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Abstract. Let f be a meromorphic non-entire function in the plane, and suppose that for
every n ≥ 0 , the derivative f (n) has only real zeros. We have proved that then there are real
numbers a and b where a 6= 0, such that f is of the form f(az+b) = P (z)/Q(z) where Q(z) = zn

or Q(z) = (z2 + 1)n for some positive integer n , and P is a polynomial with only real zeros such
that degP ≤ degQ + 1; or f(az + b) = C(z − i)−n or f(az + b) = C(z − α)/(z − i) where α is
real and C is a non-zero complex constant. In this paper we explain the structure of the proof
(which is divided into several cases), and give the proof in those cases that can be dealt with by
reasonably elementary methods.

1. Introduction and results

1.1. Let f be a function meromorphic in the complex plane C . We consider
the question of under what circumstances all the derivatives of f , including f
itself, can have only real zeros. We may and will assume that f is not a polynomial
so that none of the derivatives f (n) vanishes identically. We shall show that if f
has the above property and if f is not entire, then f is a rational function of a
suitable type, and we determine all cases that can occur. The complete proof is
long, and is divided into three papers (this paper and [8], [9]). Such a division
is natural as there are different cases to be considered that require quite different
methods of proof. To discuss the problem further, we need to recall a number of
definitions.

We say that f is real if f(z) is real or f(z) = ∞ whenever z is real. If f is
not a constant multiple of a real function, then f is called strictly non-real. We
now define some classes of functions. We say that f ∈ V2p where p is an integer
with p ≥ 0 if f is of the form

f(z) = g(z) exp{−az2p+2}

where a ≥ 0 and g is a constant multiple of a real entire function with genus not
exceeding 2p+ 1 and with only real zeros. We set U0 = V0 and U2p = V2p \V2p−2
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for p ≥ 1. The class U0 is the so-called Laguerre–Pólya class. We have f ∈ U0 if,
and only if, there are real polynomials Pn with only real zeros such that Pn → f
locally uniformly in C . Also, f ∈ U0 if, and only if, we may write

f(z) = czme−az2+bz
N
∏

n=1

(

1 −
z

zn

)

ez/zn

where 0 ≤ N ≤ ∞ , c is a non-zero complex constant, m is a non-negative integer,
a ≥ 0, b is a real number, zn ∈ R \ {0} for all n ≥ 1, and

∑N
n=1 z

−2
n <∞ . Here

R denotes the real axis, and an empty product (with N = 0) is equal to 1. If
f ∈ U0 then f (n) ∈ U0 and so f (n) has only real zeros for all n ≥ 0.

In 1914, Pólya posed the problem of determining all entire functions f such
that f (n) has only real zeros for all n ≥ 0. (Of course, f (0) = f .) Hellerstein
and Williamson [2], [3] proved that if f is real entire and f , f ′ and f ′′ have
only real zeros then f is in the Laguerre–Pólya class. If, instead, f is strictly
non-real and entire, then by a result of Hellerstein, Shen and Williamson [5] we
have f(z) = AeBz or f(z) = A(eicz − eid) , so that f (n) has only real zeros for all
n ≥ 0, or

f(z) = A exp
{

ei(cz+d)
}

or

f(z) = A exp
{

K
[

i(cz + d) − ei(cz+d)
]}

,

in which case f ′′′ has some non-real zeros. Here A and B are non-zero complex
constants while c , d and K are real constants with c 6= 0 and K ≤ −1/4.

These results answer Pólya’s question completely, for entire functions. In
fact, in this case, no knowledge is required of the location of the zeros of f (n) for
n ≥ 3. Recently, there have been various improvements in the direction that even
the assumption on f ′ can sometimes be dropped, notably by Sheil–Small [16], [17]
(see also [1], [6], [7]).

1.2. One can ask what can be said if f is a non-entire meromorphic function.
Here two remarks are in order. Recall the notion of the final set of f introduced
by Pólya ([12, p. 37], [13, p. 205]). We say that z ∈ C lies in the final set of
f if for every neighbourhood U of z there are infinitely many values of n such
that some zero of f (n) lies in U . In particular, this is the case if f (n)(z) = 0 for
infinitely many n . Pólya [12], [13] proved that if f has at least two distinct poles
then the final set is non-empty, and a point z belongs to the final set if, and only
if, f(z) 6= ∞ and the circle centred at z with radius r(z) > 0 contains at least
two distinct poles of f , where r(z) is the Euclidean distance from z to the nearest
pole of f . The multiplicities of the poles are not of importance here. Pólya [12],
[13] also proved that if f has exactly one pole (of any multiplicity) then the final
set of f is empty. Now if all the f (n) have only real zeros then the final set of f
must be contained in the real axis R . On the other hand, from Pólya’s description
of the final set it is easily seen that if f has at least two distinct poles then the
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final set of f can be contained in R only if there are exactly two distinct poles
(ignoring multiplicities) which furthermore are complex conjugates of each other.
(More precisely, if f has at least three distinct poles, then elementary geometric
considerations show that the final set cannot be contained in a single straight line.)
So in this case f must be of the form f(z) = g(z)(z − w)−m(z − w)−n where w
is a non-real complex number, g is entire with g(w)g(w) 6= 0, and m and n are
positive integers. This restriction on the pole distribution of f , while still leaving
many functions to be studied, considerably simplifies the problem of determining
all such f .

