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Abstract. Let S be a Riemann surface with genus g > 1, let ¢ be the hyperelliptic
involution (i.e. ¢ is a conformal involution such that S/{p) has genus 0) and let o be a symmetry
of S (i.e. o is an anticonformal involution of S). We obtain a finite set of real numbers which
determines a canonical fundamental region of the NEC groups uniformizing S/{p,c). The real
numbers obtained in this way are used to parametrize the strata of equisymmetric hyperelliptic
Riemann surfaces in the moduli space.

1. Introduction

A Riemann surface S is said to be hyperelliptic if and only if S admits an
automorphism ¢ € Aut®(S) such that ¢? is the identity and the quotient S/{¢)
has genus 0. The automorphism ¢ is called the hyperelliptic involution. A Rie-
mann surface S is said to be symmetric if and only if S admits an automorphism
¢ € Aut™(S) with ¢? the identity. In this case ¢ is a symmetry of S and
X = 5/(1) is a Klein surface. If the Riemann surface S is both hyperelliptic and
symmetric then X is a hyperelliptic Klein surface.

Let p be the genus of S. If p > 2, then S and X can be expressed as
quotients of the hyperbolic plane D over surface groups F' and I', respectively, F
being a Fuchsian group of genus p and I' a non-Euclidean crystallographic group
(NEC group) of algebraic genus p.

Hyperelliptic Klein surfaces with boundary are characterized by means of
NEC groups in [BEG| and non-orientable Klein surfaces without boundary in
[BBGM].

The aim of this work is to parametrize the strata of the moduli space of
hyperelliptic and symmetric Riemann surfaces S according to the different groups
of automorphisms of the Klein surface X . It is done by means of the construction
of a hyperbolic polygon R with right angles (unless one of them at most). R is
a fundamental region for an NEC group I" such that I'/I" is isomorphic to the
group of automorphisms of X .
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2. Preliminaries on NEC groups

A non-Euclidean crystallographic group (NEC group in short) I" is a discrete
subgroup of isometries of the hyperbolic plane D with compact quotient D/T.
Each NEC group T' has a signature o that has the following form [M]

(2.1) o (g;t;[ma,...,m], {C1,...,Ci}),

where C; = (n1,...,n4,), C; are called cycle-periods, n;; link-periods and m;
proper periods.

The numbers in o are non-negative integers; m; and n;; are greater than
or equal to 2. The number ¢ is the topological genus of the surface quotient
D/I'. This surface is orientable or not according as the sign in o is ‘4’ or ‘—’
respectively. The algebraic genus of I is p = ng + k — 1, where n = 2 in the
orientable case or 7 = 1 otherwise.

If r=0or k=0, we write in o[—| or {—}, respectively. If the number s; is
zero for some ¢ we denote C; by (—).

We consider a Fuchsian group F' as a particular case of NEC group. Since
every element of F' is an orientable isometry of the hyperbolic plane, F' has the
following (NEC) signature:

(g;+;[ma,....m), {=}).

The signature o determines a canonical presentation of the group T' [M], [W]
which is given by the generators

T, 1=1,...,m,
€, 1=1,...,k,
Cij, 1=1, ,]{3, J =V, , Si,
ag, bi7 1= 17 » 9, if Sign ‘+77
d’u 1= 17 » 9, lf Sign ‘_,7
with the relations
" =1, i=1,...,m7,
i1 =y = (cij_rciy)" =1, i=1,....k j=1,...,8;,
e; Cio€iCis; = 1, 1=1,...,k,

k g
T; H €; H[ai, bi] =1 if sign + or
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The area of T' is the area of each fundamental region of I' and it is calculated by

u(T) _27T<77g—|—k—2—|—z<1——> 22(1__))

11
A signature o corresponds to an NEC group TI' if and only if u(I") > 0.

If T is a subgroup of IV with index N then the following relation between
the areas holds

u(T) = Np(I).
An NEC group I' is a surface group if it has the signature
(g: % =1 A=) - (),

and in this case we write the signature as

(2.2) (g: £ [=1{()"D).
If £ =0 and the sign in ¢ is ‘+’ then I' is a Fuchsian surface group.
Let ' be an NEC group with signature o. A canonical fundamental region
for I found by Wilkie [W] is a hyperbolic polygon W with the sides labelled
E1,€ o3 &y L1, Y105 - -+ > V1sys Ehn e v oy Eky VEOy - - - 5 Vhsps €k
a1, 01,04, Br, - -, g, By 0y, By,

if sign ‘+’ and

517517-~-,57"75:«;517710%--77181752%--7€k77k07-",7k5k75;g;517 >1k7" 5975;7
if sign ‘—’. The sides are identified in the following way

xz(£/>:§7n i:]-v"wru
87;({-?;):87;, i:1,...,]€,

Cij(’)/ij):’yij, 7= ,...,]{Z,j:O,...,Si,
ai<a;):ai7 i = sy 9,
(ﬁ) /g717 i: 7"'797
d’L((Sz*):(SM i:]-v"'agu

where ‘*’ denotes a non-orientable transformation.
The angles in the vertices of W are

