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Abstract. The Margulis constant for Kleinian groups is the smallest constant c such that
for each discrete group G and each point x in the upper half space H3 , the group generated by
the elements in G which move x less than distance c is elementary. We take a first step towards
determining this constant by proving that if 〈f, g〉 is nonelementary and discrete with f parabolic
or elliptic of order n ≥ 3 , then every point x in H3 is moved at least distance c by f or g where
c = .1829 . . . . This bound is sharp.

1. Introduction

Let M denote the group of all Möbius transformations of the extended com-
plex plane C = C ∪ {∞} . We associate with each Möbius transformation

f =
az + b

cz + d
∈ M, ad− bc = 1,

the matrix

A =

(

a b
c d

)

∈ SL (2,C)

and set tr (f) = tr (A) where tr (A) denotes the trace of A . Next for each f
and g in M we let [f, g] denote the commutator fgf−1g−1 . We call the three
complex numbers

(1.1) β(f) = tr 2(f) − 4, β(g) = tr 2(g) − 4, γ(f, g) = tr ([f, g])− 2
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the parameters of the two generator group 〈f, g〉 and write

par (〈f, g〉) =
(

γ(f, g), β(f), β(g)
)

.

These parameters are independent of the choice of representations for f and g
and they determine 〈f, g〉 up to conjugacy whenever γ(f, g) 6= 0.

A Möbius transformation f may be regarded as a matrix A in SL (2,C) , a
conformal self map of C or a hyperbolic isometry of H3 . There are three different
norms, corresponding to these three roles, which measure how much f differs from
the identity [4]:

m(f) = ‖A− A−1‖,(1.2)

d(f) = sup
{

q
(

f(z), z
)

: z ∈ C
}

,(1.3)

ρ(f) = h
(

f(j), j
)

.(1.4)

Here ‖B‖ denotes the euclidean norm of the matrix B ∈ GL(2,C) , q the chordal
metric in C , j the point (0, 0, 1) ∈ H3 and h the hyperbolic metric with curvature
−1 in H3 . We will refer to m(f) , d(f) and ρ(f) as the matrix, chordal and
hyperbolic norms of f . All three are invariant with respect to conjugation by
chordal isometries.

A subgroup G of M is discrete if

inf{d(f) : f ∈ G, f 6= id} > 0

or equivalently if
inf{m(f) : f ∈ G, f 6= id} > 0;

G is nonelementary if it contains two elements with infinite order and no common
fixed point and G is Fuchsian if G(H2) = H2 where H2 is the upper half plane
in C .

The Margulis constant for Kleinian groups G in M acting on the upper half
space H3 is the largest constant c = cK with the following property. For each
discrete group G and each x ∈ H3 , the group generated by

S =
{

f ∈ G, h
(

f(x), x
)

< c
}

is elementary. The Margulis constant cF for Fuchsian groups G in M acting on
H2 is defined exactly as above with H3 replaced by H2 . That such constants
exist follows from [1], [11], [12].

The constant cF was determined by Yamada who showed in [15] that

(1.5) cF = 2arc sinh

(

√

2 cos(2π/7) − 1

8 cos(π/7) + 7

)

= .2629 . . .

by establishing the following result.
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Theorem 1.6. If G = 〈f, g〉 is discrete, nonelementary and Fuchsian, then

max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ cF

for x ∈ H2 . Equality holds only for the case where G is the (2, 3, 7) triangle

group and f and g are elliptics of orders 3 and 2 .

Culler and Shalen have made important contributions to this problem in the
Kleinian case. See [3].

We shall establish in this paper the following partial analog of Theorem 1.6
for the case of Kleinian groups.

Theorem 1.7. If G = 〈f, g〉 is discrete and nonelementary and if f is

parabolic or elliptic of order n ≥ 3 , then

(1.8) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ c

for x ∈ H3 where

(1.9) c = arc cosh

(

2
√

8 + 2
√

5 − (1 +
√

5 )

6 −
√

5

)

= .1829 . . . .

Inequality (1.9) is sharp and equality holds only if f and g are elliptics of orders

3 and 2 .

The following alternative formula

c = 2arc sinh

(

√

4 cos(2π/5)− 1

4
√

8 cos(2π/5) + 10 + 14

)

for c is similar to that for the constant cF .

Let

c(3) = arc cosh

(

2
√

8 + 2
√

5 −
(

1 +
√

5
)

6 −
√

5

)

= .1829 . . . ,(1.10)

c(4) = arc cosh

(

√

6 + 2
√

3 −
√

3

3 −
√

3

)

= .3453 . . . ,(1.11)

c(5) = arc cosh

(

4
(

2 +
√

5 −
√

9 −
√

5
)

5(
√

5 − 1)

)

= .3401 . . . ,(1.12)

c(6) = arc cosh
(17

16

)

= .3517 . . . ,(1.13)

c(n) = arc cosh

(

5 − 2 sin2(π/n)

4 + 2 sin2(π/n)

)

≥ .3343 . . .(1.14)

for n ≥ 7 and set

(1.15) c(∞) = lim
n→∞

c(n) = arc cosh (5/4) = .6931 . . . .

Then Theorem 1.7 is a consequence of the following two results.



442 F.W. Gehring and G.J. Martin

Theorem 1.16. If G = 〈f, g〉 is discrete and nonelementary and if f is

elliptic of order n ≥ 3 , then

(1.17) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ c(n)

for x ∈ H3 . Inequality (1.17) is sharp for each n ≥ 3 and equality holds only if

θ(f) = ±2π/n and f and g are elliptics of orders n 6= 6 and 2 or of orders 6
and 3 .