The second remark is that various results have been obtained by making the
extra assumption that all the poles of f (and hence of all the f (n) ) are real,
and that then it has been sufficient to assume that only the first few derivatives
(usually f , f ′ and f ′′ ) of f have only real zeros. Of course, Pólya’s result on
the final set is not available to limit the pole distribution of f when we do not
have the reality assumption on the zeros of all the f (n) . Indeed, Hellerstein, Shen
and Williamson [5] proved that if f is a strictly non-real non-entire meromorphic
function such that f , f ′ and f ′′ have only real zeros and poles then

f(z) = Ae−i(cz+d)/ sin(cz + d)

or

f(z) = A
exp

[

−2i(cz + d) − 2 exp{2i(cz + d)}
]

sin2(cz + d)
,

where A is a non-zero complex constant, c and d are real constants, and c 6=
0. In both cases, f ′′′ has infinitely many non-real zeros. Analogous results for
reciprocals of entire functions have been established by Hellerstein and Williamson
[4] and by Rossi [15]. It is an open question to determine all real non-entire
meromorphic functions f such that f , f ′ and f ′′ have only real zeros and poles.
There are rather large families of transcendental functions f with these properties,
as is shown by an example due to Lounesto and Toppila [11] and by an extension
of this example due to the author [6, Theorem 5, p. 633].

1.3. We have proved the following result. The proof is given partly in this
paper and partly in the two companion papers [8], [9].

Theorem 1. Let f be a non-entire meromorphic function in the complex

plane, and suppose that for every integer k ≥ 0 , the derivative f (k) has only real

zeros. Then there are real numbers a and b where a 6= 0 , and a polynomial P
with only real zeros (possibly a non-zero constant), such that

(i) f(az+b) = P (z)/Q(z) , where Q(z) = zn or Q(z) = (z2 +1)n , n is a positive

integer, and degP ≤ degQ+ 1; or

(ii) f(az + b) = C(z − i)−n where C is a non-zero complex constant; or
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(iii) f(az + b) = C(z − α)/(z − i) , where α is a real number and C is a non-zero

complex constant.

Conversely, if f is as in (i) with degP ≤ degQ , or if f is as in (ii) or (iii),
then f (k) has only real zeros for all k ≥ 0 . If f is as in (i) with degP = degQ+1
then f (k) has only real zeros for all k ≥ 0 if, and only if, f ′ (or, equivalently,

zP ′(z) − nP (z) or (z2 + 1)P ′(z) − 2nzP (z)) has only real zeros.

Of course, degP denotes the degree of the polynomial P .
Note that if f is as in (i) of Theorem 1 and degP = degQ + 1 then there

are polynomials P for which f ′ has only real zeros, and other polynomials P for
which f ′ has at least two non-real zeros. If f(z) = P (z)/zn where degP = n+ 1
and all the zeros of P (are real and non-zero and) have the same sign then Rolle’s
theorem together with simple arguments shows that zP ′(z)−nP (z) has only real
zeros. If n ≥ 2 and P (z) = (z − 1)n

(

z + (n− 1)2/(4n)
)

then zP ′(z) − nP (z) =

(z − 1)n−1
(

z + 1
2
(n − 1)

)2
, which has only real zeros, and hence for n ≥ 2, the

function zP ′(z) − nP (z) may have only real zeros even if the zeros of P are
not all of the same sign. If P (z) = (z − A)2n+1 where A is a real number and
f(z) = P (z)/(z2 + 1)2n then f ′ (or (z2 + 1)P ′(z) − 2nzP (z)) has only real zeros
if, and only if, n2A2 ≥ 2n+ 1.

1.4. As the preceding discussion clearly indicates, to prove Theorem 1, we
may assume that f has at most two distinct poles. If there is only one pole and
if the pole is real, we may replace f(z) by f(z + b) for a suitable real number b
and assume that the pole is at the origin. In this case

(1.1) f(z) =
g(z)

zn

where g is an entire function with only real zeros with g(0) 6= 0 and n is a positive
integer. If there is only one pole z0 , which is non-real, we may replace f(z) by
f(az + b) where a = Im z0 6= 0 and b = Re z0 , and assume that

(1.2) f(z) =
g(z)

(z − i)n

where g is an entire function with only real zeros with g(i) 6= 0 and n is a positive
integer. Finally if f has exactly two poles then they are at the points z0 and z0
where Im z0 > 0. Now replacing f(z) by f(az + b) where a = Im z0 6= 0 and
b = Re z0 , we may assume that

(1.3) f(z) =
g(z)

(z + i)m(z − i)n

where g is an entire function with only real zeros with g(i)g(−i) 6= 0 and m and
n are positive integers, not necessarily equal to each other.
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Before getting into the specific results whose complete proofs will be given in
this paper, we explain the results to be proved in the companion papers [8], [9]
that will provide part of the proof of Theorem 1. Suppose that f is as in (1.3).
The case when m 6= n and mn 6= 0 cannot occur, as is shown by the following
theorem, which is proved in [8].