<§1,§;>:27T/m2, izl,...,T,
(€i,7i0) + (Vis;» €5) = m, i=1,...,k,
and without a loss of generality we may assume that both angles are equal to %W,
<’Yij—1,’)/ij>:7r/nij, i:]-v"'ak7j:17"'7si7

and the sum of the remaining angles is 27. We may assume W as a convex
polygon, i.e. there is not an angle in W greater than =.
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3. Surfaces

A Klein surface (a compact surface equipped with a dianalytic structure) of
algebraic genus p > 2 can be expressed as D/I" where I' is an NEC group with
signature (2.2).

A group G of order N is a group of automorphisms of X if and only if
there exists an NEC group I containing I" as a subgroup of order N such that
I/~ G. Let S = D/F a Riemann surface of genus p > 2. S is hyperelliptic
if and only if there exists a Fuchsian group F; containing F' as a subgroup of
index 2 with signature

(0;+; 2777, {-1),

where 22712 denotes 2p + 2 proper periods equal to 2 each one.

Let X = D/T" be a Klein surface where I' has signature (2.2). X is hyperel-
liptic if and only if there exists an NEC group I'; containing I' as a subgroup of
index 2, I'; having one of the following signatures [BEG], [BBGM]:

i) | (0;+;[-], {(2%")}) if g =0, in this case k > 3.

i) | (0;4;297%], {(=)}) |if g >0, k#0,sign‘+’, then k=1 or 2.

iii) | (0;45129], {(22%)}) |if ¢ >0, kE#0, sign ‘—".

iv) | (0;+;[29], {(—)}) if g>3, k=0, sign ‘—".

v) | (1;—=5[29], {-} if ¢g>3, k=0, sign ‘—’ in this case g must be even.
Table 1

The case v) corresponds to hyperelliptic surfaces admitting symmetries with-
out fixed points, i.e. these surfaces correspond to purely imaginary curves. We are
interested in the other cases because they provide real algebraic curves.

Let S = D/I' a hyperelliptic and symmetric Riemann surface and let ¢ be
a symmetry. Then X = S/(1) is a hyperelliptic Klein surface. Let G =T"/T =
Aut(X) with order 2N. We have the following diagram that relates the different
groups.

The signatures of IV appears in the following table, where p = ng + k — 1
[BBM], [BBGM]. The cases of the second column are as Table 1.
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a(T) a(Ty) o(T) Aut(X) | Case
9=0, i) (0; +; [N], {(2*"M)}), ZyxZy | 1
k>3 Nk, N#k
0+ [, {(3 N, 22 M)}) Dyjp xZy | 2
N even, N | 2k
g#0, | i (03 +; 2N, 2¢/N] {(-)}) Zoy 3
k=1,2 N|p, N#p
sign ‘4’ (0;+; [V, 2 FD/N] {()}), ZN X7y 4
N|p+1l, N#4p+1
(05 +; 2], {(NV,2°)}), Dy 5
$s=2p/N+2—2r, N even, N |2p
(0;+; 277, {(IV/2,2%)}), Dyjy xZy | 6
s=2(p+1)/N+2—2r, N even, N|2(p+1)
g#0, iii) (0;+; 2N, 2], {(2)}), Zon 7
k+#0, s=02g+2k—-2)/N—-2r, s#0, N|g—1, N |k
sign‘ —’ (0; 43 [N, 27, {(2%)}, Zy X Zo 8
s=(29+2k)/N—-2r, s#0, N|g, N |k
(05 +; 2], {(NV,2°)}), Dy 9

s=(29+2k—2)/N+2—2r,
N even, N |2k, N|2(g—1)

05+ [27],{(N/2,2°)}), Dyj xZy | 10
s=(29g+2k)/N+2—2r, N even, N |2k, N|2g
g>3, iv) (0; +; [N, 29/N {(—)}), Zon 11
k=0, N|g—1, N#g—1,or N|g, N#g, N even
g odd, (05 +; [2N, 207DV {(=)}), Zy xZy | 12
sign ¢ —’ N|g, N#g, N even, N #2
(0;+; [27], {(N/2,2%)}), Dy 13

s=2g/N —2r+2,
N|2(g—1), N evenor N |2g, N #4t

(05 +5 2], {(N,29)}), Dyj xZy | 14
s=2(g—1)/N—-2r+2, N|2g,4|N.

