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Abstract. Let f be a meromorphic non-entire function in the plane, and suppose that for
every n ≥ 0 , the derivative f (n) has only real zeros. We have proved that then f is rational and
of a special form, and that all possibilities can be listed. In this paper we prove that part of this
result which is related to properties of strictly non-real functions.

1. Introduction and results

1.1. Let f be a function meromorphic in the complex plane C . We consider
the question of under what circumstances all the derivatives of f , including f
itself, can have only real zeros. We may and will assume that f is not a polynomial
so that none of the derivatives f (n) vanishes identically. We say that f is real if
f(z) is real or f(z) = ∞ whenever z is real. If f is not a constant multiple of
a real function, then f is called strictly non-real. We have proved the following
result. The proof is given partly in this paper and partly in the two companion
papers [3], [4].

Theorem A. Let f be a non-entire meromorphic function in the complex

plane, and suppose that for every integer k ≥ 0 , the derivative f (k) has only real

zeros. Then there are real numbers a and b where a 6= 0 , and a polynomial P
with only real zeros, such that

(i) f(az+b) = P (z)/Q(z) , where Q(z) = zn or Q(z) = (z2 +1)n , n is a positive

integer, and degP ≤ degQ+ 1; or

(ii) f(az + b) = C(z − i)−n where C is a non-zero complex constant; or

(iii) f(az + b) = C(z − α)/(z − i) , where α is a real number and C is a non-zero

complex constant.

Conversely, if f is as in (i) with degP ≤ degQ , or if f is as in (ii) or (iii),
then f (k) has only real zeros for all k ≥ 0 . If f is as in (i) with degP = degQ+1
then f (k) has only real zeros for all k ≥ 0 if, and only if, f ′ (or, equivalently,

zP ′(z) − nP (z) or (z2 + 1)P ′(z) − 2nzP (z)) has only real zeros.
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If f is as in (i) of Theorem A and degP = degQ+1 then there are polynomials
P for which f ′ has only real zeros, and other polynomials P for which f ′ has at
least two non-real zeros (cf. [3]).

The complete proof of Theorem A is long, and is divided into three papers
(this paper and [3], [4]). The structure of the proof of Theorem A, showing how
the different pieces are put together, is explained in [3]. In this paper we prove
the following result that basically deals with strictly non-real functions (referred
to in [3] as [3, Theorem 2]).

Theorem 1. Let f be given by

(1.1) f(z) =
g(z)

(z + i)m(z − i)n

where g is an entire function with only real zeros with g(i)g(−i) 6= 0 and m and

n are integers, not necessarily equal, with m ≥ 0 and n ≥ 1 . Suppose that f ′

and f ′′ have only real zeros.

If m = 0 then there is a non-zero complex constant C such that

(i) g(z) ≡ C ; or

(ii) g(z) ≡ C(z − α) for some real α , and then n = 1; or

(iii) g(z) ≡ Ceinz .

If g is as in (i) or (ii) then f (k) has only real zeros for all k ≥ 0 . If g is as

in (iii) then f ′′′ has at least one non-real zero.

If m ≥ 1 then m = n and g is a constant multiple of a real entire function.

We define a class of functions. We say that f ∈ U0 if f is of the form

f(z) = g(z) exp{−az2}

where a ≥ 0 and g is a constant multiple of a real entire function with genus not
exceeding 1 and with only real zeros. The class U0 is the so-called Laguerre–Pólya
class. We have f ∈ U0 if, and only if, there are real polynomials Pn with only
real zeros such that Pn → f locally uniformly in C . Also, f ∈ U0 if, and only if,
we may write

f(z) = czme−az2+bz
∞
∏

n=1

(

1 −
z

zn

)

ez/zn

where c is a non-zero complex constant, m is a non-negative integer, a ≥ 0, b is
a real number, zn ∈ R \ {0} for all n ≥ 1, and

∑∞
n=1 z

−2
n <∞ . Here R denotes

the real axis. Thus if f ∈ U0 then f (n) ∈ U0 and so f (n) has only real zeros for
all n ≥ 0.

Hellerstein, Shen and Williamson [2] developed a method for dealing with
the reality of zeros of the first two derivatives of a strictly non-real meromorphic
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function with only real poles. We will follow their approach to the extent possible.
Differences start to appear after the first few formulas have been obtained. They
are due to the presence of non-real poles, even if there are at most two poles.
One of the principal changes is that in some places, functions such as cos(az +
b) + i sin(az+ b) are replaced by functions of the form cos(az+ b) + z sin(az+ b) .
The latter functions can no longer be expressed as exponentials and have infinitely
many zeros. Also we cannot take fractional powers of such functions and obtain
single-valued functions in the plane. Therefore certain arguments that take up a
few pages in [2] are replaced by much longer ones that amount to a careful analysis
of what can be said about the new functions that we end up with. The case m ≥ 1
of Theorem 1 is still reasonably close to [2] but in the case m = 0 the situation
changes more radically.

2. Proof of Theorem 1 when m ≥ 1

2.1. Suppose that f is as in (1.1) where g is an entire function with only real
zeros with g(i)g(−i) 6= 0 and m and n are positive integers. We first consider the
case m 6= n . Then f is strictly non-real since m 6= n (for if f were a constant
multiple of a real function then f would have a pole of the same order at i and
at −i). Write

f(z) = f(z)H(z),(2.1)

f ′(z) = f ′(z)G(z).(2.2)

Then H and G are meromorphic in the plane and have modulus 1 on R . Suppose
that f , f ′ , and f ′′ have only real zeros. Then H and G have no zeros or poles
at points other than ±i .

We denote various non-zero complex constants by A1, A2, . . . . Close to z = i
we have

f(z) ∼
A1

(z − i)n
, f(z) ∼

A2

(z − i)m

so that H(z) ∼ A3(z − i)m−n . Similarly, G(z) ∼ A4(z − i)m−n as z → i . As
z → −i we similarly get H(z) ∼ A5(z + i)n−m and G(z) ∼ A6(z + i)n−m . Hence
there is an entire function h such that

H(z) =

(

z − i

z + i

)m−n

eih(z)

where |eih(z)| = 1 when z is real. Thus h is a real entire function. Similarly,

G(z) =

(

z − i

z + i

)m−n

eig0(z)
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where g0 is a real entire function. From (2.1) we get

(2.3)
f ′

f
(z) =

f ′

f
(z) +

H ′

H
(z) =

f ′

f
(z) + ih′(z) +

2i(m− n)

z2 + 1
.

Following Hellerstein, Shen and Williamson [2, p. 321], we recall the functions
from the Tsuji value distribution theory in a half plane defined by T0(r, f) =
m0(r, f) +N0(r, f) ,

m0(r, f) =
1

2π

∫ π−arcsin(r−1)

arcsin(r−1)

log+
∣

∣f
(

r(sin θ)eiθ
)
∣

∣

dθ

r sin2 θ

and

N0(r, f) =

∫ r

1

n(t,∞)

t2
dt =

∑

1≤rk<r sin θk

(

sin θk

rk
−

1

r

)

.

Here the points zk = rke
iθk are the poles of f with Im zk > 0, with due count

of multiplicity, and n(t,∞) denotes the number of poles of f in {z : |z − 1
2
it| ≤

1
2 t, |z| ≥ 1} , also with due count of multiplicity. As in [2, Lemma D], we get

T0(r, h
′) = m0(r, h

′)

≤ m0(r, f
′/f) +m0

(

r, (f ′/f)(z )
)

+m0

(

r, 2(m− n)/(z2 + 1)
)

+ log 3

= O(log r).

The same with z replaced by −z gives

T0

(

r, h′(−z)
)

= m0

(

r, h′(−z)
)

= O(log r).

As in [2, (2.11–12)], this gives T (r, h′) = O(r log r) so that the order of h′ , and
hence of h , is at most 1. Write

h1(z) = h′(z) +
2(m− n)

z2 + 1
.

Then h1 is meromorphic with poles at ±i only and the order of h1 is the same
as that of h , hence at most 1.

Since

(2.4)
f ′

f
(z) −

f ′

f
(z) = ih1(z)

and all the zeros of f ′ , hence all the zeros of f ′/f , are real, it follows that all the
zeros of f ′/f are also zeros of h1 . Let π1 be the canonical product of the zeros
of f ′/f . Then the exponent of convergence of π1 does not exceed 1 and

(2.5) γ(z) ≡ π1(z)
f

f ′
(z)
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is entire. Since the order of the real entire function π1 does not exceed 1, we see
as in [2, p. 323] that

T0(r, π1) = m0(r, π1) = O(rε) for each ε > 0.

Hence

m0(r, γ) = T0(r, γ) ≤ T0(r, f/f
′) + T0(r, π1) + log 2

≤ T0(r, f
′/f) + T0(r, π1) +O(1) = O(log r) +O(rε) = O(rε)

and similarly m0

(

r, γ(−z)
)

= T0

(

r, γ(−z)
)

= O(rε) for all ε > 0. (To see that
T0(r, f

′/f) = O(log r) , we apply [2, Lemma D, p. 322], noting that ff ′′ has only
real zeros and f has only finitely many non-real poles.) Thus the order of γ is at
most 1. Let π2 be the canonical product of the zeros of γ . Then

(2.6) γ(z) = π2(z)e
−(pz+q)

for some complex constants p and q . Substituting (2.6) into (2.5) we get

(2.7)
f ′

f
(z) =

π1

π2
(z)epz+q .

All the zeros of f ′/f , hence all of π1 , are real. The zeros of π2 are the poles of
f ′/f , that is, the zeros and poles of f , which are all real, apart from ±i , which
are simple zeros of π2 . Hence in any case π2 is real if m ≥ 1. Thus

(2.8)
π1

π2
(z) =

π1

π2
(z) if m ≥ 1.

Solving for π1/π2 using (2.4), (2.7), and (2.8) and substituting into (2.7) we get

(2.9)
f ′

f
(z) =

ih1(z)e
pz+q

epz+q − epz+q
=
h1(z)e

i(az+b)

2 sin(az + b)
if m ≥ 1

where a = Im p , b = Im q . Note that sin(az + b) 6≡ 0 since h1 6≡ 0 (since
h1(±i) = ∞). So (2.9) makes sense.

Replacing f and f ′ by f ′ and f ′′ above, we get a similar conclusion provided
that T0(r, f

′′/f ′) = O(log r) . The conclusion is that

(2.10)
f ′′

f ′
(z) =

g1(z)e
i(Az+B)

2 sin(Az +B)
if m ≥ 1

where
G′

G
(z) = ig1(z) = i

(

g0(z) +
2(m− n)

z2 + 1

)

.
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To prove that indeed T0(r, f
′′/f ′) = O(log r) , take the logarithmic derivative of

(2.9) to get

(2.11)
f ′′

f ′
(z) =

f ′

f
(z) +

h′1
h1

(z) + ia− a cot(az + b).

Since T0(r, f
′/f) = O(log r) , we obtain T0(r, f

′′/f ′) = O(log r) provided that
T0(r, h

′
1/h1) = O(log r) and T0(r, α

′/α) = O(log r) where α(z) = sin(az + b) . By
[2, Lemma A] we have

m0(r, α
′/α) = O

(

log r + logT0(r, α)
)

for all r outside a set of finite linear measure, while T0(r, α) = O(rε) for all ε > 0
(in the same way as for T0(r, γ) above) since α has order 1. Thus m0(r, α

′/α) =
O(log r) . Now T0(r, α

′/α) = m0(r, α
′/α) = O(log r) since α has only real zeros.