Theorem 2. Let f be given by (1.3) where g is an entire function with only

real zeros with g(i)g(−i) 6= 0 and m and n are integers, not necessarily equal,

with m ≥ 0 and n ≥ 1 . Suppose that f ′ and f ′′ have only real zeros.

If m = 0 then there is a non-zero complex constant C such that

(i) g(z) ≡ C ; or

(ii) g(z) ≡ C(z − α) for some real α , and then n = 1; or

(iii) g(z) ≡ Ceinz .

If g is as in (i) or (ii) then f (k) has only real zeros for all k ≥ 0 . If g is as

in (iii) then f ′′′ has at least one non-real zero.

If m ≥ 1 then m = n and g is a constant multiple of a real entire function.

In this paper we shall show, in Theorems 4 and 5 below, that if f is as in
(1.3) and m = n then g is a constant multiple of a real entire function of finite
order, that is, we prove that the case of g being of infinite order cannot occur.
For this, it suffices to assume that f , f ′ , and f ′′ have only real zeros. The case
when g is of finite order is dealt with by the following result, proved in [9].

Theorem 3. Let f be given by

f(z) =
g(z)

(z2 + 1)n

where g is a real entire function of finite order with g(i)g(−i) 6= 0 and n is a

positive integer. If f , f ′ , f ′′ , and f ′′′ have only real zeros then g is a polynomial

of degree at most 2n+ 1 .

Conversely, if f is of this form where g is a polynomial of degree at most 2n
then f (k) has only real zeros for all k ≥ 0 . If the degree of g is 2n+ 1 then f (k)

has only real zeros for all k ≥ 0 if, and only if, f and f ′ have only real zeros.

In fact, as will be explained in [9], if g is a real entire function of finite order
with only real zeros, and if g is not in the Laguerre–Pólya class, then it suffices
to assume in Theorem 3 that merely f , f ′ , and f ′′ have only real zeros. Clearly
Theorems 2 and 3 together with Theorems 4 and 5 to be stated and proved below
complete the proof of Theorem 1 when f is as in (1.3).

Suppose that f is as in (1.2). This case corresponds to taking m = 0 in (1.3),
and is therefore settled by Theorem 2.

1.5. Suppose then that f is as in (1.1). We shall prove Theorem 1 for such
functions f in this paper. We write M(r, g) = max {|g(z)| : |z| = r} for the
maximum modulus of g .
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Theorem 4. Let g be a real transcendental entire function, let Q be a real

non-constant polynomial, and set

f(z) =
g(z)

Q(z)
.

If f has only real zeros, then f ′′ has infinitely many non-real zeros or g satisfies

(1.4) log logM(r, g) = O(r log r), as r → ∞.

Theorem 5. Suppose that f(z) = g(z)/Q(z) , where Q is a real polynomial

and g is a real entire function of infinite order satisfying (1.4), and that f and f ′

have only real zeros. Then f ′′ has infinitely many non-real zeros.

As was pointed out to the author by John Rossi, Theorem 4 is a straightfor-
ward consequence of earlier results, essentially due to Levin and Ostrovskĭı [10],
and is the same as [10, Theorem 2], except that f may have finitely many poles
instead of being entire, and the proof of Theorem 5 can be based on methods
developed by Hellerstein and Williamson [3]. The necessary modifications in the
proofs will be given in §§ 7–8.

If f is as in (1.1) and if g is strictly non-real, then also f is strictly non-real.
Since we are assuming, in particular, that f , f ′ , and f ′′ have only real zeros, and
since, in this case, f has only real poles, it follows from the result of Hellerstein,
Shen and Williamson [5, Theorem 1, p. 320] that there is no function f satisfying
all these conditions. So we may assume that g , and hence f , is real. In view of
Theorems 4 and 5, we may now further assume that g , and hence f , is of finite
order. The following results address this situation.

Theorem 6. Suppose that

f(z) = g(z)z−n,

where n is an integer, n ≥ 1 , g(0) 6= 0 , and g is a real entire function. If g is

transcendental of order < 2 , then f (k) has some non-real zeros for all k ≥ 2 , and

if g is a polynomial with deg g = d ≥ n + 2 , then f (k) has some non-real zeros

for all k with 2 ≤ k ≤ d− n .

Suppose that g is a polynomial with only real zeros and with deg g ≤ n+ 1 .

Then f (k) has only real zeros for all k ≥ 1 , if, and only if, f ′ has only real zeros.

If, furthermore, deg g ≤ n , then f ′ has only real zeros. If deg g = n + 1 and the

zeros of g have the same sign, then f ′ has only real zeros. This last condition is

necessary for n = 1 , but not for any n ≥ 2 .

Note that if deg g ≥ n+ 2, no assumption on the reality of the zeros of f or
f ′ is needed.

Next we show that if g in (1.1) is transcendental and of finite order, then f (k)

will eventually have non-real zeros.



Reality of zeros of derivatives of meromorphic functions 27

Theorem 7. Suppose that f is given by (1.1), where n ≥ 1 , g(0) 6= 0 , and

g is a real transcendental entire function of order < q , where q is an integer with

q ≥ 1 . Then f (k) has non-real zeros for all k ≥ qn+ 1 .

Clearly Theorems 6 and 7 together with the preceding remarks complete the
proof of Theorem 1.

