 2r/3), ∂γ2 ∼ ∂γ in B(|∂γ|, 2r/3), and d(|γ2|, ∂U) ≥
2r/3c1 . By the hlog (p, c2)-porosity of F , there is γ1 ∈ Sp(E \ F ) such that
|γ1| ⊂ B(|γ2|, r/3c1) , ∂γ1 ∼ ∂γ2 in B(|∂γ2|, r/3c1) , and d(|γ1|, F ) ≥ r/3c1c2 .

We show that γ1 is the desired chain. First, we have |γ1| ⊂ B(|γ|, 2r/3 +
r/3c1) ⊂ B(|γ|, r) , which proves (1) of 6.2. Next,

d(|γ1|, ∂U) ≥ d(|γ2|, ∂U)− r/3c1 ≥ 2r/3c1 − r/3c1 = r/3c1.
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Since d(|γ1|, F ) ≥ r/3c1c2 , we obtain d(|γ1|, ∂V ) ≥ r/3c1c2 . Finally, ∂γ ∼ ∂γ2 ∼
∂γ1 in B(|∂γ|, 2r/3 + r/3c1) ⊂ B(|∂γ|, r) .

6.6. Corollary. The union of a hlog (p, c1) -porous set and a hlog (p, c2) -
porous set is hlog (p, 3c1c2) -porous.

6.7. Plumpness and uniformity. We recall that htop (p, c)-uniformity and
htop (p + 1, c)-plumpness are closely connected; see 5.7. In particular, a closed
set F ⊂ E is completely htop (p, c)-NUD if and only if, quantitatively, it is htop
(p + 1, c)-porous [Al, 4.9]. We shall give homological versions of these and some
related results. More precisely, the homological versions of [Al, 4.2], 5.6, 5.7, [Al,
4.9], [Al, 4.10] and [Al, 4.11] will be given as 6.9, 6.12, 6.13, 6.15, 6.16 and 6.17,
respectively.

6.8. Strong hlog plumpness. We shall also consider the following variation of
hlog plumpness: An open set U ⊂ E is said to be strongly hlog (p, c)-plump if for
each γ ∈ Sp(U) and for each 0 < r < d(U) there are γ1 ∈ Sp(U) and g ∈ Sp+1(E)
such that

(1) |g| ⊂ B(|γ|, r) ,
(2) d(|γ1|, ∂U) ≥ r/c ,
(3) |∂g − γ + γ1| ⊂ B(|∂γ|, r) .
It is easy to show that this property implies hlog (p, c)-plumpness, defined

in 6.2. Indeed, (2) above is the same as 6.2(2). Setting h = ∂g − γ + γ1 we have
∂h = ∂γ1 − ∂γ , and hence ∂γ1 ∼ ∂γ in B(|∂γ|, r) . Finally, |γ1| ⊂ |h| ∪ |γ| ∪ |g| ⊂
B(|γ|, r) .

We do not know whether the converse is true. In 6.15 we show that it is true
in the special case int(E \ U) = ∅ .

6.9. Theorem. If G ⊂ E is a completely hlog (p, c) -uniform domain, then

G is strongly hlog (p+ 1, c1) -plump and hence hlog (p+ 1, c1) -plump with c1 =
c1(c, p) .

Proof. The proof is a variation of the proof of 5.10. Let γ ∈ Sp(U) with
normal representation γ =

∑
σ<γ nσσ . Let 0 < r < d(G) and set r′ = r/2(4c)p+1 .

As in 5.10, we may assume that d(|σ|) ≤ r′ for all σ < γ , using barycentric
subdivision. We apply the method of 2.5 to construct a prism ϕ =

∑
σ<γ nσϕσ

of γ . Thus we set ϕσv = σv if v = ej is a vertex of ∆p . Since G is hlog (0, c)-
uniform, it is 4c-plump; cf. [Vä1 , 2.15]. If v = e′j = (ej , 1), we can therefore
choose the point ϕσv ∈ G such that |ϕσv − σej | ≤ 2r′ and d(ϕσv, ∂G) ≥ r′/2c .
These points are chosen in a compatible way; see 2.5.

Proceeding inductively, assume that 0 ≤ q ≤ p and that the chain maps
ϕσ: Ck(P∆p) → Sk(E) have been defined for 0 ≤ k ≤ q in such a way that for
each k -simplex s ∈ P∆p and for each σ < γ we have
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(i) |ϕσs| ⊂ B
(
σpr1s, 2(4c)kr′

)
,

(ii) d(|ϕσs|, ∂G) ≥ r′/(2c)k+1 whenever s ⊂ ∆p × {1} .