(If a = 0, we need not consider α at all.) The same applies to h1 if we can show
that h1 has only finitely many non-real zeros and poles (recall that the order of
h1 is at most 1). From (2.9) we see that if h1(z) = 0 then sin(az + b) = 0
or (f ′/f)(z) = 0. All such zeros are real, so all zeros of h1 are real and hence
T0(r, h

′
1/h1) = O(log r) as required. This completes the proof of (2.10). Note that

the function g1 in (2.10) has only real zeros, has poles at ±i only, both of them
simple poles, and that g1 is real and of order at most 1.

Now by (2.10) and (2.11) we get

(2.12)

h′1
h1

(z)+
(h1(z)

2
− a

)

cot(az + b) + i
(h1(z)

2
+ a

)

=
g1(z)

2
cot(Az +B) + i

g1(z)

2
.

For z ∈ R , equate the real and imaginary parts in (2.12) to get

(2.13) h1(z) + 2a = g1(z),

(2.14)
h′1
h1

(z) +
(h1(z)

2
− a

)

cot(az + b) =
g1(z)

2
cot(Az +B),

which remain valid for all z ∈ C by analytic continuation. Using (2.13) in (2.14)
to eliminate g1 we obtain

(2.15)
h′1
h1

(z)+
h1(z)

2

(

cot(az+ b)− cot(Az+B)
)

= a
(

cot(az+ b)+cot(Az+B)
)

.
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Now f ′/f has residue −m at −i and −n at i . For each of g1 and h1 these
residues are i(m−n) and −i(m−n) . For f ′′/f ′ they are −(m+1) and −(n+1).
So by (2.9),

−m =
i(m− n)ei(−ai+b)

2 sin(−ai+ b)
,(2.16)

−n =
−i(m− n)ei(ai+b)

2 sin(ai+ b)
,(2.17)

and by (2.10),

−(m+ 1) =
i(m− n)ei(−Ai+B)

2 sin(−Ai+B)
,(2.18)

−(n+ 1) =
−i(m− n)ei(Ai+B)

2 sin(Ai+B)
.(2.19)

Dividing (2.16) by (2.17) and (2.18) by (2.19) we obtain

(2.20)
m

n
= −

sin(ai+ b)

sin(−ai+ b)
e2a,

m+ 1

n+ 1
= −

sin(Ai+B)

sin(−Ai+B)
e2A

so that by taking absolute values we get

(2.21) 2a = log
m

n
, 2A = log

m+ 1

n+ 1
.

We have a 6= 0 6= A since m 6= n . Furthermore, it follows that

sin(ai+ b) = − sin(−ai+ b) = sin(ai− b),

hence cos ai sin b = 0, so sin b = 0 and hence b = νπ for some integer ν .
If ν is even then sin(az+ b) = sin az and ei(az+b) = eiaz so that we may take

ν = 0. If ν is odd then

ei(az+b)

sin(az + b)
=

−eiaz

− sin az
=

eiaz

sin az

so that we may always take b = 0 and similarly B = 0. Now (2.15) reads

(2.22)
h′1
h1

(z) +
h1(z)

2

(

cot az − cotAz
)

= a
(

cot az + cotAz
)

.

Dividing (2.22) by −h1 we get

( 1

h1

)′

+ a(cot az + cotAz)
1

h1
=

1

2
(cot az − cotAz).
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Thus for 0 < ε ≤ Az < π we have

1

h1
= e−(log sin az+(a/A) log sinAz)

∫ z
(

sin at sina/A(At)
)1

2

(

cot at− cotAt
)

dt

with a suitable implied constant of integration, so that if

h2(z) ≡
sin az sina/A Az

h1(z)
for 0 < ε ≤ Az < π

then

h2(z) − h2(ε/A) =
1

2

∫ z

ε/A

sin(a/A)−1At sin(A− a)t dt.

Since m 6= n , we have

β ≡
a

A
=

log(m/n)

log
(

(m+ 1)/(n+ 1)
) > 0

so that the integral on the right has a finite limit as ε→ 0+ or Az → π− and so
h2 extends continuously to [0, Aπ] or [Aπ, 0] . Write h3(z) = h2(z/A) . Then for
0 ≤ z ≤ π ,

h3(z) − h3(ε) =
1

2A

∫ z

ε

sinβ−1 t sin(1 − β)t dt

while h3(z) =
(

sinβz sinβ z
)

/h1(z/A) .
If β is not an integer, then, since h1 is entire and h3 is continuous on [0, π] ,

we see that h3(0) = h3(π) = 0. Hence

0 =

∫ π

0

sin(β − 1)t sinβ−1 t dt.

Proceeding in the same way with h̃1(z) = h1(z/A) we get

1

2A
(cot βz − cot z) =

1

h̃1(z)
β(cotβz + cot z) +

(

1

h̃1(z)

)′

.

Set ζ = z − π , where π < z < 2π , and write ĥ1(ζ) = h̃1(ζ + π) . Then

( 1

ĥ′1

)′

+
1

ĥ1

β
[

cot(βζ + βπ) + cot ζ
]

=
1

2A

[

cot(βζ + βπ) − cot ζ
]

.

Now 0 < ζ < π and with

h̃2(ζ) =
sin(βζ + βπ) sinβ(ζ)

ĥ1(ζ)
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we obtain

h̃2(ζ) − h̃2(ε) =
1

2A

∫ ζ

ε

sinβ−1 ξ sin
(

(β − 1)ξ + βπ
)

dξ for 0 < ε < ζ < π.

As above we find that if β is not an integer then

0 =

∫ π

0

sinβ−1 t sin
(

(β − 1)t+ βπ
)

dt.

As in [2, pp. 326–327] we now see that β must be a positive integer, and then, as
in [2, Lemma 5] we see that β ∈ {1, 2, 3} . Each of the choices β = 1, 2, 3 leads, as
in [2, pp. 328–330], to an explicitly given function h1 . But none of these functions
h1 has any non-real poles, which gives a contradiction since our h1 must have a
pole at ±i .

We conclude that if f is of the form (1.1) with m ≥ 1, n ≥ 1, and m 6= n
then at least one of f , f ′ , and f ′′ has at least one non-real zero. This completes
the proof of Theorem 1 when m ≥ 1 and m 6= n .

Suppose now that m = n ≥ 1 and that f (or, equivalently, g ) is strictly
non-real. Then we may proceed as above, starting at the beginning of §2.1 and
continuing up to and including (2.9), apart from the possibility that h1 ≡ 0. Note
that (2.11) is still valid. But now h1 = h′ , and if h1 ≡ 0 then by (2.3), we
have H ′/H ≡ 0 so that H is constant. By (2.1) this means that f is a constant
multiple of a real function, which is a contradiction. Hence h1 ≡ h′ 6≡ 0, and so
sin(az + b) 6≡ 0 in (2.9).

If now f ′ is a constant multiple of a real function then f ′′/f ′ is real and
by (2.11), the function f ′/f + ia is real. By (2.3), H ′/H = −2ia so that H =
e−2iaz = eih(z) and again by (2.9), f ′/f = 1

2 (−2a)
(

i + cot(az + b)
)

so that
f(z) = e−aiz+C/ sin(az + b) , which is a contradiction both if a = 0 or if a 6= 0,
since then f has no poles at ±i . It follows that f ′ is strictly non-real and we see
that the previous argument is valid up to (2.15). Now (2.16)–(2.21) are still valid
so that we get a = A = 0. Then if sin b 6= 0, by (2.20) we obtain

1 =
m

n
= −

sin b

sin b
= −1,

which is a contradiction. Thus a = sin b = 0 so that sin(az+ b) ≡ 0, which is also
a contradiction. We conclude that if m = n ≥ 1 then f is a constant multiple of
a real function, as asserted. This completes the proof of Theorem 1 when m ≥ 1.
We remark that it has been proved in [3, Theorems 4, 5] that when m = n ≥ 1
(and f and g are real), the functions g and f are of finite order.
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3. Preliminaries for the proof of Theorem 1 when m = 0

3.1. Suppose that f is as in Theorem 1 with m = 0 and n ≥ 1, and with
g(i) 6= 0. Then f is strictly non-real. Again we denote various non-zero complex
constants by A1, A2, . . . . Close to z = i we have

f(z) ∼
A1

(z − i)n
, f ′(z) ∼

A2

(z − i)n+1
, f(z) ∼ A3, f ′(z) ∼ A4.

We define H and G as in (2.1) and (2.2). Hence

H(z) ∼ A5(z − i)−n and G(z) ∼ A7(z − i)−(n+1) as z → −i,

while

H(z) ∼ A6(z + i)n and G(z) ∼ A8(z + i)n+1 as z → −i.

Thus there are real entire functions h and g0 such that

H(z) =

(

z + i

z − i

)n

eih(z),(3.1)

G(z) =

(

z + i

z − i

)n+1

eig0(z).

From (2.1) and (3.1) we get

(3.2)
f ′

f
(z) −

f ′

f
(z) =

H ′

H
(z) = ih′(z) −

2in

z2 + 1
≡ ih1(z).

Again h1 is real, and h′ and h1 have the same order, which does not exceed 1.
Define the functions π1 , γ and π2 as before. Thus (2.5) holds, the functions π1

and γ have order at most 1, and (2.6) and (2.7) hold.
Now the zeros of π2 are real apart from a simple zero at z = i . Thus we may

choose
π2(z) = (z − i)π3(z)

where π3 is real. Hence

(3.3)
π1

π2
(z) =

π1

π2
(z)

z + i

z − i
.

Substituting (2.7) and (3.3) into (2.4) (which still holds) we get

π1

π2
(z)epz+q =

π1

π2
(z)epz+q z − i

z + i
+ ih1(z).
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Solving for π1/π2 and substituting into (2.7) we obtain, with a = Im p and b =
Im q that

(3.4)

f ′

f
(z) =

ih1(z)e
i(az+b)

ei(az+b) − e−i(az+b)(z − i)/(z + i)

=
ih1(z)(z + i)ei(az+b)

(z + i)ei(az+b) − (z − i)e−i(az+b)

=
h1(z)(z + i)ei(az+b)

2
(

cos(az + b) + z sin(az + b)
) .

The counterpart of (2.11) is

f ′′

f ′
(z) =

f ′

f
(z) +

h′1
h1

(z) +
1

z + i
+ ia

−
sin(az + b) + a

(

z cos(az + b) − sin(az + b)
)

cos(az + b) + z sin(az + b)
.

If a = 0 then clearly T0(r, f
′′/f ′) = O(log r) . Suppose that a 6= 0. We can deduce

that T0(r, f
′′/f ′) = O(log r) provided that cos(az + b) + z sin(az + b) has only

finitely many non-real zeros. This last function vanishes at a point z if and only
if tan(az + b) = −1/z , that is, if tanw = 1/(cw + d) for suitable real c, d with
c 6= 0, where w = az + b . It is easily seen that this last equation has only finitely
many (in fact, at most two) non-real solutions (using the method of solution to [7,
Problem V.172, pp. 65, 244]). Thus T0(r, f

′′/f ′) = O(log r) as required.
It now also follows from (3.4) that every zero of h1 is real, apart from the at

most two non-real zeros of cos(az + b) + z sin(az + b) , at which h1 must vanish.
These non-real zeros are distinct from the points ±i since

cos(az + b) + z sin(az + b) = ei(ai±b) 6= 0 at z = ±i.