Again, in Theorem 7 it is not necessary to assume that g or f or certain first
few derivatives of f have only real zeros. This gain is obtained at the expense
of getting the conclusion only for f (k) when k ≥ qn + 1, where the lower bound
qn+ 1 could be arbitrarily large.

It may be of some interest to note the following consequence of Theorem 1
(or, already, of Theorems 6 and 7).

Corollary 1. The largest class of meromorphic non-entire functions with

only real zeros and poles, closed under differentiation, consists of functions f of

the form

f(z) = AP (z)(z − a)−n,

where A is a non-zero complex number, a is a real number, n is an integer with

n ≥ 1 , and P is a real polynomial with only real zeros and with P (a) 6= 0 , such

that degP ≤ n , or such that degP = n + 1 and P ′(z)(z − a) − nP (z) has only

real zeros.

1.6. When f is a rational function (that is, g in (1.1)–(1.3) is a polynomial),
there are some slightly more accurate results than those provided by the preceding
theorems, using only the first few derivatives of f . Theorems 8 and 9 below provide
some such results as well as counterexamples that indicate the sharpness of the
converse to part (i) of Theorem 1.

Theorem 8. (i) Suppose that f is given by (1.2) , where g is a polynomial

with only real zeros. If f ′ has only real zeros, then g is constant, or g(z) =
B(z − A)n , where B 6= 0 and A is real. In the latter case, f ′′ has non-real zeros

if n ≥ 2 .

(ii) Suppose that f is given by (1.3) , where g is a real polynomial. If f ′ has

only real zeros, then m = n . Suppose that m = n and that g has only real zeros.

If deg g ≤ 2n + 1 , then f (k) has only real zeros for all k ≥ 1 if, and only if, f ′

has only real zeros. If deg g ≤ 2n , then f ′ has only real zeros. If deg g = 2n+ 1 ,

then f ′ may or may not have only real zeros. For example, if g(z) = (z−A)2n+1 ,

then f ′ has only real zeros if, and only if, n2A2 ≥ 2n+ 1 .

Theorem 8 shows that there is a class of rational functions of the form

f(z) = g(z)(z2 + 1)−n,

with only real zeros, closed under differentiation (of course, the same conclusion
is a very special case of the more elaborate Theorem 1). The following theorem is
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related to the situation when f is given by (1.1) and considers the sharpness of
the conclusion of part (i) of Theorem 1.

Theorem 9. Let P be a real polynomial with only real zeros and with

degP = d ≥ 1 and P (0) 6= 0 . If d ≤ n , or if d = n + 1 and the zeros of P have

the same sign, then h(z) ≡ zn+1(P/zn)′ = P ′(z)z − nP (z) has only real zeros.

If n ≥ 2 and P (z) = (z−1)n(z+α) , then h(z) = (z−1)n−1
(

z2+(n−1)z+nα
)

,

and h has only real zeros if, and only if, α ≤ (n− 1)2/(4n) . Thus when degP =
d = n + 1 ≥ 3 , there are polynomials P whose zeros do not all have the same

sign, for which h has only real zeros, and other such polynomials P for which h
has some non-real zeros.

If m ≥ 2 , n+1−m ≥ 2 , and P (z) = (z−1)m(z+α)n+1−m , then there exist

α1 and α2 with 0 < α1 < α2 , such that if α > 0 , then h has only real zeros if,

and only if, 0 < α ≤ α1 or α ≥ α2 .

For n = 1 = d− 1 , the function h has only real zeros if, and only if, the two

zeros of P are of the same sign.

1.7. Finally, we mention a result whose content and proof, albeit an appli-
cation of Rolle’s theorem, seems rather novel. If P is a real polynomial (possibly
with some non-real zeros) with exactly N real zeros with due count of multiplicity,
where N ≥ 1, then P ′ has certain N − 1 real zeros, which we describe as “zeros
arising from Rolle’s theorem”. More precisely, any real zero of P of order m ≥ 2
gives a zero of P ′ of order m− 1. Between two successive zeros of P there is at
least one zero of P ′ , and we pick one of these. Of course, P ′ might have altogether
more than N −1 real zeros. Similarly, we say that for 1 ≤ k ≤ N , the polynomial
P (k) has exactly N − k (real) “zeros arising from Rolle’s theorem”, these points
being zeros that arise from repeated application of Rolle’s theorem in the above
fashion. The following result, which will be used in the proof of Theorem 7, is
stated here separately as it may be of independent interest.

Theorem 10. Let P be a real polynomial with M distinct non-real zeros of

any multiplicity. If l ≥ 1 , then P (l) has at most Ml zeros z , with due count of

multiplicity, such that

(i) P (z) 6= 0; and such that

(ii) z does not arise from Rolle’s theorem if z is real.

So this includes all non-real zeros z of P (l) such that P (z) 6= 0.

In this paper we prove Theorems 4–10. Theorems 4 and 5 are independent of
the others, and are proved by simple modifications of the proofs of certain known
results. Hence they will be proved last, in Sections 7 and 8.