Theorem 1.18. If G = 〈f, g〉 is discrete and nonelementary and if f is

parabolic, then

(1.19) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ c(∞)

for x ∈ H3 . Inequality (1.19) is sharp and equality holds only if g is elliptic of

order 2 .

Given f, g ∈ M \ {id} , we let fix (f) denote the set of points in C fixed
by f . Next if f is nonparabolic, we let ax (f) denote the axis of f , i.e. the closed
hyperbolic line in H3 with endpoints in fix (f) . Finally if f and g are both
nonparabolic, we let δ(f, g) denote the hyperbolic distance between ax (f) and
ax (g) in H3 . Then δ(f, g) > 0 unless ax (f) ∩ ax (g) 6= ∅ .

We prove Theorem 1.16 by considering in §3, §4, §5, respectively, the three
cases where f is of order n ≥ 3 and

1. ax (f) ∩ ax (gfg−1) = ∅ ,
2. ax (f) ∩ ax (gfg−1) 6= ∅, fix (f) ∩ fix (gfg−1) = ∅ ,
3. fix (f) ∩ fix (gfg−1) 6= ∅ .

The proof depends on the estimates in [5] for the distance between axes of elliptics
and on the diagrams in [8] for the possible values of the commutator parameter
for a two generator group with an elliptic generator. Our argument shows also
that the extremal groups for which (1.17) holds with equality for some x ∈ H3

are unique up to conjugacy.
The proof for Theorem 1.18 is given in §6.

2. Preliminary results

We derive here some formulas and inequalities which will be needed in what
follows. First each nonparabolic Möbius transformation f 6= id in M is conjugate
to a transformation of the form aeib where a > 0 and −π < b ≤ π . Then
τ(f) = | log(a)| and θ(f) = b are the translation length and rotation angle of f
and it is easy to check that [7]

4 cosh
(

τ(f)
)

= |β(f) + 4| + |β(f)|,(2.1)

4 cos
(

θ(f)
)

= |β(f) + 4| − |β(f)|.(2.2)
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The following result gives alternative formulas for the matrix and hyperbolic
norms for a nonparabolic Möbius transformation f in terms of the trace parameter
β(f) and the axial displacement

δ(f) = h
(

j, ax (f)
)

,

that is, the hyperbolic distance between j = (0, 0, 1) and the axis of f .

Lemma 2.3. If f ∈ M \ {id} is nonparabolic, then

m(f)2 = 2 cosh
(

2δ(f)
)

|β(f)|,(2.4)

4 cosh
(

ρ(f)
)

= cosh
(

2δ(f)
)

|β(f)| + |β(f) + 4|.(2.5)

Proof. Let z1, z2 denote the fixed points of f . Then

m(f)2 = 2
8 − q(z1, z2)

2

q(z1, z2)2
|β(f)| = 2 cosh

(

2δ(f)
)

|β(f)|

by p. 37 and p. 48 in [4], and we obtain

(2.6) 8 cosh
(

ρ(f)
)

= m(f)2 + 2| tr (f)2| = m(f)2 + 2|β(f) + 4|

from p. 46 in [4].

Lemma 2.3 yields a formula for the hyperbolic displacement of a point x ∈ H3

under a Möbius transformation f .

Lemma 2.7. If f ∈ M \ {id} is nonparabolic, then

(2.8) 4 cosh
(

h(x, f(x)
)

= cosh
(

2h
(

x, ax (f)
))

|β(f)| + |β(f) + 4|

for each x ∈ H3 .

Proof. Fix x ∈ H3 and let g = φfφ−1 where φ is a Möbius transformation
which maps x onto j . Then β(g) = β(f) ,

δ(g) = h
(

j, ax (g)
)

= h
(

φ(x), φ
(

ax (f)
))

= h
(

x, ax (f)
)

and
ρ(g) = h

(

g(j), j
)

= h
(

φ(x), φ
(

f(x)
))

= h
(

x, f(x)
)

.

Then (2.8) follows from (2.5) applied to g .

The proof of Theorem 1.16 for the first case in §3 depends on the following
two upper bounds for the axial displacement δ(f) .
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Lemma 2.9. If f ∈ M is elliptic of order n ≥ 3 , then

cosh
(

2δ(f)
)

≤ cosh
(

ρ(f)
)

− cos2(π/n)

sin2(π/n)
,(2.10)

sinh2
(

2δ(f)
)

≤
(

cosh
(

ρ(f)
)

− 1
)(

cosh
(

ρ(f)
)

+ 1 − 2 cos2(π/n)
)

sin4(π/n)
.(2.11)

There is equality in (2.10) and (2.11) if and only if θ(f) = ±2π/n .

Proof. Suppose that θ(f) = 2mπ/n where |m| ≤ n/2. Then

β(f) = −4 sin2(mπ/n), β(f) + 4 = 4 cos2(mπ/n)

and thus by (2.5)

cosh
(

2δ(f)
)

=
4 cosh

(

ρ(f)
)

− |β(f) + 4|
|β(f)|

=
cosh

(

ρ(f)
)

− cos2(mπ/n)

sin2(mπ/n)

≤ cosh
(

ρ(f)
)

− cos2(π/n)

sin2(π/n)
.

Hence we obtain (2.10), which in turn implies (2.11), with equality in each case if
and only if |m| = 1.