The same analysis for f ′ and f ′′ instead of f and f ′ gives

(3.5)
f ′′

f ′
(z) =

g1(z)(z + i)ei(Az+B)

2
(

cos(Az +B) + z sin(Az +B)
) .

Let us write from now on

(3.6)
c = cos(az + b), s = sin(az + b),

C = cos(Az +B), and S = sin(Az +B).

The counterpart of (2.12) is

(3.7)
g1(z + i)(C + iS)

2(C + zS)
=
h1(z + i)(c+ is)

2(c+ zs)
+
h′1
h1

+
1

z + i
+ ia−

s+ a(zc− s)

c+ zs
.
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Considering the real and imaginary parts of (3.7) for z ∈ R and noting that h1

and g1 are real, we get

(3.8)
g1
2

=
h1

2
+ a−

1

z2 + 1

from the imaginary parts and then, after a calculation,

(3.9)

g1
2

zC − S

zS + C
=
h1

2

zc− s

zs + c
+
h′1
h1

−
zc− s

zs + c

(

a−
1

z2 + 1

)

=
h1

2

zc− s

zs + c
+
h′1
h1

+
z

z2 + 1
−

(1 − a)s+ azc

c+ zs

from the real parts. Substituting (3.8) into (3.9) we obtain

(3.10)

{

h1

2
+ a−

1

z2 + 1

}

zC − S

zS + C
=
h′1
h1

+
z

z2 + 1
+
h1

2

zc− s

c+ zs
−

(1 − a)s+ azc

c+ zs
.

Note that by (3.8), the formulas (3.4) and (3.5) read

f ′

f
=
h1

2

(z + i)(c+ is)

c+ zs
,(3.11)

f ′′

f ′
=

(

h1

2
+ a−

1

z2 + 1

)

(z + i)(C + iS)

C + zS
.(3.12)

We have now developed the formalism along the lines of Hellerstein, Shen
and Williamson [2]. The rest of the proof can be characterized as a struggle to
find a contradiction, showing that no function f satisfying the assumptions of
Theorem 1 can arise after all, except in three very special cases.

We define

h2 =
f

f ′

ei(az+b)(C + zS)

z − i
=

2

h1

(c+ zs)(C + zS)

z2 + 1
(3.13)

and

h3 =
h2

C + zS
=

f

f ′

ei(az+b)

z − i
=

2

h1

(c+ zs)

z2 + 1
.(3.14)

We write

S0 = Sc−Cs = sin
(

(A−a)z+(B−b)
)

, C0 = Cc+Ss = cos
(

(A−a)z+(B−b)
)

.

We note that

h′2 = S0 + (A− a)
zC − S

C + zS
h2(3.15)

and
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h′2
h2

=
S0

h2
+ (A− a)

zC − S

C + zS
.(3.16)

Consequently, since h3 = h2/(C + zS) , we have

h′3 =
S0

C + zS
−

(1 − a)S + azC

C + zS
h3,

that is,

(3.17) (C + zS)h′3 = S0 −
(

(1 − a)S + azC
)

h3.

We prove (3.15). Dividing by −h1/2 we obtain from (3.10) that

(3.18)

(

2

h1

)′

+
2

h1

{(

a−
1

z2 + 1

)

zC − S

zS + C
−

z

z2 + 1
+

(1 − a)s+ azc

c+ zs

}

=
−zC + S

C + zS
+
zc− s

c+ zs
.

Since

−zC + S

C + zS
+
zc− s

c+ zs
=

(z2 + 1)S0

(C + zS)(c+ zs)

and
1

z2 + 1

zC − S

C + zS
=

z

z2 + 1
−

S

C + zS
,

we can write (3.18) as
(

2

h1

)′

+
2

h1

{(

(C + zS)(c+ zs)

z2 + 1

)′ / (

(C + zS)(c+ zs)

z2 + 1

)

+ (a− A)
zC − S

C + zS

}

=
(z2 + 1)S0

(C + zS)(c+ zs)
.

A calculation based on the definition (3.13) of h2 in terms of h1 now yields (3.15).
Note that in all cases, neither one of the meromorphic functions h2 and h3 can
vanish identically. Note further that each of h2 and h3 is real and is of order at
most 1. Since the pole of f at z = i is cancelled out in h2 and h3 , and since f
and f ′ have only real zeros and no poles other than z = i , it follows that h3 has
only real zeros and poles, and h2 has only real poles and only real zeros with the
possible exception of the at most two non-real zeros of C + zS . (We saw earlier
that c+ zs has at most two non-real zeros, and the same applies to C + zS .)

We consider a number of cases:
Case I: A = a (so that S0 is constant) and S0 6= 0;
Case II: A = a and S0 = 0;
Case III: a 6= A = 0;
Case IV: A 6= a = 0;
Case V: A 6= a and aA 6= 0.
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We shall need later on the fact that a function that differs from a function in
U0 by a polynomial factor, behaves in certain ways like a function in U0 when |x|
is large enough. We formulate this result as a lemma, which will be proved in the
last Section 11 of this paper.

Lemma 1. Let P be a non-constant real rational function, and suppose that

the real entire function Φ belongs to U0 and has no common zeros with P . Define

Ψ = Φ/P . Then there is a positive number R such that on each of the intervals

(−∞,−R) and (R,∞) , the zeros of Ψ and Ψ′ are interlaced. That is, if x1 and

x2 are consecutive zeros of Ψ with R < x1 < x2 or with x1 < x2 < −R , then Ψ′

has exactly one zero on (x1, x2) , and this point is a simple zero of Ψ′ . Further, if

x1 and x2 are consecutive zeros of Ψ′ with R < x1 < x2 or with x1 < x2 < −R ,

then Ψ has exactly one zero on (x1, x2) , and this point is a simple zero of Ψ ,

unless it is the case that exactly one of x1 and x2 is also a zero of Ψ , in which

case Ψ has no zeros on (x1, x2) .

4. Case I

Here A = a and the constant S0 = sin(B−b) 6= 0. Now (3.15) reads h′2 = S0

so that h2(z) = S0z + α for some real α . By (3.13),

f ′

f
=
ei(az+b)(C + zS)

(z − i)(S0z + α)
,(4.1)

h1

2
=

(C + zS)(c+ zs)

(z2 + 1)(S0z + α)
.

Considering residues of both sides of (4.1) at z = i , we obtain

−n =
e−2Aei(b+B)

S0i+ α
=
e−2Aei(b+B)(−S0i+ α)

S2
0 + α2

,

which gives after a calculation that α = S0 cot(b+B) , so that

h2 =
(

z + cot(b+B)
)

S0, and − nS0 = e−2A sin(b+B) 6= 0.

Thus
f ′

f
=

ei(az+b)(C + zS)

(z − i)
(

z + cot(b+B)
)

S0

.

Since f ′/f has only real zeros, also C + zS has only real zeros. If A = 0
then C + zS is a linear real polynomial, which has only real zeros. If A 6= 0 then
it follows that

tan
(

Az +B − 1
2
π
)

− z = tan
(

Az +B − 1
2
π
)(

Az +B − 1
2
π
)

/A+
(

B − 1
2
π
)

/A
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has only real zeros. By [5], this is possible only if 1/A ≥ 1, that is, 0 < A ≤ 1
(further, B must satisfy a more complicated condition given in [5], but we shall
not make use of that).

Suppose first that a = A = 0 6= S0 . Then C = cosB and S = sinB are
constants and

f ′

f
=

eib(C + zS)

(z − i)
(

z + cot(b+B)
)

S0

=
−n

z − i
+

β

z + cot(b+B)

for some non-negative integer β while −nS0 = sin(b + B) 6= 0. A calculation
shows that

β = −
e−iB sin b

sin(B − b)
.

Since β is real, we have sinB = 0 so that B = kπ and C = cosB = (−1)k for
some integer k . This gives β = 1 and n = 1. Hence f is a non-zero complex
constant multiple of

(

z+cot(b+B)
)

/(z− i) and is of the form (ii) in Theorem 1.
The remaining statements in Theorem 1 concerning part (ii) are clear.

Suppose then that 0 < A ≤ 1. By (3.13), we have

h1

2
=

(C + zS)(c+ zs)

(z2 + 1)
(

z + cot(b+B)
)

S0

.

The equation (3.5) still holds. Since f ′′ and C+zS have only real zeros, it follows
from (3.5) and (3.8) that g1 and hence

X(z) ≡ (z2 + 1)
(

z + cot(b+B)
)

S0g1/2

= (z2 + 1)
(

z + cot(b+B)
)

S0h1/2 +
(

a(z2 + 1) − 1
)(

z + cot(b+B)
)

S0

= (C + zS)(c+ zs) + a(z2 + 1)
(

z + cot(b+B)
)

S0 −
(

z + cot(b+B)
)

S0

have only real zeros. Hence X ∈ U0 . We have a 6= 0 since a = A ∈ (0, 1] . Since
(C+zS)(c+zs) = O(z2) as z → ±∞ along the real axis, it follows that X(z) 6= 0
for all real z such that |z| is sufficiently large. Hence X has only finitely many
zeros so that X(z) = P (z)eγz , where γ ∈ R and P is a polynomial with only real

zeros. Differentiating four times we find that
(

(C + zS)(c + zs)
)(4)

= P1(z)e
γz ,

where P1 is a polynomial with only real zeros. But since (C + zS)(c + zs) is a
real function with infinitely many real zeros, it follows from Rolle’s theorem that
(

(C+ zS)(c+ zs)
)(4)

has infinitely many zeros, which gives a contradiction. Thus
no function f satisfying the assumptions of Theorem 1 arises in this case. This
completes our treatment of Case I.
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5. Case II

Here A = a and the constant S0 = sin(B − b) = 0. Then B = b + kπ for
some integer k , and C = (−1)kc , S = (−1)ks (recall the notation (3.6)). Now
(3.15) reads h′2 = 0 so that h2(z) = α for some non-zero real α . By (3.13),

f ′

f
=

(−1)kei(Az+B)(C + zS)

(z − i)α
=

(−1)kei(az+b)(c+ zs)

(z − i)α
,

so that C + zS and c+ zs have only real zeros. Considering residues at z = i we
get −n = (−1)ke−2Ae2iB/α so that α = (−1)k+1e−2Ae2iB/n and

(5.1)
f ′

f
=

−ne2Ae−2iB(c+ is)(c+ zs)

z − i
.

Hence by (3.11),

(5.2)
h1

2
=
f ′

f

c+ zs

(c+ is)(z + i)
=

−ne2Ae−2iB(c+ zs)2

z2 + 1
.

Since f ′′ and C + zS have only real zeros, it follows from (3.5) and (3.8) that g1
and hence

g1
2

=
h1

2
+ a−

1

z2 + 1
=

−ne2Ae−2iB(c+ zs)2

z2 + 1
+ a−

1

z2 + 1

have only real zeros. Also, since g1 is real, we have e−2iB = e−2ib = ±1, and the
function

(5.3) X(z) = K(c+ zs)2 + a(z2 + 1) − 1

has only real zeros, where K = −e−2ibne2a . Hence X ∈ U0 . Since e−2ib = ±1,
the number b is an integral multiple of π/2. Since replacing b and B by b + lπ
and B+ lπ , respectively, for some integer l does not change the problem, we may
assume that b ∈ {0, π/2} .