We start by proving Theorem 10 in §2 and its consequence Theorem 7 in §3.
These results are the most original contributions of this paper. Theorem 6 will be
proved in §5, and Theorems 8 and 9 that elaborate on the situation, will be proved
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in Sections 6 and 4, respectively. To a small extent, the proofs of Theorems 6 and 8
rely on the proof of Theorem 9, so that the latter proof is presented first.

Acknowledgement. The author formulated and proved Theorems 4–10
above during the academic year 1982–83. At that time he was a Postdoctoral
Fellow at Imperial College, University of London, London, England, funded by
the Osk. Huttunen Foundation, Helsinki, Finland, whose support is hereby grate-
fully acknowledged. Furthermore, at that time, the author wrote a handwritten
manuscript containing these results and their proofs and circulated it to a few
people. However, he has not published the results before, due to the lack of a
more complete result such as Theorem 1 above until now. After receiving the
author’s manuscript at that time, Professor Hellerstein pointed out to the author
that Li-Chien Shen had independently formulated and proved a result correspond-
ing to Theorem 6 above in 1982. It would appear that so far Professor Shen has
not published his result, either. Shen’s theorem states that if f is of the form
(1.1) and if g is a polynomial of degree d ≥ n + 2, or if g is transcendental with
g ∈ U0 , then f ′′ has some non-real zeros (and, in fact, exactly two non-real zeros
if all the zeros of g are positive and the order of g is < 2). Also Shen notes that
there are polynomials g of degree d ≤ n + 1 such that then f ′′ and indeed f (k)

for every k ≥ 0 has only real zeros, for example, those g that have only positive
zeros. Shen’s proof is the same as ours; the only difference in the proof, which also
explains the difference between the statement of his result and of our Theorem 6,
is that he noted that if g ∈ U0 and zn+2f ′′ /∈ U0 then f ′′ must have some non-real
zeros (this is not totally obvious when g has order 2).

2. Proof of Theorem 10

Let the assumptions of Theorem 10 be satisfied. We can write P (l) = P1P2 ,
where P2 vanishes exactly at the zeros arising from Rolle’s theorem. Let N be the
number of real zeros of P , and let the non-real zeros of P be zi with multiplicities
mi for 1 ≤ i ≤ M . By the assumptions, the number of those zeros of P (l) in
question does not exceed, even if mi − l < 0 for some i , the number

degP1 −

M
∑

i=1

(mi − l) = degP (l) − degP2 −

M
∑

i=1

mi +Ml

= degP − degP2 −
M
∑

i=1

mi + (M − 1)l

= N − degP2 + (M − 1)l ≤Ml,

since deg P2 ≥ N − l , with equality if l ≤ N . This proves Theorem 10.
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3. Proof of Theorem 7

Suppose that the assumptions of Theorem 7 are satisfied. Let us write

(3.1) g(z) =

∞
∑

m=0

amz
m.

Then

f ′(z)zn+1 = g′(z)z − ng(z) =

∞
∑

m=0

(m− n)amz
m.

By induction, for k ≥ 1,

(3.2) f (k)(z)zn+k ≡ hk(z) =
∞
∑

m=0

C(m,n, k)amz
m,

where C(m,n, k) = 0 if, and only if, n ≤ m ≤ n+k−1. In particular, C(0, n, k) 6=
0 so that hk(0) 6= 0, since a0 = g(0) 6= 0. Now consider a fixed k ≥ qn+ 1. Then
h = hk is a real transcendental entire function of order < q , and h(0) 6= 0.
Suppose that f (k) has only real zeros, so that the same applies to h . We will
derive a contradiction from this.

We can write

h(z) = eP (z)
∞
∏

m=1

(

1 −
z

zm

)

E(z, zm)

where P is a real polynomial of degree at most q − 1, all the zm are real and
non-zero,

E(z, zm) = exp

(

z

zm
+

1

2

(

z

zm

)2

+ · · · +
1

q − 1

(

z

zm

)q−1)

,

and
∑

|zm|−q <∞ .
For N ≥ 1, we define the real polynomial P

N
by

P
N

(z) =

(

1 +
Q

N
(z)

r
N

)r
N ∏

|zm|≤N

(

1 −
z

zm

)

,

where

Q
N

(z) = P (z) +
∑

|zm|≤N

q−1
∑

r=1

1

r

(

z

zm

)r

,

and r
N

is a positive integer and so large that

(3.3) |Q
N

(z)| ≤ 1
2
r

N
for |z| ≤ 1,
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and
∣

∣

∣

∣

(

1 +
Q

N
(z)

r
N

)r
N

− exp{Q
N

(z)}

∣

∣

∣

∣

·
∏

|zm|≤N

∣

∣

∣

∣

1 −
z

zm

∣

∣

∣

∣

≤
1

N

for |z| ≤ N .
Next we show that P

N
→ h locally uniformly as N → ∞ . We set

H
N

(z) = eP (z)
∏

|zm|≤N

(

1 −
z

zm

)

E(z, zm).