Lemma 2.12. If g ∈ M \ {id} is nonparabolic, then

cosh
(

2δ(g)
)

≤ 4 cosh
(

ρ(g)
)

|β(g)| ,(2.13)

sinh
(

2δ(g)
)

≤ 4 sinh
(

ρ(g)
)

|β(g)| .(2.14)

There is equality in (2.13) if and only if g is elliptic of order 2 and equality in

(2.14) if and only if either g is of order 2 or g is elliptic with δ(g) = 0 .

Proof. For (2.13) we see by (2.5) that

cosh
(

2δ(g)
)

=
4 cosh

(

ρ(g)
)

− |β(g) + 4|
|β(g)| ≤ 4 cosh

(

ρ(f)
)

|β(g)|

with equality if and only if β(g) = −4, that is, if and only if g is of order 2. Next
(2.5) implies that

sinh2
(

2δ(g)
)

=
N

|β(g)|2
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where

N =
(

4 cosh(ρ(g)
)

− |β(g) + 4|)2 − |β(g)|2

= 16 cosh2
(

ρ(g)
)

− 8 cosh
(

ρ(g)
)

|β(g) + 4| + |β(g) + 4|2 − |β(g)|2

≤ 16 cosh2
(

ρ(g)
)

− 8 cosh
(

τ(g)
)

|β(g) + 4| + |β(g) + 4|2 − |β(g)|2

= 16 cosh2
(

ρ(g)
)

−
(

|β(g) + 4| + |β(g)|
)2

≤ 16 sinh2
(

ρ(g)
)

by (2.1) and (2.5). This yields (2.14). Equality holds if and only if either g is of
order 2 or g is elliptic with δ(g) = 0.

Finally we will use the following two lower bounds for the maximum of the
hyperbolic norms ρ(f) and ρ(g) in the proof of Theorem 1.16 for the second and
third cases in §4 and §5.

Lemma 2.15. If f, g ∈ M \ {id} and if ρ = max{ρ(f), ρ(g)} , then

(2.16) 8 cosh(ρ) ≥M

where

M = |β(f) + 4| + |β(g) + 4| +
√

m(f)2m(g)2 +
(

|β(f) + 4| − |β(g) + 4|
)2
.

In addition,

(2.17) m(f)2m(g)2 ≥ 2
(

|4γ(f, g) + β(f)β(g)| + |4γ(f, g)|+ |β(f)β(g)|
)

.

There is equality in (2.16) if and only if ρ(f) = ρ(g) and in (2.17) for nonparabolic

f and g if and only if δ(f) = δ(g) = δ(f, g)/2 .

Proof. Let t = cosh(ρ) . Then

8 cosh
(

ρ(f)
)

− 2|β(f) + 4| = m(f)2, 8 cosh
(

ρ(g)
)

− 2|β(g) + 4| = m(g)2

by (2.6). Hence

(2.18)
(

8t− 2|β(f) + 4|
)(

8t− 2|β(g) + 4|
)

≥ m(f)2m(g)2

and we obtain

8t ≥ |β(f) + 4| + |β(g) + 4| +
√

m(f)2m(g)2 +
(

|β(f) + 4| − |β(g) + 4|
)2

with equality whenever ρ(f) = ρ(g) .
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Next if f or g is parabolic, then β(f)β(g) = 0 and

m(f)2m(g)2 ≥ 16|γ(f, g)|
= 2

(

|4γ(f, g) + β(f)β(g)| + |4γ(f, g)|+ |β(f)β(g)|
)

by Theorem 2.7 in [4]. Otherwise choose x ∈ ax (f) and y ∈ ax (g) so that
δ(f) = h(x, j) and δ(g) = h(x, j) . Then

δ(f, g) ≤ h(x, y) ≤ h(x, j) + h(y, j) = δ(f) + δ(g)

and hence by (2.4) and Lemma 4.4 of [5],

m(f)2m(g)2 = 4 cosh
(

2δ(f)
)

cosh
(

2δ(g)
)

|β(f)β(g)|
≥ 4 cosh2

(

δ(f) + δ(g)
)

|β(f)β(g)|
≥ 4 cosh2

(

δ(f, g)
)

|β(f)β(g)|
= 2

(

cosh
(

2δ(f, g)
)

+ 1
)

|β(f)β(g)|
= 2

(

|4γ(f, g) + β(f)β(g)| + |4γ(f, g)|+ |β(f)β(g)|
)

with equality throughout if and only if δ(f) = δ(g) = δ(f, g)/2.

Lemma 2.19. If f, g ∈ M \ {id} and if ρ = max{ρ(f), ρ(g)} , then

(2.20) |β(g) + 4| ≤ 4 cosh(ρ) − 4|γ(f, g)|
4 cosh(ρ) − |β(f) + 4| .

Proof. Theorem 2.7 of [4] implies that

m(f)2m(g)2 ≥ 16|γ(f, g)|.

Hence
(

4 cosh(ρ) − |β(f) + 4|
)(

4 cosh(ρ) − |β(g) + 4|
)

≥ 4|γ(f, g)|
by (2.18) and we obtain (2.20).

3. Case where ax (f) ∩ ax (gfg−1) = ∅
We shall establish here in Theorem 3.2 a sharp version of Theorem 1.16 for

the case where f is of order n ≥ 3 with

ax (f) ∩ ax (gfg−1) = ∅.

In this case,
δ = δ(f, gfg−1) > 0.
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Then the fact f and gfg−1 are elliptic of order n ≥ 3 allows us to combine
Lemmas 2.9 and 2.12 with the sharp lower bound b(n) for δ in [5] to obtain a
lower bound for the maximal hyperbolic displacement of each point x in H3 under
f and g .