Since c+zs has only real zeros, we have c+zs ∈ U0 , so that (1−a)s+azc =
(c+ zs)′ ∈ U0 . Suppose that a 6= 1 and a 6= 0. Then

tan(az + b) + (1 − a)−1(az + b) − b/(1 − a)

has only real zeros. By [5], this implies that −(1 − a)−1 ≥ 1, that is, 1 < a ≤ 2.
Since c + zs has only real zeros, the function cos z + (sin z)(z − b)/a , which is
c+zs evaluated at (z−b)/a , has only real zeros, and therefore so does the function
tan z + a/(z − b) . If b = 0, then the equation tan z = −a/z , where 1 < a ≤ 2,
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has only real solutions. Taking z = it , where t ∈ R \ {0} , we see that then
tanh t = a/t has no real solutions, which is not true. Thus b 6= 0, and so b = π/2.
Hence e2ib = −1 and so K = ne2a .

Since K > 0 and a > 0, it follows that X(x) > 0 when x is real and |x|
is large enough. Hence X has only finitely many zeros so that X(z) = P (z)eγz ,
where γ ∈ R and P is a polynomial with only real zeros. Differentiating three
times we find that

(

(c+zs)2
)′′′

= X ′′′ = P1(z)e
γz , where P1 is a polynomial with

only real zeros. But since c + zs ∈ U0 and c + zs has infinitely many zeros, it
follows that

(

(c + zs)2
)′′′

has infinitely many zeros, which gives a contradiction.
This rules out the case a /∈ {0, 1} .

Suppose then that a = 1. Then the function cos z+(z−b) sin z , which is c+zs
evaluated at z−b , has only real zeros, and therefore so does tan z+1/(z−b) , where
b ∈ {0, π/2} . If b = 0, we get a contradiction as above, considering tanh t = 1/t .
Hence b = π/2 so that e2ib = −1 and K = ne2a = ne2 > 0. Now we get a
final contradiction as in the previous paragraph, considering X ′′′ for X defined
by (5.3). This completes our treatment of the case when A = a 6= 0 and S0 = 0.

Suppose that A = a = S0 = 0. Then by (5.1),

f ′

f
=

−ne−2ibeib(c+ zs)

z − i
=

−ne−ib(c+ zs)

z − i
=

−n

z − i
− nse−ib.

Since h1/2 = −ne−2ib(c+zs)2/(z2 +1), as given by (5.2), is real, we have e−2ib =
±1. Again, we may assume that b ∈ {0, π/2} . If b = π/2 then c = 0 and
−se−ib = i . Hence

f ′

f
=

−n

z − i
+ in,

which gives f(z) = A0e
inz/(z − i)n for some non-zero complex constant A0 .

Thus f is as in (iii) of Theorem 1. Now f ′ = A0e
inzinz/(z − i)n and f ′′(z) =

−A0ne
inz(nz2 − 1)/(z − i)n+2 so that f , f ′ , and f ′′ have only real zeros. But

f ′′′(z) = −iA0n
3einz

(

z3 − (3/n)z− 2in−2
)

/(z− i)n+3 . Since z3 − (3/n)z− 2in−2

is not a constant multiple of a real polynomial, it follows that f ′′′ has at least one
non-real zero. In fact, all the three zeros of f ′′′ are non-real.

If b = 0 then s = 0 and f ′/f = −n/(z − i) . Hence f(z) = A0/(z − i)n for
some non-zero complex constant A0 . Thus f is as in (i) of Theorem 1. In this
case f (k) has no zeros and hence has only real zeros for all k ≥ 0. This completes
our treatment of Case II.

6. Sign analysis: Case IV

We write sgnx = x/|x| when x 6= 0 and sgn 0 = 0. As in [2, p. 325], we note
that (h′1/h1)(iy) = o(y) as y → ∞ . Further, since (z2 +1)h1 has order at most 1
and belongs to U0 , we see that |h1(iy)| ≥ By for some fixed positive constant B
as y → ∞ provided that h1 has at least three zeros with due count of multiplicity.
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Suppose that A 6= 0. As y → ∞ , we have (S/C)(iy) = i sgnA+O(e−2|A|y) .
Now we may write (3.10) for z = iy as

(i/2)h1(iy)(sgnA+ ic/s)
(

1 + o(1)
)

= o(y) if a = 0 6= s,(6.1)

(i/2)h1(iy)(sgnA− y)
(

1 + o(1)
)

= o(y) if a = s = 0,(6.2)

(i/2)h1(iy)(sgnA− sgn a)
(

1 + o(1)
)

= o(y) if a 6= 0.(6.3)

Consider first the case a 6= 0 so that (6.3) holds. This gives a contradiction
as y → ∞ unless sgnA − sgn a = 0 or unless h1(z) = eαzP (z)/(z2 + 1) where
α ∈ R and P is a polynomial of degree at most 2. Now if sgnA− sgn a = 0 then
a/A > 0. Suppose then that sgnA− sgn a 6= 0, so that sgnA = − sgn a , and that

(6.4) h1(z) = eαz P (z)

(z2 + 1)
.

As y → ∞ , we have (s/c)(iy) = i sgn a + O(e−2|a|y) → i sgn a = −i sgnA 6= 0.
We can write (3.10) as

(6.5)

{

a−
1

z2 + 1
+

eαzP

2(z2 + 1)

}

(C/S) − (1/z)

1 + (C/S)(1/z)

= α+
P ′

P
−

z

z2 + 1
+

eαzP

2(z2 + 1)

(c/s) − (1/z)

1 + (c/s)(1/z)
−
a(c/s) +

(

(1 − a)/z
)

1 + (c/s)(1/z)
.

If α 6= 0, we consider (6.5) for z = x where sgn(αx) = 1 and |x| → ∞ in
a sequence such that 1/M ≤ |c/s| ≤ M and 1/M ≤ |C/S| ≤ M at all these x
for some fixed positive number M . Clearly such a sequence can be found. Since
the terms involving eαx dominate, we deduce that (C/S)− (1/x) ∼ (c/s)− (1/x)
and hence C/S ∼ c/s as |x| → ∞ in any such sequence. Thus Cs ∼ cS , that is,
Cs = cS

(

1 + o(1)
)

. Hence sin(az + b − Az − B) = Cs − cS = o(1) in any such
sequence. If a 6= A , we get a contradiction, for then we can choose the sequence
of x = xk so that for some fixed small ε > 0 we have |ax + b − (qπ/2)| > ε ,
|Ax + B − (qπ/2)| > ε and |ax + b − (Ax + B) − (qπ/2)| > ε for all integers q
and all x = xk . It follows that a = A , which contradicts our assumption that
sgnA 6= sgn a . We conclude that α = 0.

Since (C/S)(iy) = i sgn a+O(e−2|A|y) and (c/s)(iy) = −i sgn a+O(e−2|a|y)
as y → ∞ , a calculation shows that we may now write (3.10) or (6.5) as

{

a−
1

z2 + 1
+

P

2(z2 + 1)

}

i sgn a− (1/z)

1 + (i sgn a)(1/z)

=
P ′

P
−

z

z2 + 1
+

P

2(z2 + 1)

(−i sgn a) − (1/z)

1 − (i sgn a)(1/z)

−
−ai sgn a+ ((1 − a)/z)

1 − (i sgn a)(1/z)
+O(e−Ky)
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and hence, as a longer calculation shows, as

(6.6)
−(z2 + 1)P ′ + 2zP + P 2i sgn a

(z2 + 1)P
= O(e−Ky)

valid for z = iy as y → ∞ , with some constant K > 0. Now (6.6) can be valid

only if −(z2 +1)P ′ +2zP +P 2i sgn a ≡ 0. This can be written as
(

(z2 +1)/P
)′

=
−i sgn a , which is impossible since (z2 + 1)/P is real. This contradiction shows
that the assumption sgn a 6= sgnA cannot be satisfied. This proves that when
aA 6= 0, we have sgn a = sgnA , that is, a/A > 0.

Suppose then that A 6= 0 and a = s = 0, so that (6.2) holds. Now (6.2)
implies that h1(iy) = o(1) as y → ∞ . It follows that h1 is of the form (6.4)
where deg P ≤ 1. Now (3.10) reads

(6.7)

{

eαzP (z)

2(z2 + 1)
−

1

z2 + 1

}

zC − S

zS + C
= α+

P ′

P
−

z

z2 + 1
+
eαzzP (z)

2(z2 + 1)
.

If α 6= 0, we consider (6.7) in a sequence of x for which sgn(αx) = 1 and S(x)
stays bounded away from zero, and find that C/S ∼ x , which is impossible. Thus
α = 0. Hence (zC − S)/(C + zS) is a rational function, which is impossible. So
this case cannot occur.

Suppose then that A 6= 0 and a = 0 6= s , so that (6.1) holds. Now (6.1)
implies that h1(iy) = o(y) as y → ∞ . It follows that h1 is of the form (6.4)
where deg P ≤ 2. Now (3.10) reads

(6.8)

{

eαzP (z)

2(z2 + 1)
−

1

z2 + 1

}

zC − S

zS + C
= α+

P ′

P
−

z

z2 + 1
+
eαzP (z)

2(z2 + 1)

zc− s

c+ zs
−

s

c+ zs
.

If α 6= 0, we consider (6.8) in a sequence of x for which sgn(αx) = 1 and S(x)
stays bounded away from zero, and find that C/S ∼ c/s , which is impossible since
c/s is a fixed constant while the sequence of values of x can be chosen so that
C/S has no limit. Thus α = 0. Hence again (zC − S)/(C + zS) is a rational
function, which is impossible. So this case cannot occur.

We conclude that if A 6= 0 then a 6= 0 and a/A > 0. In particular, Case IV,
which means that A 6= 0 = a , does not occur. The conclusion that if A 6= 0 then
a 6= 0 and a/A > 0, will also be used when considering Case V later on.

7. Sign analysis: Case III

Consider Case III, so that a 6= 0 = A . We have (s/c)(iy) → i sgn a as
y → ∞ . As before, we note that (h′1/h1)(iy) = o(y) as y → ∞ . Hence (3.10)
gives, as y → ∞ ,

1
2h1(iy)

(

iy + i sgn a+ o(1)
)

+ iay = o(y) if S = 0,(7.1)

and
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1
2h1(iy)

(

C/S + i sgn a+ o(1)
)

= o(y) if S 6= 0.(7.2)

Suppose that S = 0 so that (7.1) holds. Then h1(iy) = −2a
(

1 + o(1)
)

as
y → ∞ . Hence h1(z) = P (z)/(z2 + 1) where P is a real polynomial of degree 2
with leading coefficient −2a . Now (3.10) reads (c + zs)R1 = R2c + R3s where
R1 , R2 , and R3 are certain real rational functions. This implies that R1 = R2

and zR1 = R3 . Now

R1 =

{

h1

2
+ a−

1

z2 + 1

}

zC − S

zS + C
−
h′1
h1

−
z

z2 + 1
,

R2 =
h1

2
z − az, and R3 = −

h1

2
− (1 − a).

We have zR2 = zR1 = R3 , which yields

(z + 1)h1/2 = −1 + a(1 + z2).