Then H
N

→ h locally uniformly as N → ∞ . Thus if R ≥ 2 and ε > 0 are given,
there is N0 such that

|H
N

(z) − h(z)| < 1
2
ε

for N ≥ N0 and |z| ≤ R . Further, if also N ≥ R and N ≥ 2/ε , we have for
|z| ≤ R ,

|H
N

(z)−P
N

(z)| ≤

∣

∣

∣

∣

exp{Q
N

(z)}−

(

1+
Q

N
(z)

r
N

)r
N

∣

∣

∣

∣

·
∏

|zm|≤N

∣

∣

∣

∣

1−
z

zm

∣

∣

∣

∣

≤
1

N
≤
ε

2
,

so that |h(z) − P
N

(z)| < ε for |z| ≤ R whenever N ≥ max{R, 2/ε,N0} . Thus
P

N
→ h locally uniformly as N → ∞ .
Now we note that degQ

N
≤ q − 1 for all N , and apply Theorem 10 to

P
N

with M ≤ q − 1 and l = n . It follows that in addition to the zeros of

1 + Q
N

(z)/r
N

, which have modulus ≥ 1 by (3.3), the function P (n)

N
has at

most n(q − 1) zeros not arising from Rolle’s theorem. Further, if z1 and z2 ,
where z1 < 0 < z2 , are the zeros of h closest to 0, then for all large N , the
function P (n)

N
has at most n zeros arising from Rolle’s theorem between 1

2z1 and
1
2
z2 , hence altogether at most qn zeros in {z : |z| ≤ ε} , where 0 < ε < 1 and

2ε < max(−z1, z2) . By the argument principle, h(n) has at most qn zeros in
{z : |z| ≤ ε} . But by (3.2), h(n) has a zero of order at least k at the origin,
since C(m,n, k) = 0 for n ≤ m ≤ n + k − 1, and we have k ≥ qn + 1. This is a
contradiction. Theorem 7 is proved.

4. Proof of Theorem 9

Let the assumptions in the first paragraph of Theorem 9 be satisfied. We may
assume that the leading coefficients of P and h are 1 and d−n , respectively (for
h only if d 6= n). If x0 is a zero of P of order m , then x0 is a zero of h of order
m− 1. Let x1 and x2 be successive zeros of P of the same sign, of order µ and
ν , with x1 < x2 .
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We have

P (x) = A(x− x1)µ +O
(

(x− x1)µ+1
)

, as x→ x1,(4.1)

P (x) = B(x− x2)ν +O
(

(x− x2)ν+1
)

, as x→ x2,(4.2)

for some real A,B with AB(−1)ν > 0. Thus

h(x) = P ′(x)(x− x1) + P ′(x)x1 − nP (x) = µAx1(x− x1)µ−1 +O
(

(x− x1)µ
)

as x→ x1 , and
h(x) = νBx2(x− x2)ν−1 +O

(

(x− x2)ν
)

as x → x2 . Hence h(x3)h(x4) < 0 for some x3 and x4 with x1 ≤ x3 < x4 ≤ x2 ,
so that h has a zero on (x1, x2) .

Suppose next that d < n and that P has at least one positive zero, x2 being
the largest of them. By the assumption on the leading coefficients of P and h , we
have h(x) → −∞ as x → ∞ , and we can show as above that h(x) > 0 for some
x > x2 since we must have B > 0 in (4.2). Thus h has a zero on (x2,∞) .

Similarly, if d < n and if P has at least one negative zero, x1 being the
smallest of them, then (−1)dh(x) → −∞ as x → ∞ , while A(−1)d+µ > 0 in
(4.1), so that (−1)dh(x) > 0 for some x < x1 . Thus h has a zero on (−∞, x1) .

Suppose now that d ≤ n + 1 and that P has p positive and d− p negative
zeros. It follows that h has at least p − 1 positive and d − p− 1 negative zeros,
hence at least d− 2 real zeros, and furthermore at least d− 1 real zeros if p = 0
or p = d . Also, if d < n and p 6= 0, then h has at least d− 1 real zeros. We note
that deg h ≤ d and that deg h ≤ d− 1 if d = n .

Thus in all cases h has at least (deg h) − 1 real zeros. Since h is a real
polynomial, all the zeros of h are real. This proves the statements made in the
first paragraph on Theorem 9. The other statements of Theorem 9 are easily
verified, and we omit the details. Theorem 9 is proved.

5. Proof of Theorem 6

Let f be as in (1.1) and let us use the notation in (3.1) and (3.2). Recall that
C(m,n, k) = 0 if, and only if, n ≤ m ≤ n+ k− 1. In particular, C(0, n, k) 6= 0 so
that hk(0) 6= 0, since a0 = g(0) 6= 0.

Suppose that g is real and transcendental of order < 2 (in the Laguerre–
Pólya class) or a real polynomial with deg g = d ≥ n + 2. Suppose that k ≥ 2 if
g is transcendental, and that 2 ≤ k ≤ d− n if g is a polynomial. If f (k) has only
real zeros, then hk ∈ U0 since hk is real with only real zeros and of order < 2.
Hence by a result of Pólya and Schur ([14], [13, pp. 104, 121]), hk cannot have
two or more successive vanishing coefficients between non-vanishing ones. This
together with the above gives a contradiction, since am 6= 0 for some m ≥ n+ k .
Hence hk 6∈ U0 , and f (k) has some non-real zeros.
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Suppose that g is a polynomial with only real zeros and with deg g = d ≤
n+ 1. Since

f ′(z)zn+1 = g′(z)z − ng(z),

it follows from Theorem 9 that f ′ has only real zeros of d ≤ n , or if d = n + 1
and the zeros of g have the same sign. It is easy to check that the condition of the
zeros of g having the same sign for d = n + 1 is necessary for n = 1. It follows
from the example given in the statement of Theorem 9 that this condition is not
necessary for any n ≥ 2. We leave it to the reader to verify that this example has
the properties stated in Theorem 9.