For convenience of notation, for n ≥ 3 we set

(3.1) d(n) =

{

c(n) if n 6= 6,
arc cosh (6 −

√
24 ) = .4457 . . . if n = 6

since the lower bound in Theorem 3.2 is greater than that in Theorem 1.16 when
n = 6.

Theorem 3.2. If 〈f, g〉 is discrete, if f is elliptic of order n ≥ 3 and if

δ(f, gfg−1) > 0 , then

(3.3) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ d(n)

for x ∈ H3 . Inequality (3.3) is sharp for each n ≥ 3 and equality holds only if

θ(f) = ±2π/n and g is elliptic of order 2 .

Proof. Fix x ∈ H3 and let f1 = φfφ−1 and g1 = φgφ−1 where φ is a Möbius
transformation which maps x onto j . Then 〈f1, g1〉 satisfies the hypotheses of
Theorem 3.2,

max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

= max
{

h
(

f1(j), j
)

, h
(

g1(j), j
)}

and hence it suffices to establish (3.3) for the case where x is the point j .
Next choose x ∈ ax (f) and y ∈ ax (g) so that

δ(f) = h(x, j), δ(g) = h(y, j).

Then g(x) ∈ ax (gfg−1) ,

δ = δ(f, gfg−1) ≤ h
(

x, g(x)
)

,

and thus

4 cosh(δ) ≤ 4 cosh
(

h
(

x, g(x)
))

= cosh
(

2h
(

x, ax (g)
))

|β(g)| + |β(g) + 4|

by Lemma 2.7. Next

h
(

x, ax (g)
)

≤ h(x, y) ≤ h(x, j) + h(y, j) = δ(f) + δ(g)

by the triangle inequality and we obtain

(3.4) 4 cosh(δ) ≤ cosh
(

2δ(f) + 2δ(g)
)

|β(g)|+ |β(g) + 4| = R1 + R2
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where

R1 = cosh
(

2δ(f)
)

cosh
(

2δ(g)
)

|β(g)| + |β(g) + 4|
≤

(

cosh
(

2δ(g)
)

|β(g)| + |β(g) + 4|
)

cosh
(

2δ(f)
)

(3.5)

= 4 cosh
(

ρ(g)
)

cosh
(

2δ(f)
)

,

R2 = sinh
(

2δ(g)
)

|β(g)| sinh
(

2δ(f)
)

(3.6)

by (2.5) of Lemma 2.3.

Since ax (f) ∩ ax (gfg−1) = ∅ ,

ρ = max{ρ(f), ρ(g)}> 0, t = cosh(ρ) > 1.

Then by Lemma 2.9,

cosh
(

2δ(f)
)

sin2(π/n) ≤ t− cos2(π/n),(3.7)

sinh
(

2δ(f)
)

sin2(π/n) ≤
√

(t− 1)
(

t+ 1 − 2 cos2(π/n)
)

(3.8)

with equality in (3.7) and (3.8) only if θ(f) = ±2π/n . Next by Lemma 2.12,

(3.9) sinh
(

2δ(g)
)

|β(g)| ≤ 4
√

t2 − 1

with equality only if g is of order 2. Then (3.4) through (3.9) imply that

(3.10) cosh(δ) sin2(π/n) ≤ φ(t, n),

where

(3.11) φ(t, n) = t
(

t− cos2(π/n)
)

+ (t− 1)
√

(t+ 1)
(

t+ 1 − 2 cos2(π/n)
)

,

and that (3.10) holds with equality only if θ(f) = ±2π/n and g is of order 2.
For n ≥ 3 let

ψ(n) = cosh
(

b(n)
)

sin2(π/n)

where b(n) denotes the minimum distance between disjoint axes of elliptics of
order n in a discrete group. Then

(3.12) ψ(n) =























(1 +
√

5 )/4 = .8090 . . . if n = 3,
(1 +

√
3 )/4 = .6803 . . . if n = 4,

.5 if n = 5,

.5 if n = 6,
cos2(π/n) − .5 ≥ .3117 . . . if n ≥ 7
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by Theorem 4.18 in [5]. Next φ(t, n) is increasing in t for 1 ≤ t <∞ ,

(3.13) φ(1, n) = sin(π/n)2 < ψ(n) ≤ cosh(δ) sin2(π/n) ≤ φ(t, n)

by (3.10) and we obtain

(3.14) ρ = arc cosh (t) ≥ arc cosh
(

t(n)
)

where t(n) is the unique root of the equation φ(t, n) = ψ(n) . An elementary but
technical calculation shows that

arc cosh
(

t(n)
)

= d(n)

and hence that

(3.15) max{ρ(f), ρ(g)} = ρ ≥ d(n)

with equality only if θ(f) = ±2π/n and g is of order 2. This completes the proof
for inequality (3.3).

To show that (3.3) is sharp, fix n ≥ 3. Then by §8 in [5] we can choose
elliptics f and g of orders n and 2 such that 〈f, g〉 is discrete with

2δ(f, g) = δ(f, gfg−1) = b(n), θ(f) = 2π/n.

Choose x ∈ ax (f) and y ∈ ax (g) so that h(x, y) = δ(f, g) . By means of a
preliminary conjugation we may assume that x and y lie on the j -axis in H3

with the point j situated so that

cosh
(

2δ(f)
)

sin2(π/n) + cos2(π/n) = cosh
(

2δ(g)
)

.