These conditions are clearly true for k = 0. Let s ∈ P∆p be a (q+1)-simplex and
let σ < γ . If s ⊂ ∆p , we set ϕσs = σεs according to 2.5. Assume that s 6⊂ ∆p .
Now ϕσ∂s is defined, and it is a q -cycle in E . By (i) we have

(6.10) |ϕσ∂s| ⊂ B
(
σpr1s, 2(4c)qr′

)
.

We consider two cases.

Case 1. s ⊂ ∆p × {1} . Now |ϕσ∂s| ⊂ G . Since G is hlog (q, c)-uniform,
ϕσ∂s = ∂ϕσs for some chain ϕσs ∈ Sq+1(G) satisfying the uniformity conditions

(6.11) d(|ϕσs|) ≤ cd(|ϕσ∂s|), d(|ϕσ∂s|, ∂G) ≤ 2cd(|ϕσs|, ∂G),

where the second inequality follows from 3.3. We show that ϕσs satisfies (i) and
(ii) with k = q + 1.

From (6.10) and (6.11) it follows that |ϕσs| ⊂ B(σpr1s, r
′′) , where

r′′ = 2(4c)qr′ + cd(|ϕσ∂s|) ≤ 2(4c)qr′ + c(r′ + 4(4c)qr′) < 2(4c)q+1r′.

This gives (i) for k = q+1. By (ii) of the inductive hypothesis we have d(|ϕσ∂s|, ∂G)
≥ r′/(2c)q+1 , which implies (ii) for k = q + 1 by (6.11).

Case 2. s 6⊂ ∆p×{1} . As in 5.10, we use the cone construction to get a chain
ϕσs ∈ Sq+1(E) such that ∂ϕσs = ϕσ∂s and such that |ϕσs| is contained in the
convex hull of |ϕσ∂s| . Since d(|σ|) ≤ r′ , (6.10) implies that

d(|ϕσs|) ≤ d(|ϕσ∂s|) ≤
(
1 + 4(4c)q

)
r′ < 2(4c)q+1r′,

and hence (i) is true for k = q + 1.
The choices of the chains ϕσs for σ < γ are made in a compatible way. The

construction gives a prism ϕ =
∑

σ<γ nσϕσ of γ . With the notation of 2.7 and

2.10 we have ∂g(ϕ)+g(ψ) = γ1−γ by 2.10. Since r = 2(4c)p+1r′ , it follows from (i)
and 2.14 that |g(ϕ)| ⊂ B(|γ|, r) and |g(ψ)| ⊂ B(|∂γ|, r) . Furthermore, (ii) implies
that d(|γ1|, ∂G) ≥ r/c1 with c1 = 2(2c)p+1(4c)p+1 . Since −∂g(ϕ)−γ+γ1 = g(ψ) ,
the strong hlog (p+ 1, c1)-plumpness condition holds with g = −g(ϕ) .

6.12. Theorem. Suppose that U ⊂ E is open, lcp−1relE and hlog inner

(p, c) -plump. Then U is hlog (p, c1) -plump for every c1 > c .

Proof. This is a homological version of 5.6. Assume that γ′ ∈ Sp(U) and
that 0 < r < d(U) . Given c1 > c , we set ε = (1 − c/c1)r . By 5.10, there are
g ∈ Sp+1(E) and γ′1 ∈ Sp(U) such that

|g| ⊂ B(|γ|, ε), |γ − γ′1 − ∂g| ⊂ B(|∂γ|, ε).
Hence ∂γ ∼ ∂γ′1 in B(|∂γ|, ε) and |γ′1| ⊂ B(|γ|, ε) . Since U is hlog inner (p, c)-
plump, there is γ1 ∈ Sp(U) such that γ1 ⊂ B(|γ′1|, r−ε) , d(|γ1|, ∂U) ≥ (r−ε)/c =
r/c1 , and ∂γ1 ∼ ∂γ′1 in B(|∂γ′1|, r − ε) . It follows that |γ1| ⊂ B(|γ|, r) and
∂γ ∼ ∂γ1 in B(|∂γ|, r) .
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6.13. Theorem. Let G ⊂ E be a domain and let 1 ≤ p < dimE . Then the

following conditions are quantitatively equivalent:

(1) G is completely hlog (p, c) -plump and completely hlog (p− 1, c) -BT.

(2) G is completely hlog inner (p, c) -plump and completely hlog (p− 1, c) -
BT.

(3) G is completely hlog (p− 1, c) -uniform.

Proof. The implication (1) ⇒ (2) is trivial. Since hlog (q, c)-BT implies q -lc
rel E , (2) implies (1) by 6.12. The implication (3) ⇒ (1) follows from 6.9. It
remains to show that (1) implies (3).