Finally, if deg g ≤ n+ 1 and if f and f ′ have only real zeros, then for k ≥ 1,
we have f (k)(z) = hk(z)z−(n+k) , where deg hk ≤ n + 1 ≤ n + k . Now induction
on k shows that f (k) has only real zeros for all k ≥ 1. Theorem 6 is proved.

6. Proof of Theorem 8

Suppose that f is given by (1.2), where g is a polynomial with deg g ≥ 2 and
with only real zeros. We may assume that g is real. Then if

f ′(z)(z − i)n+1 ≡ h(z) = g′(z)(z − i) − ng(z),

has only real zeros, h must be a constant multiple of a real polynomial. But in
fact, h must be real, unless g is of the form B(z −A)d , since then there is a real
number x0 with g′(x0) = 0 6= g(x0) , so that h(x0) is real and non-zero. But if

(6.1) g(z) =
d

∑

m=0

amz
m, ad 6= 0, am ∈ R, ad+1 = 0,

then

h(z) =
d

∑

m=0

bmz
m =

d
∑

m=0

{(m− n)am − i(m+ 1)am+1}z
m,

and if bd−1 is real, then ad = 0, a contradiction.
If g(z) = B(z − A)d , where d ≥ 2, B 6= 0, and A is real, then h has only

real zeros if, and only if, d = n . If d = n , then f ′(z)(z− i)n+1 = C(z−A)n−1 for
some non-zero complex constant C , so that f ′′ has non-real zeros if n ≥ 2. The
case when deg g ≤ 1 is easy to check. This proves part (i) of Theorem 8.

Suppose that f is given by (1.3), where g is a real polynomial, given by (6.1).
Then

f ′(z)(z + i)m+1(z − i)n+1 ≡ h(z) = g′(z)(z2 + 1) − g(z){(m+ n)z − (m− n)i},

so that deg h ≤ d + 1. Suppose that m 6= n . If d 6= m + n , then the leading
coefficient of h is real, but not all coefficients of h are real, so that h is not
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a constant multiple of a real polynomial and has therefore non-real zeros. If
d = m+ n and if h is a multiple of a real polynomial, then, since

h(z) =

d
∑

k=0

{(k − 1 − d)ak−1 + (k + 1)ak+1 + i(m− n)ak}z
k,

where a−1 = ad+1 = 0, it follows that for 0 ≤ k ≤ d ,

(k + 1)ak+1 + (k − 1 − d)ak−1 = Aak,

where A is a real constant with A 6= 0. (The polynomial h cannot have only purely
imaginary coefficients, since that would imply that g′/g = (m+ n)z/(z2 + 1), or
g = C(z2 + 1)(m+n)/2 .) Then by induction, we have

ak = a0A
kCk for 1 ≤ k ≤ d, where Ck = Ck(k, d, A) > 0,

which gives a contradiction since ad−1 = −Aad 6= 0. Hence f ′ has non-real zeros
if m 6= n .

Suppose that g has only real zeros, and that m = n and deg g = d ≤ 2n .
Then

h(z) = g′(z)(z2 + 1) − 2nzg(z).

As in the proof of Theorem 9 we see that h has at least d − 1 real zeros on
[x1, x2] , where x1 and x2 are the smallest and largest zeros of g , respectively,
namely at the multiple zeros of g , and between any two successive zeros of g ,
since z2 + 1 > 0 for all real z and since g′ changes sign between such zeros. If
d = 2n , then deg h ≤ d , so that h , being real, has only real zeros. If d < 2n , we
may assume without loss of generality that ad = 1, so that the leading coefficient
of h is d−2n < 0, and h(x) → −∞ as x→ ∞ . But as in the proof of Theorem 9
we see that h(x) > 0 for some x > x2 , so that h has a zero on (x2,∞) , and hence
at least d real zeros. Since deg h ≤ d+ 1, the function h has only real zeros. One
can show that the remaining zero of h is on (−∞, x1) .

Suppose finally that deg g ≤ 2n + 1 and that f ′ has only real zeros. Then
for k ≥ 1,

f (k)(z)(z − i)n+k = gk(z),

where deg gk ≤ 2n + 1 + k ≤ 2(n + k) . Hence it follows by induction on k that
f (k) has only real zeros. The last statement of Theorem 8 is trivial to verify, and
so Theorem 8 is proved.
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7. Proof of Theorem 4

Theorem 4 is a straightforward consequence of earlier results, essentially due
to Levin and Ostrovskĭı [10], and is the same as [10, Theorem 2], except that f may
have finitely many poles instead of being entire. As remarked in [10, p. 334], [10,
Theorem 1] still applies, and all growth estimates in the proof of [10, Theorem 2]
remain valid in spite of the presence of Q . The only thing to be modified is the
definition of

(7.1) π(z) =
∏

k

1 −
z

bk

1 −
z

ak

,

where the ak are the distinct zeros of f , and bk ∈ (ak, ak+1) is a zero of f ′ whose
existence is ensured by Rolle’s theorem. For each interval (ak, ak+1) containing
at least one zero of Q , we drop the term (1 − z/bk)/(1 − z/ak) from (7.1). In
this case no bk might exist. Otherwise the definition of π(z) is unaltered, and we
write

f ′

f
(z) =

φ(z)π(z)

S(z)
,

where φ is entire and S is a polynomial. Now the proof can proceed essentially
unaltered. Theorem 4 is proved.