Then β(f) = −4 sin2(π/n) , β(g) = −4 and

4 cosh
(

ρ(f)
)

= cosh
(

2δ(f)
)

|β(f)| + |β(f) + 4|
= 4

(

cosh
(

2δ(f)
)

sin2(π/n) + cos2(π/n)
)

= 4 cosh
(

2δ(g)
)

= cosh
(

2δ(g)
)

|β(f)| + |β(g) + 4|
= 4 cosh

(

ρ(g)
)

.

Hence if we set
t = cosh

(

ρ(f)
)

= cosh
(

ρ(g)
)

,

then

cosh
(

2δ(f)
)

=
t− cos2(π/n)

sin2(π/n)
, cosh

(

2δ(g)
)

= t
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and we obtain

ψ(n) = cosh
(

b(n)
)

sin2(π/n)

= cosh
(

2δ(f, g)
)

sin2(π/n)

= cosh
(

2δ(f) + 2δ(g)
)

sin2(π/n)

= t
(

t− cos2(π/n)
)

+ (t− 1)
√

(t+ 1)
(

t+ 1 − 2 cos2(π/n)
)

= φ(t, n).

Thus
max{ρ(f), ρ(g)} = arc cosh (t) = arc cosh

(

t(n)
)

= d(n)

and (3.3) holds with equality.

4. Case where ax (f) ∩ ax (gfg−1) 6= ∅
We next prove Theorem 1.16 for the case where f is of order n ≥ 3 with

ax (f) ∩ ax (gfg−1) 6= ∅, fix (f) ∩ fix (gfg−1) = ∅.

Then 〈f, gfg−1〉 is an elliptic group, that is, either the cyclic group Cn , the
dihedral group Dn , the tetrahedral group A4 , the octahedral group S4 or the
icosahedral group A5 . The hypothesis that f and gfg−1 have no common fixed
point implies that 〈f, gfg−1〉 6= Cn while the fact that f and gfg−1 are both
of order n ≥ 3 implies that 〈f, gfg−1〉 6= Dn . The remaining three cases are
considered in the following result.

Theorem 4.1. If 〈f, g〉 is discrete, if f is elliptic of order n ≥ 3 and if

〈f, gfg−1〉 is one of the three groups A4 , S4 , A5 , then either 〈f, g〉 is itself one

these three groups or

(4.2) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

> c(n)

for x ∈ H3 .

We will make use of the following results concerning the parameters of Möbius
transformations in the proof for Theorem 4.1.

Lemma 4.3. Suppose that f, g ∈ M \ {id} . Then

(4.4) γ(f, g2) = γ(f, g)
(

β(g) + 4
)

, β(g2) = β(g)
(

β(g) + 4
)

and

(4.5) γ(f, gfg−1) = γ(f, g)
(

γ(f, g)− β(f)
)

.



On the Margulis constant for Kleinian groups 451

If f is of order 2 , then

(4.6) β(fg) = γ(f, g)− β(g) − 4.

If f and g have disjoint fixed points, then there exists f̃ ∈ M of order 2 such

that 〈f̃ , g〉 is discrete whenever 〈f, g〉 is and such that

(4.7) γ(f̃ , g) = β(g) − γ(f, g).

Proof. The identities in (4.4) and (4.5) follow from direct calculation and
from Lemma 2.1 in [5]. Next if f is of order 2, then

γ(f, g) = tr ([f, g])− 2 = tr (g)2 + tr (fg)2 − 4 = β(g) + β(fg) + 4

by the Fricke identity and we obtain (4.6). Finally for (4.7) set f̃ = φf where φ
is the Lie product of f and g which conjugates f and g to their inverses [9] and
[10]. See also Lemma 2.29 of [5].

We shall also need the following list of possible parameters for the groups
A4, S4, A5 with conjugate elliptic generators.

Lemma 4.8. Suppose that f and h are conjugate elliptics of order n ≥ 3 .

If 〈f, h〉 = A4 , then

(4.9) par (〈f, h〉) = (−2,−3,−3).

If 〈f, h〉 = S4 , then

(4.10) par (〈f, h〉) = (−1,−2,−2).

If 〈f, h〉 = A5 , then

(4.11) par (〈f, h〉) = (−1,−3,−3)

or

(4.12) par (〈f, h〉) = (−.381 . . . ,−1.381 . . . ,−1.381 . . .)

or

(4.13) par (〈f, h〉) = (−2.618 . . . ,−3.618 . . . ,−3.618 . . .).

Proof for Theorem 4.1. Suppose that 〈f, g〉 satisfies the hypotheses of Theo-
rem 4.1 and that 〈f, g〉 is not any of the groups A4 , S4 , A5 . We must prove that
(4.2) holds for each x ∈ H3 . As in the proof of Theorem 3.2, it suffices to do this
for the case where x is the point j . Let

ρ = max{ρ(f), ρ(g)}, t = cosh(ρ), β = β(g).

Then

(4.14) |β + 4| + |β| = |β(g) + 4| + |β(g)| ≤ 4 cosh
(

ρ(g)
)

≤ 4t

by (2.5). We will show that ρ > c(n) by considering separately the three cases
where 〈f, gfg−1〉 is A4 , S4 or A5 .
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Case where 〈f, gfg−1〉 = A4

By (4.9),

par (〈f, gfg−1〉) = (−2,−3,−3), par (〈f, g〉) = (γ,−3, β)

where γ(γ + 3) = −2 by (4.5). Hence γ = −1 or γ = −2.
Suppose that γ = −1. Then β(f) = −3 and

(4.15) |β + 4| ≤ 4t− 4

4t− 1

by Lemma 2.19. Next by Lemma 4.3, 〈f, g2〉 is discrete with commutator param-
eter

γ̃ = γ(f, g2) = γ(f, g)
(

β(g) + 4
)

= −β − 4.