Table 2

These fourteen signatures can be put in five different classes:
A s (054 [N] {220,
Bt (05 [ {(N/2, 225/ 42)))
C ¢ (0545 [M, 207, {(—)}),
D (054 20 {(M,29)}),
E (054 [M,2°],{(2°)})
which correspond to the cases from Table 2:

1
2

Y

Y
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3,4, 11 and 12,

5, 6,9, 10, 13 and 14,

7 and 8,
respectively, and M, a, and 3 take different values according to the different
cases.

For each one of these signatures we will construct a hyperbolic polygon R that
will be a fundamental region for the group IV and the lengths of some sides of R
will parametrize the strata of the moduli space of the hyperelliptic and symmetric
Riemann surfaces S'.

About the general construction of a right-angled hyperbolic polygon, with n
sides, see [CM].

4. Surfaces and polygons

Class A. For this class I has the following signature:
(4.1) (0;+; [N, {(2**/™)})

where N | k and N # k.
We take as parameters the lengths of the sides v1,...,7vs—1, where s = 2k/N,
and we construct a right-angled polygon Pj4

The length of the side A is determined by ~1,...,7s—1. Now we construct a
hyperbolic pentagon with an angle o = 27 /N and four right angles, such that the
length of the opposite side to the angle a be A\ and the two sides of the angle «
be equal. In this condition the pentagon is unique. We join this pentagon with
the polygon P, by pasting the sides ‘A’ and so we obtain a polygon R4 that is
a fundamental region for the group I with the signature (4.1). See next figure.

Class B. The signature of I is in this case
(4.2) (05 45 [, {(V/2, 22V +2)}),

where N is even and N | 2k.
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We take as parameters the lengths of the sides 72, ...,vs—1, where s = 2k/N+
2, and we construct the right-angled polygon Pg. See next figure.

Now we construct a hyperbolic quadrilateral with an angle o = 27/N and
three right angles, such that the lengths of the opposite side of o be A. This
quadrilateral is unique. We join the quadrilateral with Pp pasting the sides la-
belled ‘A’ and we obtain the following fundamental region Rp for a group IV with
signature (4.2).

Class C. Let IV be an NEC group with signature

(4.3) (054 [M, 2], {(-)}),
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where M and r take different values according to the different cases from Table 2.
Let W a fundamental region of Wilkie for I'" where Z:i& 0; =2m.

We draw the orthogonal lines to ~ from the points X;, ¢ =0,1,...,r. The
side 7 becomes divided in different parts labelled ~,71,...,vr+1, according to
the ‘opposite’ angle 6;. Let \; be the length from X; to ~ as it is shown in the
next figure

We cut by A, and we transform the region W in the new region

(W - ()\7“7 fra fylna ’YT—H) U xr—!—l()\ra 57"7 §7I~7 ’77“—!—1))'
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In the next step we cut the new region by \._; and apply z,_; in a similar
way and so on. In the last step we obtain the polygon Pc that is a fundamental
region for the group I

This region is a hyperbolic polygon with 2r + 3 sides, an angle « = 27/M
and the remaining angles are equal to %71’. The lengths of the sides are Ay (two
sides), 2X\; (i=1,...,7), v (i=1,...,r) and v + Vrt1-

Like we saw for polygons of Class A, we may construct a hyperbolic right-
angled polygon taking as parameters 2Ai, 72, 2M\2,73,...,2A,, and a hyperbolic
pentagon with four right angles and the fifth angle equal to «.

Class D. Let I” be an NEC group with signature
(4.4) (0545 27, {(M,2%)}),

where M,r > 0 and s > 0 take different values according to the respective cases
from Table 2.
A Wilkie fundamental region in this case is W where Z:;l 0; = 2m.

We draw the orthogonal lines to ~¢ from X;, ¢ = 1,...,r. Let us denote
the distance from X; to 79 by A;. The side vy becomes divided in several parts
labelled 77,73, ...,7,,1, according to the ‘opposite’ angle 6;.
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In a similar way to Class C we cut by A, and we transform the region W in
the new region

(W - (5;17 €, 7T7 AT)) U xr(i;w €, 7T7 >\7')

Repeating this process for x,_1,z,._o,...,x1 we obtain the polygon Pp

This polygon has an angle a« = w/M and the remaining angles are equal
to %ﬂ'. The lengths of the sides are 2X\;, ¢+ = 1,...,r, v, i« = 1,...,r — 1,
V1,725 - - '7’784—17’7: :

We may construct a right-angled polygon with sides

2)‘177;7"'72)‘7’7784-1 +7:7737'-'7’737a7b,c7

where the lengths a, b, ¢ are determined by the lengths of the remaining angles.
Now we construct a hyperbolic quadrilateral with three right angles, the fourth
angle equal to a and the opposite side to a with length b. Joining this quadri-
lateral to the right-angled polygon by pasting the sides ‘b’ we obtain the region
Pp for the group IV with signature (4.4)

Class E. The group I has the following signature

(4.5) (05 4+ [M, 27, {(2°)}),
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where M,r > 0 and s > 0 take different values according to the respective cases
from Table 2.