Thus
P (z) = (z2 + 1)h1(z) = 2(z2 + 1)

(

−1 + a(1 + z2)
)

/(z + 1),

which is not a polynomial of degree 2 for any non-zero value of a . This contra-
diction shows that the case S = 0 is impossible.

Suppose that S 6= 0 so that (7.2) holds. Then necessarily h1(iy) = o(y) , and
thus h1(z)/2 = eαzP (z)/(z2 + 1) where α is real and P is a real polynomial of
degree at most 2. Now (3.10) reads

(7.3) (eαzR4 +R5)(c+ zs) = (eαzR6 +R7)c+ (eαzR8 +R9)s,

where the Rj are certain real rational functions for 4 ≤ j ≤ 9.
If α 6= 0, we consider both sides of (7.3) for z = xk for various sequences xk

of real numbers such that sgn(αxk) = 1, |xk| → ∞ and either s(xk) = 0 for all
k or c(xk) = 0 for all k . This shows that R4 = R6 , R5 = R7 , zR4 = R8 , and
zR5 = R9 . Calculating the expressions for the Rj we deduce that

0 = zR6 −R8 =
z2P (z)

z2 + 1
+

P (z)

z2 + 1
,

hence P ≡ 0, which is impossible.
Thus α = 0, and we may adjust notation so that R4 = R6 = R8 = 0. Now

R5 = R7 and zR5 = R9 . Thus

0 = zR7 −R9 =
z2P (z)

z2 + 1
− az2 +

P (z)

z2 + 1
+ (1 − a) = P (z) + 1 − a(z2 + 1).
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This yields h1/2 = a− (z2 + 1)−1 . Next,

(7.4)

0 = R5 −R7 = 2

{

a−
1

z2 + 1

}

zC − S

zS + C
−

(

−2az

1 − a(z2 + 1)
−

2z

z2 + 1

)

−
z

z2 + 1
−
z(a(z2 + 1) − 1)

z2 + 1
+ az

= 2

{

a−
1

z2 + 1

}

zC − S

zS + C
+

−2az

1 − a(z2 + 1)
+

2z

z2 + 1
.

Suppose that a 6= 1. Since a 6= 0, the function 1 − a(z2 + 1) has two distinct
zeros, neither one of which is ±i . At least one of these zeros is different from the
zero of zS + C . At this zero of 1 − a(z2 + 1), the right hand side of (7.4) has a
pole, which gives a contradiction. Thus a = 1, and (7.4) reads

(7.5) 2

{

1 −
1

z2 + 1

}

zC − S

zS + C
+

2

z
+

2z

z2 + 1
= 0.

Hence C = 0, for otherwise the origin is a pole of the left hand side of (7.5). Thus

−2

{

1 −
1

z2 + 1

}

+ 2 +
2z2

z2 + 1
= 0.

This reads 2 = 0, which is a contradiction. This completes our treatment of the
Case III, showing that Case III cannot occur at all.

8. Case V

Consider Case V so that A 6= a and aA 6= 0. We shall show that this leads
to a contradiction so that in this case no function f satisfying the assumptions of
Theorem 1 arises. We have already seen in Section 6 that now a/A > 0.

Consider the real meromorphic function h3 of order at most 1 defined by
(3.14) and satisfying (3.17). By (3.14), h3 has only real zeros and poles since f/f ′

does apart from the point z = i , at which h3 6= 0,∞ . Also the poles of h3 occur
exactly at those zeros of f ′ that are not zeros of f . We first show that h3 can have
only finitely many poles, if any. Let x be a pole of h3 so that f ′(x) = 0 6= f(x)
and so (C + zS)(x) = 0, by (3.12). Let x be a zero of f ′ of order ν ≥ 1, and
hence a pole of h3 of order ν . Suppose that h2 = (C + zS)h3 6= 0,∞ at x .
Considering (3.15), we deduce that zC − S = 0. Since C = −zS at x so that
S 6= 0 since C2 + S2 = 1, we get x2 + 1 = 0, hence x = ±i . This is impossible
since x is real. If h2(x) = 0 then by (3.14), C + zS has a multiple zero at x .
Since C + zS = 0 = (C + zS)′ = (1 − A)S + AzC at z = x , this can happen
only if A 6= 0 and x2 = 1 − A−1 , hence at no more than two points x . Suppose
then that h2(x) = ∞ . Considering (3.15) at x , we see that x is a simple zero of
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C + zS (since (zC − S)(x) 6= 0). Thus by (3.14), x is a pole of order ν − 1 of h2

and hence we must have ν ≥ 2. Comparing residues on both sides of (3.16) at x ,
we deduce that

−(ν − 1) = (A− a)
−(x2 + 1)

1 − A(x2 + 1)
,

that is,

x2 + 1 =
ν − 1

νA− a
.

If A 6= 0, the right hand side is bounded as ν varies over integers not less than 2
so that |x| is bounded. Thus there can be only finitely many poles x of h2 and
hence of h3 . If A = 0 then C + zS is a polynomial of degree at most 1 so that
by (3.12), f ′ has at most one zero (ignoring multiplicity). Hence in all cases, all
zeros of f ′ apart from finitely many at most, occur at zeros of f . Also there is
a real polynomial P with only real zeros such that if h4 = Ph3 then h4 has no
poles and h4 has the same zeros as h3 . Thus the order of h4 is at most 1 and
h4 ∈ U0 .

9. Proof that a/A is an integer

We continue with Case V. Recall that a/A > 0. We shall next show that a/A
is an integer. Note that C + zS has infinitely many real zeros so that there are
infinitely many intervals I = (x1, x2) between successive simple real zeros x1 , x2

of C + zS such that C + zS > 0 on (x1, x2) . For x ∈ I , define

(9.1) h5(x) = h2(x)[(C + zS)(x)](a/A)−1 exp

{

−
( a

A
− 1

)

∫ x

α

S(t) dt

(C + zS)(t)

}

for some α ∈ I . A calculation shows that by (3.15), we have

(9.2) h′5(x) = S0(x)[(C + zS)(x)](a/A)−1 exp

{

−
( a

A
− 1

)

∫ x

α

S(t) dt

(C + zS)(t)

}

.

As t→ x1 , we have

S(t)

(C + zS)(t)
=

1

1 − A(1 + x2
1)

1

t− x1
+O(1).

An analogous equation holds with x1 replaced by x2 when t → x2 . When x1 is
large enough, we have

(9.3)
a

A
−

(a/A) − 1

1 − A(1 + x2
1)
> 0,
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and similarly for x2 . Since h3 has only finitely many poles, so that by (3.14), h2

vanishes (at least as fast as z−x1 ) at all but finitely many zeros x1 of C+ zS , it
follows from (9.1) and (9.3) that h5 can be extended continuously from the open
interval I to x1 and x2 by setting h5(x1) = h5(x2) = 0. Also we see that h′5 is
integrable over [x1, x2] with

(9.4)

∫ x2

x1

S0(x)[(C + zS)(x)](a/A)−1 exp

{

−
( a

A
− 1

)

∫ x

α

S(t) dt

(C + zS)(t)

}

= 0.

Without affecting the validity of (9.4), we may and will choose α to be the unique
point in I with S(α) = 1. The factors in the integrand in (9.4) other than
S0 are positive on (x1, x2) . When |x1| is large enough then, since S(x1) =
−C(x1)/x1 → 0, there is an integer k such that |(Ax1 +B) − kπ| ≤ 1/|x1| , thus
Ax1 +B−kπ is close to zero. Since x2 is the next larger zero of C+ zS , we have
|(Ax2 +B) − (k + 1)π| ≤ 1/|x2| if A > 0 (if A < 0 we have the same with k + 1
replaced by k−1). Let us assume, for simplicity, that A > 0. In fact, when |k| is
large enough, there is a unique zero x of C+ zS for which Ax+B is closer to kπ
than to lπ for any other integer l , and each zero of C + zS that has a sufficiently
large modulus corresponds to a unique integer k in this way. Let us denote such
a zero by yk .

Now the sign of S0(t) can only change at a point t = t1 such that (A−a)t1 +
(B − b) = lπ for some integer l . There must be at least one such point t1 on
(x1, x2) .

We proceed to show that a/A is a positive integer, hence a/A ≥ 2 since
a 6= A . Now x1 above is equal to a certain yl . For simplicity, let us assume that
l > 0 and that x1 > 0 and x1 is large. We can write

S(t)

(C + zS)(t)
−

1

1 − A(1 + y2
l )

(C + zS)′(t)

(C + zS)(t)
= −A

yl

(

ylS(t) + C(t)
)

+ (t− yl)C(t)
(

1 − A(1 + y2
l )

)

(C + zS)(t)

= −A

{

yl

1 −A(1 + y2
l )

+
t− yl

(C + zS)(t)

C(t) − ylS(t)

1 −A(1 + y2
l )

}

≡ −Aψ(t) ≡ −Aψl(t),

say, for x1 < t < x2 . We next prove that |ψ(t)| ≤ L/|yl| for a positive absolute
constant L provided that |yl| is large enough and x1 < t ≤ α . For the first term
(yl/

(

1 − A(1 + y2
l )

)

in ψ(t) , this is clear. Since |t − yl| < 2π/A , say, the same
holds for the second term in ψ(t) for those t for which |(C + zS)(t)| ≥ 1/3, say.
Suppose then that |(C + zS)(t)| < 1/3. Then |tS(t)| < 4/3, hence

|ylS(t)| = |tS(t) − (t− yl)S(t)| < 2π/A+ 4/3,
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and |C(t)− ylS(t)| < 2π/A+ 7/3. By the mean value theorem, there is a point t′

between yl and t such that

(C + zS)(t)

t− yl
=

(C + zS)(t) − (C + zS)(yl)

t− yl
= (C + zS)′(t′)

=
(

(1 − A)S + AzC
)

(t′).

Since |(C + zS)(t)| < 1/3, we have |(C + zS)(t′)| < 1/3 for any such t′ (since
yl < t ≤ α), so that |t′S(t′)| < 4/3, |S(t′)| < 4/(3|t′|) , |C(t′)| > 1/2, say, and so

∣

∣

(

(1 −A)S +AzC
)

(t′)
∣

∣ ≥ |A| |yl| |C(t′)| − |1 −A| |S(t′)|

> |A| |yl|/2 − 4|1 −A|/(3|t′|) > 1,

say. Hence
∣

∣

∣

∣

t− yl

(C + zS)(t)

C(t) − ylS(t)

1 − A(1 + y2
l )

∣

∣

∣

∣

= O(1/y2
l ).

This completes the proof of |ψ(t)| ≤ L/|yl| . Similarly we see that |ψl+1(t)| ≤
L/|yl+1| for α < t < yl+1 .

Now (9.4) implies, after multiplying both sides of (9.4) by α1−(a/A) , that

0 =

∫ α

yl

S0(x)

[

(C + zS)(x)

α

]((a/A)−1)(1−1/(1−A(1+y2
l )))

exp

{

( a

A
− 1

)

∫ x

α

Aψl(t)

}

dx

+

∫ yl+1

α

S0(x)

[

(C + zS)(x)

α

]((a/A)−1)(1−1/(1−A(1+y2
l+1

)))

× exp

{

( a

A
− 1

)

∫ x

α

Aψl+1(t)

}

dx.