Since f is of order 3, it follows from §5.13 of [5] that

γ̃ ∈ {−3,−2.618 . . . ,−2,−1,−.381 . . . , 0}
or that

|γ̃ + 3| + |γ̃| ≥
√

5 + 1.

In the first case

β ∈ {−1,−1.381 . . . ,−2,−3,−3.618 . . . ,−4}
and 〈f, g〉 is S4 or A5 unless β = −1 in which case Lemma 2.15 implies that
ρ ≥ .3418 > c(3). In the second case we have

(4.16) |β + 1| + |β + 4| ≥
√

5 + 1.

Then (4.14), (4.15) and (4.16) imply that ρ ≥ .203 > c(3). See Figure 1.
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Suppose next that γ = −2. Then

(4.17) |β + 4| ≤ 4t− 8

4t− 1

by Lemma 2.19. By Lemma 4.3, there exists f̃ of order 2 such that 〈f̃ , g〉 is
discrete with

γ(f̃g, g) = γ(f̃ , g) = β(g) − γ(f, g) = β + 2

and

β(f̃ g) = γ(f̃ , g)− β(g) − 4 = −2.

Hence γ̃ = β + 2 is the commutator parameter of the discrete group 〈f̃ g, g〉 with
a generator of order 4 and by §5.9 of [5] either γ̃ ∈ {−2,−1, 0} or

|γ̃ + 2| + |γ̃| ≥
√

3 + 1.

In the first case, either β ∈ {−4,−3} and 〈f, g〉 is A4 or β = −2 and ρ ≥ .428 >
c(3) by Lemma 2.15. In the second case,

(4.18) |β + 4| + |β + 2| ≥
√

3 + 1

and we obtain ρ ≥ .389 > c(3) from (4.14), (4.17) and (4.18). See Figure 2.
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Case where 〈f, gfg−1〉 = S4

By (4.10)

par (〈f, gfg−1〉) = (−1,−2,−2), par (〈f, g〉) = (γ,−2, β)

where γ(γ + 2) = −1 by (4.5). Hence γ = −1 and we obtain

(4.19) |β + 4| ≤ 4t− 2

2t− 1

from Lemma 2.19. Next 〈f, g2〉 is discrete with commutator parameter γ̃ = −β−4
and f is of order 4. Hence γ̃ ∈ {−2,−1, 0} or

|γ̃ + 2| + |γ̃| ≥
√

3 + 1.

by §5.9 of [5]. In the first case, β ∈ {−2,−3,−4} and 〈f, g〉 is S4 . Otherwise

(4.20) |β + 2| + |β + 4| ≥
√

3 + 1.

Next by [8]

γ̃ ∈ {−2.618 . . . ,−2.419 . . .± .606i . . . ,−1.877 . . .± .744i . . .}
or |γ̃ + 2| > .8. In the first case

β̃ ∈ {−1.381 . . . ,−1.580 . . .± .606i . . . ,−2.122 . . .± .744i . . .}
and either 〈f, g〉 is not discrete or ρ ≥ .405 > c(4) by Lemma 2.15. Otherwise

(4.21) |β + 2| > .8.

Finally if we combine (4.14), (4.19), (4.20) and (4.21), we obtain ρ ≥ .352 > c(4).

Case where 〈f, gfg−1〉 = A5

In this case we have the following three possibilities given in (4.11), (4.12)
and (4.13). If (4.11) holds, then

par (〈f, gfg−1〉) = (−1,−3,−3), par (〈f, g〉) = (γ,−3, β)

where γ(γ + 3) = −1 by (4.5); hence γ = −.381 . . . or γ = −2.618 . . ..
If γ = −.381 . . ., then 〈f, g2〉 is discrete with commutator parameter γ̃ =

γ(β+4) and a generator of order 3. Hence by Theorem 3.4 and Lemmas 2.29 and
6.1 of [5], either γ̃ ∈ {−1,−.381 . . . , 0} whence β ∈ {−1.381 . . . ,−3,−4} or

|γ̃ + 1| ≥ .618 . . . , |γ̃ + .381 . . . | ≥ .381 . . . , |γ̃| ≥ .246 . . .

whence

(4.22) |β + 1.381 . . . | ≥ 1.618, |β + 3| ≥ 1, |β + 4| ≥ .646.

Since 〈f, g〉 is A5 if β ∈ {−1.381 . . . ,−4} and not discrete if β = −3, we obtain
(4.22). This and (4.14) imply that ρ ≥ .481 > c(3). See Figure 3.
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If γ = −2.618 . . ., then

(4.23) |β + 4| ≤ 4t− 10.472

4t− 1

by Lemma 2.19. By Lemma 4.3 there exists f̃ of order 2 such that 〈f̃g, g〉 is
discrete with commutator parameter γ̃ = β + 2.618 . . . and β(f̃ g) = −1.381 . . . .
Since f̃ g is of order 5, γ̃ ∈ {−1.381 . . . ,−1,−.381 . . . , 0} or

|γ̃ + 1.381 . . . | + |γ̃| ≥ 2

by §5.4 of [5]. In the first case, β ∈ {−4,−3.618 . . . ,−3,−2.618 . . .} and either
〈f, g〉 is A5 or not discrete or ρ ≥ .341 > c(3) by Lemma 2.15. In the second case

(4.24) |β + 4| + |β + 2.618 . . . | ≥ 2

and we obtain ρ ≥ .395 > c(3) from (4.14), (4.23) and (4.24).