We use induction on p . Assume that m ≥ 1 and that the theorem holds for
1 ≤ p ≤ m − 1. Suppose that (1) is true for p = m . We show that G is hlog
(m−1, c1)-uniform with c1 = c1(c, p) . The argument will be valid also in the case
m = 1 without any inductive hypothesis.

By 3.10 and the inductive hypothesis, it suffices to show that for every c′ ≥ 1,
G has property HT∗(m − 1, c′, c2) of 3.4 with some c2 = c2(c, c

′) . Let z be an
(m − 1)-cycle in G with d ≤ c′r where d = d(|z|) and r = d(|z|, ∂G) . Since G
is hlog (m − 1, c)-BT, z = ∂g for some g ∈ Sm(G) with d(|g|) ≤ cd(|z|) . Since
(c + 1)/c ≤ 2, we can apply 6.4 with r 7→ r/2, p 7→ m , γ 7→ g to get a chain
g1 ∈ Sm(G) such that

∂g1 = z, |g1| ⊂ B(|g|, r/2), d(|g1|, ∂G) ≥ r/2c.

Then
d(|g1|) ≤ d(|g|) + r ≤ cd+ r ≤ (cc′ + 1)r,

d(|z|, ∂G) = r ≤ 2cd(|g1|, ∂G).

These inequalities give HT∗(m− 1, c′, c2) with c2 = 2cc′ + 1.

6.14. Lemma. Suppose that U ⊂ E is hlog (p − 1, c) -BT and that F ⊂ E
is hlog (p) -porous. Then V = U \ F is hlog (p− 1, c1) -BT for all c1 ≥ c .

Proof. Let c1 > c and let z ∈ Zp−1(V ) . Then there is g ∈ Sp(U) such that
∂g = z and d(|g|) ≤ cd(|z|) . Applying 6.4 with the substitution U 7→ E \ F ,
γ 7→ g and with a sufficiently small r we find a p-chain g1 in V with ∂g1 = z
and d(|g1|) ≤ c1d(|z|) .

6.15. Theorem. Let F ⊂ E be closed and let 1 ≤ p < dimE . Then the

following conditions are quantitatively equivalent:

(1) F is completely hlog (p− 1, c)-NUD.
(2) F is completely hlog (p, c)-porous.
(3) F is completely strongly hlog (p, c)-porous.

Proof. The implication (3) ⇒ (2) was explained in 6.8. The theorem follows
from 6.9, 6.13 and 6.14.
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6.16. Theorem. Suppose that D ⊂ E is a completely hlog (p, c) -uniform

domain and that F ⊂ E is completely hlog (p, c)-NUD. Then D\F is a completely

hlog (p, c1) -uniform domain with c1 = c1(c, p) .

Proof. By 6.13, the open sets D and E \ F are completely hlog (p+ 1, c0)-
plump and completely hlog (p, c0)-BT with c0 = c0(c, p) . Hence G = D \ F is
completely hlog (p+1, 3c20)-plump by 6.5. Moreover, G is completely hlog (p, c0)-
BT by 6.14. From 6.13 it follows that G is completely hlog (p, c1)-uniform with
c1 = c1(c, p) .

6.17. Corollary. If F1 and F2 are completely hlog (p, c)-NUD, then F1∪F2

is completely hlog (p, c1)-NUD with c1 = c1(c, p) .

6.18. Relations between htop and hlog plumpness. In 4.2 we proved that com-
plete htop (p, c)-uniformity quantitatively implies complete hlog (p, c)-uniformity.
We do not know whether the corresponding result for plumpness is true. However,
it follows from [Al, 4.9], 4.2 and 6.15 that a completely htop (p, c)-porous set
F ⊂ E is completely hlog (p, c1)-porous with c1 = c1(c, p) .

References

[Al] Alestalo, P.: Uniform domains of higher order. - Ann. Acad. Sci. Fenn. Ser. A I Math.
Dissertationes 94, 1994, 1–48.

[EW] Eilenberg, S., and R.L. Wilder: Uniform local connectedness and contractibility. -
Amer. J. Math. 64, 1942, 613–622.

[Fe] Federer, H.: Geometric measure theory. - Springer-Verlag, 1969.

[HY] Heinonen, J., and S. Yang: Strongly uniform domains and periodic quasiconformal
maps. - Ann. Acad. Sci. Fenn. Ser. A I Math. 20, 1995, 123–148.

[HW] Hurewicz, W., and H. Wallman: Dimension theory. - Princeton University Press, 1941.

[Ku] Kuzminov, V.I.: Homological dimension theory. - Russian Math. Surveys 23/5, 1968,
1–45.

[Ro] Rotman, J.J.: An introduction to algebraic topology. - Springer-Verlag, 1988.

[Sp] Spanier, E.H.: Algebraic topology. - McGraw-Hill, 1966.
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