Note that by our choice of α , we have (C + zS)(α) = α .
Suppose that 0 < ε < 1. Clearly there is a large positive integer l0 such that

if l ≥ l0 then, since the above integral equals zero, we have

(9.5)

∣

∣

∣

∣

∫ yl+1

yl

S0(x)|S(x)|(a/A)−1 dx

∣

∣

∣

∣

< ε/|A|.

Write Ayl +B = lπ+ δl , where δl → 0 as |l| → ∞ . (Then Aα+B = (l+1/2)π .)
Note that l is even (since C + zS > 0 on (yl, yl+1) and A > 0) and large but
otherwise arbitrary. Changing variables in (9.5) we obtain

(9.6)

∣

∣

∣

∣

∫ π+δl+1

δl

sin

(

(A− a)(x+ lπ −B)

A
+B − b

)

| sinx|(a/A)−1 dx

∣

∣

∣

∣

< ε.
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We find that
(9.7)

lim
l→∞
l even

∫ π

0

sin
((

1 − (a/A)
)

(x−B) +
(

1 − (a/A)
)

lπ +B − b
)

| sinx|(a/A)−1 dx

= lim
l→∞
l even

∫ π

0

{

sin
((

1 − (a/A)
)

(x−B) +B − b
)

cos
(

(a/A)lπ
)

− cos
((

1 − (a/A)
)

(x−B) +B − b
)

sin
(

(a/A)lπ
)}

(sinx)(a/A)−1 dx = 0.

We may deal with the intervals between successive zeros of C + zS on which
C + zS < 0 in the same way. We find that
(9.8)

lim
l→∞
l odd

∫ π

0

sin
((

1 − (a/A)
)

(x−B) +
(

1 − (a/A)
)

lπ +B − b
)

| sinx|(a/A)−1 dx

= lim
l→∞
l odd

∫ π

0

{

sin
((

1 − (a/A)
)

(x−B) +B − b
)

cos
(

(a/A)lπ
)

− cos
((

1 − (a/A)
)

(x−B) +B − b
)

sin
(

(a/A)lπ
)}

(sinx)(a/A)−1 dx = 0.

If a/A is irrational then there is a subsequence of even integers l → ∞ along
which cos

(

(a/A)lπ
)

→ 1 (so that sin
(

(a/A)lπ
)

→ 0) and another subsequence

along which sin
(

(a/A)lπ
)

→ 1 (so that cos
(

(a/A)lπ
)

→ 0). This shows that

(9.9)

∫ π

0

sin
((

1 − (a/A)
)

(x−B) +B − b
)

(sinx)(a/A)−1 dx

=

∫ π

0

cos
((

1 − (a/A)
)

(x−B) +B − b
)

(sinx)(a/A)−1 dx = 0.

We now use the formula due to Cauchy ([1, pp. 41–89], [6, p. 158]), also quoted by
Hellerstein, Shen and Williamson [2, (3.15), p. 326], which states that for γ > 0,

(9.10)

∫ π

0

(sinγ−1 t) exp
{

i[(γ − 1)t+ δ ]
}

dt =
π

2γ−1
exp

{

i[π(γ − 1)/2 + δ ]
}

6= 0.

We apply this with γ = a/A and δ = −(B − b) −
(

(a/A) − 1
)

B and get a
contradiction since the integral ought to vanish by (9.9) but it does not, by (9.10).

If a/A is rational but not an integer then there are only finitely many distinct
pairs

(

cos
(

(a/A)lπ
)

, sin
(

(a/A)lπ
))

. Thus (9.7) and (9.8) imply that
(9.11)

cos
(

(a/A)lπ
)

∫ π

0

sin
((

1 − (a/A)
)

(x−B) +B − b
)

(sinx)(a/A)−1 dx

− sin
(

(a/A)lπ
)

∫ π

0

cos
((

1 − (a/A)
)

(x−B) +B − b
)

(sinx)(a/A)−1 dx = 0.
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for all l , both even and odd. Taking real and imaginary parts in (9.10) and
combining the result with (9.11) we obtain (after dividing by π/2(a/A)−1 )

(9.12)

sin
(

π
(

(a/A) − 1
)

/2 − (B − b) −
(

(a/A) − 1
)

B + (a/A)lπ
)

= cos
(

(a/A)lπ
)

sin
(

π
(

(a/A) − 1
)

/2 − (B − b) −
(

(a/A) − 1)B
)

+ sin
(

(a/A)lπ
)

cos
(

π
(

(a/A) − 1
)

/2 − (B − b) −
(

(a/A) − 1
)

B
)

= 0

for all l . This is possible only if (a/A)l is an integer for all l , which is not the case
when a/A is not an integer. So it follows that a/A is an integer, as claimed. Write
p = (a/A) − 1. Since a 6= A , it follows that p is a positive integer. Furthermore,
it now follows from (9.12) that

(9.13) sin
(

πp/2 − (B − b) − pB
)

= 0.

We have derived these results assuming that A > 0. If A < 0 then a similar
argument yields the same results. The only difference is that if x1 and x2 are
successive simple real zeros of C + zS with x1 < x2 , corresponding to integers k
and k + 1 via the fact that (Axj +B)/π is close to an integer for j = 1, 2, then
k corresponds now to x2 , not x1 . We leave further details to the reader.

It follows from (9.13) that there is an integer q such that πp/2−(B−b)−pB =
−qπ and hence

(9.14) (B − b) + pB = πp/2 + qπ.

Thus

S0(z) = sin

(

(A− a)
(Az +B) −B

A
+B − b

)

= sin
(

−p(Az +B) + (B − b) + pB
)

= sin
(

−p(Az +B)
)

cos(πp/2 + qπ) + cos
(

−p(Az +B)
)

sin(πp/2 + qπ).

We obtain

S0(z) = (−1)q+1+(p/2) sin
(

p(Az +B)
)

if p is even(9.15)

and

S0(z) = (−1)q+((p−1)/2) cos
(

p(Az +B)
)

if p is odd.(9.16)

By (3.15), the function h6 = (C+zS)ph2 , which has only finitely many poles, has
at most two distinct non-real zeros (at the non-real zeros of C + zS , if any), and
is real of order at most 1, satisfies

(9.17) h′6 =
ph6S

C + zS
+ S0(C + zS)p.
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10. Conclusion of the proof in Case V

We continue our study of Case V. Suppose first that p is even. For simplicity
and definiteness, we assume that A > 0. An inspection of the arguments that
follow shows that a similar reasoning works if A < 0. Let x1 and x2 be successive
zeros of C + zS , with x1 < x2 , with |x1| , and hence |x2| , sufficiently large.
Suppose that sgn(C + zS) = σ ∈ {1,−1} on (x1, x2) . We denote a sufficiently
small positive quantity by ε , not necessarily the same at every occurrence. Suppose
that sgn h′6(x) = τ on (x1, x1 + ε) . Then clearly sgnh6(x) = τ . By (9.17),
sgnS0(x) = τ on this interval also, since

∣

∣(h6S)/
(

h′6(C + zS)
)
∣

∣ is comparable to
1/x2 close to x = x1 .

At x = x1 , we have S = −C/x so that writing Ax1 + B = lπ + ε1 for some
integer l we find that C(x1) ≈ (−1)l and Ax+B ≈ lπ − (1/x) close to x = x1 .
If x1 > 0, we then have lπ− (1/x) < lπ at x1 . Let the zeros of S0 on (x1, x2) be
y1 < y2 < · · · < yp (all zeros of S0 are simple). At these points, p(Ax+B) = µπ
where the integer µ increases (since A > 0) from pl to p(l+1)−1 for the integer
l found above, and Ax+B = µπ/p . In this case, y1 − x1 is very small and tends
to zero as x1 → ∞ . If x1 < 0 then x2 − yp > 0 is small and tends to zero as
x1 → −∞ . We shall go through the case x1 > 0 (and |x1| large) in detail and
then simply state what the corresponding results are for x1 < 0. As one can
understand from the above remark, the principal difference is that certain action
moves from the x1 -end of the interval (x1, x2) to the x2 -end when x1 is taken to
be negative.

The zeros of h6 on [x1, x2] coincide with the zeros of the function h2 and
hence with the zeros of h5 on this interval. Between consecutive zeros like that,
there is a zero of h′6 and a zero of h′5 (these might occur at the same point,
of course). By (9.2), these zeros of h′5 occur at the zeros of S0 , that is, at the
points yj . It follows that any interval (yj, yj+1) for 1 ≤ j ≤ p−1 contains at most
one zero of h6 . Similarly, the intervals (x1, y1] and [yp, x2) contain no zeros of
h6 since h5 and h6 vanish at x1 and at x2 . In particular, h6(y1) 6= 0 6= h6(yp) .
If h6(yj) = 0 for some j with 2 ≤ j ≤ p − 1, then by (9.17), h′6(yj) = 0. If
h6(yj) = 0 then inspection of multiplicities in (9.17) shows that yj is a zero of
h6 of order 2. Further, if h6(yj) = 0 then yj is a zero of h5 of order 2, and
if this happens for a certain j then neither h5 nor h6 can have any zeros on
(yj−1, yj)∪ (yj , yj+1) . Also we cannot have h6(yj) = h6(yj+1) = 0 for any j with
1 ≤ j ≤ p − 1. Considering the various possibilities that can arise, one can see
that h6 has at most p − 1 zeros on (x1, x2) , with due count of multiplicity. We
shall next show that in fact h6 has p− 1 zeros on (x1, x2) .

Now suppose that x1 is large and positive. Claim: the function h6 has a
zero on (x1, y2) , or otherwise a double zero at y2 . If h6 6= 0 on (x1, y2) , then
sgnh6 = τ on (x1, y2) . At x1 , we have (C + zS)′ =

(

1−A(1 + x2
1)

)

S whose sign
is σ since (C+ zS)(x1) = 0 and sgn(C + zS) = σ on (x1, x2) . Thus, since A > 0
and |x1| is large, we have sgnS(x1) = −σ . Further, C(x1) = −x1S(x1) so that
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sgnC(x1) = σ , and |C(x1)| ≈ 1 since |S(x1)| = |C(x1)/x1| ≈ 0. Incidentally, this
shows that σ = (−1)l . We have S(y1) = 0 since Ay1 + B = (plπ)/p = lπ . Thus
sgnS(x) = −σ on (x1, y1) and sgnS(x) = σ on (y1, x2 + ε) . By (9.17), we have
h′6(y1) = 0 since S0(y1) = S(y1) = 0. We may apply Lemma 1 to Ψ = h6 . This
shows that y1 is a simple zero of h′6 when |x1| is large enough.

If h6(y2) = 0 then h′6(y2) = 0 by (9.17) since also S0(y2) = 0. Considering
multiplicities in (9.17) we see that y2 must be a zero of h6 of order 2, being a
simple zero of S0 and not a zero of C+zS . In this case h6 cannot have any zeros
on (x1, y2) since they would be zeros of h5 also and since y1 is the only zero of
h′5 on (x1, y2) .

Suppose that h6(y2) 6= 0 (and that h6 has no zeros on (x1, y2)). Since
S0(y2) = 0, we have by (9.17)

(10.1)
h′6
h6

(y2) =
pS(y2)

(C + zS)(y2)
> 0.