8. Proof of Theorem 5

To prove Theorem 5, we modify the proof of [3, Theorem, p. 497], due to
Hellerstein and Williamson. Their ψ(z) [3, p. 498] corresponds to π(z) in the
proof of Theorem 4 above, and is modified in the same way. So we can write

(8.1)
f ′

f
(z) =

φ(z)ψ(z)

S(z)
,

where φ is entire and S is a polynomial. Both φ and S are real, and φ has only
real zeros. Similarly,

(8.2)
f ′′

f ′
(z) =

φ1(z)ψ1(z)

S1(z)
.

Now the proof can proceed unaltered apart from some natural changes due to the
presence of the polynomials S and S1 in (8.1) and (8.2). As remarked in [15, p.
667], the statement in [3, Lemma 1] that φ1 ∈ U0 is false, but this is never used.
In [3, (1.21)], the polynomial Q is replaced by Q/S , but since S(ak) 6= 0 for all k
and the real numbers ak considered can cluster at ±∞ only, one can find M > 0
and d ≥ 1 such that |Q(ak)| ≤ M |ak|

d for all k , as required. We conclude that



36 A. Hinkkanen

φ1 has infinitely many zeros, and we want to show that φ1 has infinitely many
non-real zeros. We now assume that φ1 has only finitely many non-real zeros and
derive a contradiction. In fact, under this assumption we shall prove that apart
from finitely many exceptions, the zeros of φ1 are not real. Since φ1 has infinitely
many zeros, this clearly gives a contradiction, as desired.

What we want to prove is an analogue of [3, Lemma 4], except that we have
made the additional a priori assumption that φ1 has only finitely many non-real ze-
ros. To prove our statement, following the method of proof of [2, Lemma 7] (which,
apart from minor modifications, is also the method of proof of [3, Lemma 4]), we
note that the proof of [2, Lemma 7], to which we now refer, has to be modified as
follows. Instead of (3.1) and (3.2) in [2], we have (8.1) and (8.2) above. Let the
notation in the proof of [2, Lemma 7] be changed accordingly. Moreover, the proof
of [3, Lemma 2] can be inverted to show that since φ1 has infinitely many zeros
but only finitely many non-real zeros, it follows that φ has infinitely many zeros.
(More precisely, if φ has only finitely many zeros, so that φ(z) = S2(z)eα2z for
some real α2 and some polynomial S2 , then we have, with z = iy where y → ∞ ,

|φ1(z)| =

∣

∣

∣

∣

S1(z)

ψ1(z)

{

φ(z)ψ(z)

S(z)
+
φ′(z)

φ(z)
+
ψ′(z)

ψ(z)
−
S′(z)

S(z)

}
∣

∣

∣

∣

= O(yk)

for some positive number k , which is impossible if φ1 is the product of a poly-
nomial and a function that belongs to U0 and has infinitely many zeros, on the
same basis as explained in [3, p. 500].)

Now the proof of [2, Lemma 7] remains valid unaltered on intervals (γn, γn+1)
such that (γn, γn+1) contains no poles of f and |γn| , |γn+1| are large enough. In
this way only finitely many real zeros of φ1 are omitted. We only have to show
that in case (I), the function

Hk(x) = (x− ak)
f ′(x)

f(x)

satisfies

(8.3)

(

H ′
k(x)

Hk(x)

)′

< 0, for γn < x < γn+1,

if |x| is large enough, and that in case II the function H(x) = f ′(x)/f(x) satisfies

(8.4)

(

H ′(x)

H(x)

)′

< 0, for γn < x < γn+1,

if |x| is large enough. The remaining arguments can then be copied word by word.
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We prove (8.3). The proof of (8.4) is similar. We have

(

H ′
k(x)

Hk(x)

)′

=

(

φ′(x)

φ(x)

)′

−

(

S′(x)

S(x)

)′

+

(

ψ′(x)

ψ(x)

)′

,

where
(

ψ′(x)

ψ(x)

)′

=
ω

∑

j=α

j 6=k

[

(x− aj)−2 − (x− bj)−2
]

− (x− bk)−2 < 0

as shown in [2]. Further, φ has infinitely many zeros αk , say, all of them real,
and S has finitely many zeros, βj , say, some of which may be non-real. However,
if S(βj) = 0, then S(βj) = 0. Hence an estimate which takes into account one
more ak than there are points βj , shows that

(

φ′(x)

φ(x)

)′

−

(

S′(x)

S(x)

)′

= −
∑

k

(x− αk)−2 +
∑

j

(x− βj)−2 < 0

if |x| is large enough. This completes the proof of Theorem 5.
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