Next if (4.12) holds, then

par (〈f, gfg−1〉) = (−.381 . . . ,−1.381 . . . ,−1.381 . . .)

and
par (〈f, g〉) = (γ,−1.381 . . . , β)

where γ = −.381 . . . or γ = −1.
If γ = −.381 . . ., then

(4.25) |β + 4| ≤ 4t− 1.527

4t− 2.618
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by Lemma 2.19 and 〈f, g2〉 is discrete with commutator parameter γ̃ = γ(β + 4)
and f of order 5. Then as above, γ̃ ∈ {−1.381 . . . ,−1,−.381 . . . , 0} or

|γ̃ + 1.381 . . . | + |γ̃| ≥ 2.

In the first case β ∈ {−.381 . . . ,−1.381 . . . ,−3,−4} and 〈f, g〉 is A5 or not dis-
crete. In the second case

(4.26) |β + .381 . . . | + |β + 4| ≥
√

5 + 3

and (4.14), (4.25) and (4.26) imply that ρ ≥ .689 > c(5).
When γ = −1,

(4.27) |β + 4| ≤ 4t− 4

4t− 2.618

and γ̃ = −β − 4 is the commutator parameter of 〈f, g2〉 where f is of order 5.
Again γ̃ ∈ {−1.381 . . . ,−1,−.381 . . . , 0} or

|γ̃ + 1.381 . . . | + |γ̃| ≥ 2.

Hence β ∈ {−2.618 . . . ,−3,−3.618 . . . ,−4} or

(4.28) |β + 2.618 . . . | + |β + 4| ≥ 2.

In the first case 〈f, g〉 is A5 or not discrete; hence we obtain (4.28). Next from
[8] it follows that either γ̃ ∈ {−2,−1.5 ± .606i . . .} or that

|γ̃ + 1.381 . . . | ≥ .8.

In the first case β ∈ {−2,−2.5 ± .606i . . .} and ρ ≥ .348 > c(5). In the second
case

(4.29) |β + 2.618 . . . | ≥ .8

and we conclude from (4.14), (4.27), (4.28) and (4.29) that ρ > .364 > c(5). See
Figure 4.
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Finally (4.13) implies that

par (〈f, g〉) = (γ,−3.618 . . . , β)

where γ = −1 or γ = −2.618 . . . .
If γ = −1 . . ., then

par (〈f2, g〉) = (−.381 . . . ,−1.381 . . . , β),

〈f2, g〉 is nonelementary, and we conclude that 2ρ ≥ .689 > 2c(5) from what was
proved above.

If γ = −2.618 . . ., then

(4.30) |β + 4| ≤ 4t− 10.472

4t− .381

by Lemma 2.19. By Lemma 4.3 we can choose f̃ so that 〈f̃g, g〉 is discrete with
commutator parameter γ̃ = β + 2.618 . . . and f̃g of order 5. Then as above, [5]
and [8] imply that

β ∈ {−4,−3.618 . . . ,−3,−2.618 . . . ,−2.5 ± .606i . . . − 2},

or that

(4.31) |β + 2.618 . . . | + |β + 4| ≥ 2, |β + 2.618 . . . | ≥ .8.

In the first case, 〈f, g〉 is A5 or not discrete or ρ ≥ .445 > c(5). In the second
case case, (4.14), (4.30) and (4.31) imply that ρ ≥ .383 > c(5).

5. Case where fix (f) ∩ fix (gfg−1) 6= ∅
We establish here Theorem 1.16 for the case where f is an elliptic of order

n ≥ 3 and

ax (f) ∩ ax (gfg−1) 6= ∅, fix (f) ∩ fix (gfg−1) 6= ∅.

Then since 〈f, g〉 is nonelementary,

fix (f) ∩ fix (g) = ∅ and γ(f, g) 6= 0.

Hence [f, g] is parabolic and n = 3, 4, 6. See [2] or [13]. Next

0 = γ(f, gfg−1) = γ(f, g)
(

γ(f, g)− β(f)
)

by (4.5) of Lemma 4.3 and thus

(5.1) par (〈f, g〉) =
(

β(f), β(f), β(g)
)

.

Theorem 1.16 follows for the case considered here from the following result.
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Theorem 5.2. If 〈f, g〉 is discrete and not dihedral, if f is elliptic of order

n ≥ 3 and if

par (〈f, g〉) =
(

β(f), β(f), β(g)
)

,

then

(5.3) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ c(n)

for x ∈ H3 . Equality (5.3) is sharp only when n = 6 and g is of order 3 .

Proof. Again it suffices to establish (5.3) for the case where x = j . Let

ρ = max{ρ(f), ρ(g)}, t = cosh(ρ), β = β(g).

From the above discussion we see that n is either 3, 4 or 6. We establish (5.3)
by considering each of these cases separately.

Case n = 3

In this case
par (〈f, g〉) = (−3,−3, β)

and

(5.4) |β + 4| ≤ 4t− 12

4t− 1

by Lemma 2.19. Next by Lemma 4.3 there exists f̃ such that 〈f̃ , g〉 is discrete
with

γ̃ = γ(f̃ , g) = β(g) − γ(f, g) = β + 3

and
β(f̃ g) = γ(f̃ , g)− β(g) − 4 = −1.