Thus sgnh′6(y2) = τ = sgnh′6(x1 + ε) . So h′6 must have at least two zeros on
(x1, y2) , not only y1 but also some ζ1 6= y1 . But then by Lemma 1, h6 must
have a zero between ζ1 and y1 , and hence on (x1, y2) , as claimed. Considering
h5 as above we see that h6 has exactly one zero on (x1, y2) , which furthermore is
a simple zero of h6 and lies on (y1, y2) . This proves the Claim.

We prove by induction on j that for 1 ≤ j ≤ p − 1, the interval (yj , yj+1)
contains points ξj , ηj with h′6(ξj) = h6(ηj) = 0 and ξj ≤ ηj . (If h6(yj) = 0 for
some j , a simple modification is required, and we omit the details.) We have done
this for j = 1. In this case only we consider the zero of h′6 at y1 to substitute
for a zero on (y1, y2) . If y2 is a double zero of h6 then if substitutes for a zero
of h6 on (y1, y2) and on (y2, y3) and for a zero of h′6 on (y2, y3) . In this case
h6(y2) = 0, and therefore, we have proved our claim also for j = 2, and we have
sgnh6(x) = τ for x ∈ (y2, y2 + ε) .

If h′6 has two distinct zeros, say z1 < z2 , on (yj, yj+1) , then by (9.17) and the
fact that each of S , S0 , and C+ zS is non-zero and retains its sign on (yj , yj+1) ,
we see that h6(z1) and h6(z2) are non-zero and of the same sign. Choose z1 and
z2 to be consecutive (distinct) zeros of h′6 . By Rolle’s theorem there is at most
one zero of h6 on (z1, z2) with due count of multiplicity. Thus we find that h6

has no zeros on (z1, z2) . This contradicts Lemma 1 applied to Ψ = h6 when |x1|
is large enough. Also by Lemma 1, any zero z0 of h′6 on (yj, yj+1) is a simple
zero of h′6 when h6(z0) 6= 0, and if h6(z0) = h′6(z0) = 0 6=

(

S0(C+zS)p
)

(z0) then
(9.17) gives a contradiction.

By this and by earlier analysis, (yj , yj+1) contains at most one zero of each
of h6 and h′6 , and so there is exactly one zero. To get to the induction step, we
now assume that our claim has been proved up to a certain j with 1 ≤ j ≤ p− 2
(and we assume that p ≥ 4 for otherwise there is nothing more to prove). Thus
sgnh6(x) = sgnh′6(x) = (−1)jτ for x ∈ (yj+1, yj+1+ε) . Analogously to (10.1), we
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have (h′6/h6)(ym) > 0 for all m ≥ 2. Therefore either both h6 and h′6 have a zero
on (yj+1, yj+2) or neither function has any zeros there. To get a contradiction,
suppose that neither h6 nor h′6 vanishes on (yj+1, yj+2) so that then sgnh6(x) =
sgnh′6(x) = (−1)jτ for x ∈ (yj+1, yj+2) . By the induction assumption, there are
points t1, t2 with h′6(t1) = h6(t2) = 0 and with yj ≤ t1 ≤ t2 < yj+1 . We have
sgnS0 = (−1)jτ on (yj , yj+1) . Thus there is a unique point w ∈ (yj+1, yj+2) such
that S0(w) = (−1)j+1τ . So by (9.17), at z = w we have

sgn
(

ph6S + (−1)j+1τ(C + zS)p+1
)

= (−1)jστ.

Hence (−1)jστph6S − σ(C + zS)p+1 > 0 at z = w . Note that sgnS(w) = σ . By
the mean value theorem there is a point t ∈ (t2, w) with

(10.2) (−1)jτh′6(t) =
h6(w)(−1)jτ

w − t2
.

On the other hand, by (9.17),

(10.3) h′6(t) =
pS(t)h6(t)

(C + zS)(t)
+ S0(t)(C + zS)p(t).

The function (−1)jτh6 has positive derivative and hence is increasing on (t1, yj+2) .
Furthermore, this function is positive on (t2, yj+2) .

Suppose that t ∈ [yj+1, w) so that (−1)jτS0(t) ≤ 0. Then 0 < (−1)jτh6(t) <
(−1)jτh6(w) , and so combining (10.3) and (10.2) we obtain

1 <
(w − t2)pS(t)

(C + zS)(t)
.

Considering the relationship between C + zS , S , and S0 , we see that there is a
positive constant ε0 depending on p only such that σS(t) ≥ ε0 and σ(C+zS)(t) ≥
ε0t for any t ∈ [y2, yp] (recall that x1 > 0). Also

w − t2 ≤ w − yj ≤ yp − y1 ≤ (p− 1)2π/(pA) < 2π/A.

Thus

ε0x1 ≤ ε0t ≤ σ(C + zS)(t) ≤ pσS(t)(w − t2) ≤ p(w − t2) < (2πp)/A,

which gives a contradiction when x1 is large enough.
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Hence we must have t ∈ (t2, yj+1) and so (−1)jτS0(t) > 0. Then, since we
still have 0 < (−1)jτh6(t) < (−1)jτh6(w) , we obtain by (10.2) and (9.17) that

1

2

(−1)jτh6(w)

(2π/A)
<

1

2

(−1)jτh6(w)

w − yj
<

1

2

(−1)jτh6(w)

w − t2

< (−1)jτh6(w)

(

1

w − t2
−

pS(t)

(C + zS)(t)

)

= (−1)jτ

(

h′6(t) −
pS(t)h6(w)

(C + zS)(t)

)

< (−1)jτ

(

h′6(t) −
pS(t)h6(t)

(C + zS)(t)

)

= (−1)jτS0(t)(C + zS)p(t) < (−1)jτKtpS0(t)

where we note, as above, that pS(t)/(C + zS)(t) is comparable to 1/x1 . Here
K > 0 is a constant depending only on p . Now we get

(−1)jτh6(w) < (−1)jτK1t
pS0(t) < K1w

p

where K1 > 0 depends only on p and A . Furthermore, by (9.17),

(−1)jτh′6(w) =
(−1)jτpS(w)h6(w)

(C + zS)(w)
+ (−1)jτS0(w)(C + zS)p(w)

so that
0 < (−1)jτσ(C + zS)(w)h′6(w)

= (−1)jτσpS(w)h6(w) + (−1)jτσS0(w)(C + zS)p+1(w)

< K1pw
p − |(C + zS)(w)|p+1.

But |(C + zS)(w)| > ε0w . Hence (−1)jτh′6(w) < 0, which is a contradiction.
This proves our claim that each of h6 and h′6 has a zero on (yj+1, yj+2) . Hence
h6 has exactly p− 1 zeros on (x1, x2) , with due count of multiplicity.

These p−1 zeros of h6 are also zeros of c+zs , which has exactly p+1 zeros,
all simple, on (x1, x2) when |x1| is large enough (see (3.13)). These zeros occur
at points where s = −c/z is close to zero. By (9.14),

s = sin(az + b) = sin
(

(p+ 1)(Az +B) − (p+ 1)B + b
)

= sin
(

(p+ 1)(Az +B) −
(

q + (p/2)
)

π
)

= (−1)q+(p/2) sin
(

(p+ 1)(Az +B)
)

.

Thus the zeros of c + zs are close to the points where Az + B = l0π/(p+ 1) for
some integer l0 . The points yj are points where Az + B = µπ/p , and here µ
varies from lp to (l + 1)p− 1 for some integer l . Thus at y1 , we have Az +B =
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(

(p + 1)l
)

π/(p + 1) so that y1 is close to a zero of c + zs . As we have seen, we
have Ax1 +B ≈ lπ − (1/x1) so that

(c+ zs)(x1) = (−1)q+(p/2)
(

(−1)l(p+1) + x1(−1)l(p+1)
(

−(p+ 1)/x1

))

+ o(1)

= −p(−1)q+(p/2)+l(p+1) + o(1) = −pτ(−1)l + o(1) = −pτσ + o(1).

Here we have used the fact that σ = (−1)l and that τ = (−1)q+1+(p/2)+pl+1 , which
follows since by (9.15), we have sgnS0(x) = (−1)q+1+(p/2) sgn sin

(

p(Az+B)
)

= τ
on (x1, x1 + ε) . The o(1)-term tends to zero as |x1| → ∞ . We further have
(c+zs)′(x1) =

(

(1−a)s+azc
)

(x1) = ax1(−1)q+(p/2) cos
(

(p+1)(Ax1+B)
)

+o(1) =

(−1)q+(p/2)+(p+1)l +o(1) = τ(−1)l +o(1) = τσ+o(1). We have a > 0 since A > 0
and a/A > 0. Thus sgn(c + zs)′(x1) = − sgn(c + zs)(x1) . Hence the zero of
c + zs which is close to both x1 and y1 is slightly greater than x1 . We have
(c + zs)(y1) = cos(ay1 + b) = (−1)q+(p/2)+(p+1)l = τσ = − sgn(c + zs)(x1) . We
conclude that c + zs has a zero on (x1, y1) . This cannot be a zero of h6 as we
have seen above. The next p− 1 zeros of c+ zs lie on the intervals (yj, yj+1) for
1 ≤ j ≤ p−1 so that they must be zeros of h6 . When |x1| is large enough, c+ zs
has exactly p+ 1 zeros on (x1, x2) . There is one more zero of c+ zs on (x1, x2) .
It lies in (yp, x2) and is not a zero of h6 . We may express this by saying that
if for each large l , the two zeros of c+ zs immediately smaller than the value of
x corresponding to Ax + B = lπ are not zeros of h6 while all other sufficiently
large positive zeros of c + zs are also zeros of h6 . Let us denote the two zeros
mentioned by tl and zl , where tl < zl . As l → ∞ , we have

Atl +B = lπ +O(1/l) and Azl +B =
(

l − (p+ 1)−1)π +O(1/l
)

.

Still assuming that A > 0 and that p is even, suppose that x1 < x2 < 0 and
that |x2| is large enough. Then an analysis similar to the above shows that at the
zeros y1 < · · · < yp of S0 on (x1, x2) , we have Ayj +B = (π/p)(lp+ j) for some
negative integer l , and we now have S = S0 = 0 at yp (instead of y1 ), and for
each sufficiently large negative integer l , the two zeros of c+zs immediately larger
than the value of x corresponding to Ax + B = lπ are not zeros of h6 while all
other sufficiently large negative zeros of c+ zs are also zeros of h6 . Let us denote
the two zeros mentioned by tl and zl , where zl < tl . (We have zl < x1 < tl < y1 .)
As l → −∞ , we have

Azl +B = lπ +O(1/l) and Atl +B =
(

l + (p+ 1)−1)π +O(1/l
)

.

Thus

(10.4) zl + z−l = −2B/A+O(1/l) and tl + t−l = −2B/A+O(1/l)

as l → ∞ .
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Since h6 is a real meromorphic function with only finitely many poles and
of order at most 1 and since h6 has the zeros described above, we conclude that
there is a real number α and a real rational function R , not identically zero, such
that

(10.5) h6 = eαz(C + zS)p+1(c+ zs)R/h7 ≡ ϕ/h7

where

(10.6) h7(z) =

∞
∏

l=l0

(

(

1 −
z

zl

)(

1 −
z

z−l

)(

1 −
z

tl

)(

1 −
z

t−l

)

)

.

It is easily seen that the infinite product for h7 converges and defines a real entire
function of order 1 when the factors are grouped as above (it suffices to pair zl

and z−l together, and separately tl and t−l together). Now (9.17) can be written
as

ϕ′

h7
−
ϕh′7
h2

7

= S0(C + zS)p +
ϕ

h7

pS

C + zS
.

At a point where S0 = 0, this gives

(10.7)

h′7
h7

=
ϕ′

ϕ
−

pS

C + zS

= −
pS

C + zS
+ α+

R′

R
+ (p+ 1)

(1 − A)S + AzC

C + zS
+

(1 − a)s+ azc

c+ zs
.

Let the notation be as before and consider (10.7) at z = y1 so that S0 = 0,
as required, where y1 is large and positive. Thus Ay1 + B = l0π for some large
integer l0 . Now y1 is close to the point x1 at which C+zS = 0 and S = O(1/x1) ,
and close to the common zero zl of h7 and c+ zs . Also S(y1) = 0. We obtain

h′7
h7

(y1) = (p+ 1)Ay1 +
1

y1 − zl
+O(1)

where the O(1)-term remains bounded as x1 (and hence y1 ) tends to infinity. On
the other hand, the definition of h7 together with (10.4) allows us to estimate

h′7
h7

(y1) =
1

y1 − zl
+

1

y1 − tl
+O(1).

Now y1 → ∞ and y1 − tl → π/
(

A(p+ 1)
)

as x1 → ∞ . Thus we clearly obtain a
contradiction whenever x1 is sufficiently large. This contradiction shows that the
case when p is even and A > 0 cannot occur. The case when p is even and A < 0
is dealt with in the same way, and we omit the details.
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If p is odd then by (9.16), we have S0(z) = (−1)q+((p−1)/2) cos
(

p(Az + B)
)

,

s(z) = (−1)q+((p+1)/2) cos
(

(p+ 1)(Az + B)
)

, and c(z) = (−1)q+((p−1)/2) sin
(

(p+

1)(Az+B)
)

for some integer q . We argue as above on an interval (x1, x2) where
C + zS retains its sign. The location of the zeros of S0 in this interval is now
different but the number p of zeros is the same. In the particularly simple case
when p = 1, the function h6 has no zeros on (x1, x2) and we may use h7 = c+ zs
in (10.5). Then S0 ≡ (−1)qC , and (10.5) and (9.17) imply first that α = 0 in
(10.5) and then yield a contradiction, considering sequences of real points tending
to ±∞ at which S = 0 or C = 0.

Suppose that p is odd and p ≥ 3, A > 0. The argument is analogous to the
one used when p is even, up to (10.6). However, the zeros yj of S0 on (x1, x2) are
now bounded away from x1 and x2 , and so are the zeros of c+zs and hence those
of h6 . Therefore a consideration of (h′7/h7)(y1) as in the case when p is even does
not seem to help. Instead, we may argue as follows. When |x1| is large, the zeros
of c + zs and hence those of h6 occur closer and closer to points where s = 0
since s = −c/z at these points. Indeed, since (c+ zs)′ = −c(1− a− az2)/z when
c+ zs = 0, the mean value theorem and the monotonicity of (c+ zs)′ between a
zero of c+ zs and the nearest zero of s (where c+ zs = c = ±1, (c+ zs)′ = acz )
imply that the distance between these zeros is O(1/z) . When |x1| is large enough,
the zeros of c + zs that are zeros of h7 are close to those zeros of s at which
Az + B = kπ ± π/

(

2(p + 1)
)

for all integers k with |k| sufficiently large. Write

β = sin
(

π/
(

2(p + 1)
))

. Comparing the Hadamard product representations of h7

and of sin
(

Az + B + π/
(

2(p + 1)
))

sin
(

Az + B − π/
(

2(p + 1)
))

= S2 − β2 and
considering (10.5), we conclude that there are a real rational function R1 and a
real number α1 such that if we define

(10.8) h8 =
R1e

α1z(C + zS)p+1(c+ zs)

S2 − β2
,

then for any small ε > 0, we have

(10.9) h6(x)/h8(x) → 1 and (h′6/h6)(x) − (h′8/h8)(x) → 0

as x→ ±∞ outside ε-neighbourhoods of the zeros of S2 − β2 .
We obtain from (9.17), (10.5), and (10.8)–(10.9) that

(10.10)

h′8
h8

−
h′6
h6

= α1 +
R′

1

R1
+ (p+ 1)

(1 − A)S + AzC

C + zS
+

(1 − a)s+ azc

c+ zs

−
2ASC

S2 − β2
−

pS

C + zS
−
h8

h6

S0(S
2 − β2)

R1eα1z(C + zS)(c+ zs)
→ 0

as x→ ±∞ outside ε-neighbourhoods of the zeros of S2−β2 . Considering (10.10)
at the points where C = 0, as we may, so that also S0 = c = 0, we see, as x→ ∞ ,
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that α1 = 0. Next, we may take x = yj so that S0 = 0, and noting that the
functions C/S, s, c always take the same values at x = yj (depending on j but
independent of x1 ), we obtain, as x→ ∞ , that

(10.11)
(p+ 1)AC

S
+
ac

s
−

2ASC

S2 − β2
= 0 at x = yj

for all j with 1 ≤ j ≤ p . This is trivially true for j = (p + 1)/2 since then
C = c = 0. But since p ≥ 3, there are other values of j to consider also. A
calculation based on trigonometric identities and the fact that a = (p+1)A shows
that when C 6= 0, (10.11) is equivalent to

(10.12)
p+ 1

p
=

sin2
( π

2p
(2j − 1)

)

β2
, for 1 ≤

∣

∣

∣
j −

p+ 1

2

∣

∣

∣
≤
p− 1

2
.

If p = 3 and j = 1, (10.12) reads 4/3 = (1/4)/ sin2(π/8), which is false. If p ≥ 5,
(10.12) cannot be satisfied since sin2

(

π(2j−1)/(2p)
)

will not take the same value
for all j . This gives a contradiction, showing that the case when p is odd and
A > 0 cannot occur. The case when p is odd and A < 0 is dealt with in the same
way, and we omit the details. This completes our treatment of Case V.

This completes the proof of Theorem 1 when m = 0. Hence the proof of
Theorem 1 is now complete.

11. Proof of Lemma 1

Let the assumptions of Lemma 1 be satisfied. If Φ has only finitely many
zeros, then so does Ψ′ , so that the conclusion of Lemma 1 is obtained trivially
by taking R to be sufficiently large. Hence we may assume that Φ has infinitely
many zeros.

We have

Ψ′ =
PΦ′ − P ′Φ

P 2
.

Choose R0 > 1 so that |a| < R0 whenever P (a) = 0 or P (a) = ∞ . Let x1 and
x2 be two consecutive zeros of Ψ and hence of Φ such that x1 < x2 and |xj | > R0

for j = 1, 2. By Rolle’s theorem, Ψ′ has at least one zero on (x1, x2) . The zeros
of Ψ′ on (x1, x2) coincide with those of

Φ′

Φ
−
P ′

P

on (x1, x2) . If there are at least two such zeros, with due count of multiplicity,
then (x1, x2) contains a point x3 at which (Φ′/Φ)′ − (P ′/P )′ vanishes. There is
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a positive constant K such that |(P ′/P )′(x)| < K/|x|2 for |x| > R0 . Now Φ′/Φ
has no zeros on (x1, x2) and tends to ∞ and −∞ at the endpoints. We can write

Φ(z) = Azme−az2+bz
∞
∏

j=1

(

1 −
z

aj

)

ez/aj

where A is a non-zero real constant, m is a non-negative integer, a ≥ 0, b is real,
and the aj are non-zero real numbers with

∑

j a
−2
j <∞ . Thus

(P ′

P

)′

(x3) =
(Φ′

Φ

)′

(x3) =
−m

x2
3

− 2a−

∞
∑

j=1

1

(x3 − aj)2
< −

∞
∑

j=1

1

(x3 − aj)2
< 0.

We obtain a contradiction if we can show that

(11.1)
K

x2
<

∞
∑

j=1

1

(x− aj)2

whenever |x| is large enough and applying this to x = x3 .
Suppose that there are infinitely many positive numbers aj . Then (11.1)

holds for a given x > 0 provided that the number of zeros aj on (0, x) is larger
than K . We argue similarly when x < 0 if Φ has infinitely many negative zeros.
Suppose then that Φ has infinitely many positive zeros but only finitely many
negative zeros, if any, and that x < 0. To prove (11.1), we may assume that all
the aj are positive. Choose a positive integer N > K . For any j with 1 ≤ j ≤ N ,
there is ζj < 0 such that x−2 < (x− a2j−1)

−2 + (x− a2j)
−2 for all x < ζj . Thus

(11.1) holds for all x < min{ζj : 1 ≤ j ≤ N} . A similar argument works if x > 0
and if Φ has infinitely many negative zeros but only finitely many positive zeros.
We have now proved that (x1, x2) contains exactly one zero of Ψ′ , with due count
of multiplicity, provided that the consecutive zeros x1 and x2 of Φ are of the
same sign and that |x1| and |x2| are large enough, say |x1| > R and |x2| > R ,
where R > R0 .

The same argument shows that if Φ has infinitely many negative zeros but
only finitely many positive zeros, then Ψ′ can have at most one zero on (R1,∞)
for a suitable R1 > 0, and hence no zeros on (R2,∞) for some R2 > 0. Choosing
R > R2 in this case we do not have to consider the possible existence of zeros of
Φ between consecutive positive zeros of Ψ′ . An analogous conclusion is obtained
if Φ has infinitely many positive zeros but only finitely many negative zeros.

Suppose then that x1 and x2 are consecutive zeros of Ψ′ with |xj| > R for
j = 1, 2. Suppose first that Φ vanishes at both x1 and x2 , or at neither x1

nor x2 . We claim that (x1, x2) contains exactly one zero of Φ, with due count of
multiplicity, provided that |x1| and |x2| are large enough. If (x1, x2) contains at
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least two zeros of Φ, with due count of multiplicity, then it follows from Rolle’s
theorem that Ψ′ has a zero on (x1, x2) , which is against our assumption that
x1 and x2 are consecutive zeros of Ψ′ . Thus (x1, x2) contains at most one zero
of Φ. If Φ does not vanish anywhere on (x1, x2) , then let x3 be the largest zero
of Φ with x3 ≤ x1 , and let x4 be the smallest zero of Φ with x2 ≤ x4 . (By
the previous paragraph, we may assume that x3 and x4 exist with x4 < −R or
x3 > R .) By what we have proved already, (x3, x4) contains exactly one zero
of Ψ′ , with due count of multiplicity. This gives an immediate contradiction if
Φ(x1)Φ(x2) 6= 0 (so that x3 < x1 < x2 < x4 ). If Φ(x1) = Φ(x2) = 0 then
x3 = x1 and x4 = x2 . But then Ψ′ has a zero on (x1, x2) by Rolle’s theorem,
which gives a contradiction. Thus Ψ′ has exactly one zero on (x1, x2) with due
count of multiplicity, as claimed. Suppose then that exactly one of x1 and x2 is
a zero of Φ. If Φ has a zero on (x1, x2) then by Rolle’s theorem, Ψ′ has a zero
on (x1, x2) , which gives a contradiction. Hence Φ has no zeros on (x1, x2) in this
case. This completes the proof of Lemma 1.
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