Thus 〈f̃ g, g〉 has a generator of order 6 and either γ̃ ∈ {−1, 0} or

|γ̃ + 1| + |γ̃| ≥ 2

by §5.3 of [5]. In the first case, β = −4 and 〈f, g〉 is the dihedral group D3 or
β = −3 and ρ ≥ .477 > c(3) by Lemma 2.15. Otherwise

(5.5) |β + 4| + |β + 3| ≥ 2

and this together with (5.4) and (4.14) implies that ρ ≥ .5 > c(3).
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Case n = 4

Here
par (〈f, g〉) = (−2,−2, β)

and

(5.6) |β + 4| ≤ 4t− 8

4t− 2

by Lemma 2.19. By Lemma 4.3 there exists f̃ such that 〈f̃ , g〉 is discrete with

γ̃ = γ(f̃ , g) = β + 2, β(f̃ g) = −2.

Then γ̃ is the commutator parameter of a two generator group with a generator
of order 4 and hence γ̃ ∈ {−2,−1, 0} or

|γ̃ + 2| + |γ̃| ≥
√

3 + 1

by §5.9 of [5]. In the first case β = −4 and 〈f, g〉 is D4 or β ∈ {−3,−2} and
ρ ≥ .428 > c(4) by Lemma 2.15. Otherwise

(5.7) |β + 4| + |β + 2| ≥
√

3 + 1

which together with (5.6) and (4.14) implies that ρ ≥ .502 > c(4).

Case n = 6

Finally in this case
par (〈f, g〉) = (−1,−1, β)

while

(5.8) |β + 4| ≤ 4t− 4

4t− 3

by Lemma 2.19. Next 〈f, g2〉 is discrete with a generator of order 6 and

γ̃ = γ(f, g2) = γ(f, g)
(

β(f) + 4
)

= −β − 4

by Lemma 4.3. Thus γ̃ = −1, γ̃ = 0 or

|γ̃ + 1| + |γ̃| ≥ 2

by §5.3 of [5]. In the second case β = −4 and 〈f, g〉 is D6 . In the third case

(5.9) |β + 4| + |β + 3| ≥ 2

and this with (5.8) and (4.14) implies that ρ ≥ .394.
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It remains to consider the first case where β = −3 and where 〈f, g〉 is discrete
and nonelementary by [14]. Then

(5.10) 4 cosh(ρ) = max
{

cosh
(

2δ(f)
)

+ 3, 3 cosh
(

2δ(g)
)

+ 1
}

by (2.5). Next if we choose x ∈ ax (f) and y ∈ ax (g) so that δ(f) = h(x, j) and
δ(g) = h(y, j) , then

δ(f, g) ≤ h(x, y) ≤ h(x, j) + h(y, j) = δ(f) + δ(g)

and hence

(5.11) 5/3 = cosh
(

2δ(f, g)
)

≤ cosh
(

2δ(f) + 2δ(g)
)

by Lemma 4.4 in [5]. It is then easy to verify from (5.10) and (5.11) that

ρ ≥ arc cosh (17/16) = c(6)

with equality if x and y lie in the j -axis and are situated so that

cosh
(

2δ(f)
)

+ 3 = 3 cosh
(

2δ(g)
)

+ 1.

6. Case where f is parabolic

Finally we establish Theorem 1.18, and hence complete the proof of Theorem
1.7, by showing that if 〈f, g〉 is discrete and nonelementary and if f is parabolic,
then

(6.1) max
{

h
(

f(x), x
)

, h
(

g(x), x
)}

≥ arc cosh (5/4) = c(∞)

for each x ∈ H3 . As before it suffices to establish (6.1) for the case where x = j .
Let

ρ = max{ρ(f), ρ(g)}, t = cosh(ρ).

Since j is fixed by chordal isometries, we may assume that f(∞) = ∞ and hence
that f and g can be represented by the matrices

A =

(

1 u
0 1

)

and B =

(

a b
c d

)

where ad = 1 + bc . Then by Theorem 4.21 of [2],

(6.2) |u|2 + 2 = 2 cosh
(

ρ(f)
)

≤ 2t
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and

(6.3)

2 + (|c| − |b|)2 ≤ 2|1 + bc| + |c|2 + |b|2

≤ |a|2 + |d|2 + |b|2 + |c|2
= 2 cosh(ρ(g)) ≤ 2t.

In addition,

(6.4) |c|2|u|2 = |γ(f, g)|2 ≥ 1

by the Shimizu–Leutbecher inequality; see II.C in [13].
Suppose that t < 5/4. Then (6.2), (6.4), (6.3) imply, respectively, that

|u| < 1/
√

2. |c| >
√

2, |b| > 1/
√

2

and hence that

5/2 < |c|2 + |b|2 ≤ 2 cosh
(

ρ(g)
)

≤ 2t < 5/2,

a contradiction. Thus t ≥ 5/4 and we obtain inequality (6.1).
Suppose next that t = 5/4. Then

|u| ≤ 1/
√

2. |c| ≥
√

2, |b| ≥ 1/
√

2

as above and

5/2 ≤ |c|2 + |b|2 ≤ |a|2 + |d|2 + |b|2 + |c|2 = 2 cosh
(

ρ(g)
)

≤ 5/2.

Hence in this case, a = d = 0 and we conclude that (6.1) holds with equality only
if g is of order 2.

Finally if f and g are as above with a = d = 0, u = b = 1/
√

2 and
c = −

√
2, then 〈f, g〉 is conjugate to the modular group, and hence discrete and

nonelementary, with
cosh

(

ρ(f)
)

= cosh
(

ρ(g)
)

= 5/4.

Thus inequality (6.1) is sharp.
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