A Wilkie fundamental region for I” is in this case with Z:i& 0; = 2m. See
the above figure.

We draw the orthogonal lines from X, Xq,..., X, to 7. This last side
becomes divided in parts labelled ~§,v7,...,7,,1, according to the ‘opposite’
angle 6;. Let \; be the segment from X; to 79. We cut the region W by A, and
we transform W in a new region

(W - (>\7"7 ’Y:, €, g;’)) U 'CET’()‘Ta ﬁy;v &, g;)

Now we cut by A,._; and so on. Repeating the process we finally obtain a polygon
with an angle o = 27 /M, the remaining angles equal to %77‘ and sides labelled in
counterclockwise

Yo Vi« -1 Vs> ToT1 - - Tr(Ar), ox1 -+ Tr—1(Ar),
ZToxy - 'wr—l(’ﬁf—ﬁa ZToxy - - 'xr—1<)\r—1)7
x0T Tr—2(Ar—2), ToT1 - Tr—2(Vr_9)s - s ToT1(A1),

2o(A1), To(71), To(Ao), Ao-

We may construct a hyperbolic right-angled polygon with parameters

Y1725 -5 Vs 2)‘7’77:—17 2)‘7’—177:—27 e ',2)\17

and the three remaining sides a, b, c, are determined by these parameters.

The length b and the angle o determine a unique pentagon with the condition
that the two sides of o be equal. We join this pentagon to the right-angled polygon
by pasting the sides ‘b’ and we finally obtain the region Pg that is a fundamental
region for the group I with signature (4.5).

5. Parametrization of the moduli space

Let T" be an abstract surface Fuchsian group of genus p. We consider 2 =
Aut(D) as a topological group. The Weil space of I' with respect to 2 is the set

R(T") = {group of monomorphisms r: ' — Q

such that r(I')is a surface Fuchsian group}.
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The Teichmiiller space of T' is the orbit space T'(I') = R(I")/ Aut(£2). The mod-
ular space of T' is Mod(I') = Aut(I')/Inn(I") and the moduli space M (p) is
T(T")/ Mod(I'). We may also define M(p) as the set of complex structures on
surfaces of genus p modulo orientation preserving diffeomorphisms [SS].

In this section we want to obtain a parametrization of the equisymmetric
strata of the subspace of M (p) given by hyperelliptic and symmetric Riemann
surfaces of genus p. Now we need to know in our first definition of moduli space
which is the subspace to be parametrized.

We are interested in the parametrization of the Fuchsian groups F' such that
D/F is a symmetric and hyperelliptic Riemann surface modulo conjugation by
elements of Q and elements of Mod(F'). If F' uniformizes a hyperelliptic and
symmetric Riemann surface then F' < IV and I” has one of the signatures from
Table 2.

Given a group I" in some cases it is possible to obtain several groups F', with
F < T such that D/F is a hyperelliptic and symmetric Riemann surface. In fact
if T'/F ~ G, each epimorphism #: I — G such that 6 has a kernel which is a
surface Fuchsian group of genus p and # induces a diagram as one of Section 3
and then D/kerf is a symmetric and hyperelliptic Riemann surface.

Let E(F,T") be the set of epimorphisms

6: 7" — G ~T'/F,

such that kerf is a hyperelliptic and symmetric Riemann surface modulo the
following equivalence relation:

0~ 0 = ker 0’ = ker 6.

Each element 0 of E(F,I") gives us a way to construct a fundamental region Rp
of F' as union of n (= index of F' in I") copies of a fundamental region R’ of
IV and the sides of Rp identified according to some rules given by 6. Let us note
that E(F,T”) is a finite set.

Let o be a signature from Table 2 and column o(I'). Let P, be the set of
classes of congruence of polygons that are fundamental regions of a group with
signature ¢ and with the geometrical conditions described in Section 4. Each
element of P, provides a group I with signature o and a set of epimorphisms
E(F,T"). Let P, x E, be the set of pairs given by the class of congruence of poly-
gons and the set of classes of epimorphisms corresponding to the group I having
as fundamental region a polygon of the given class. Each pair of P, x E, pro-
vides in a natural way a group F' such that D/F is a hyperelliptic and symmetric
Riemann surface and then an element of Mj, s(p) (subspace of hyperelliptic and
symmetric Riemann surfaces of genus p). We have in this way a parametrization:

7 Py X Eg — My, 5(p).

Theorem. If the signature o has at most one proper period then 7w is a
finite-to-one map.
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Proof. Let S be a surface representing a point of Mj, ;(p) in the image of Ps x
E; by w. Let G be the subgroup of Aut(S) such that S/G ~ D/T” where I" has
signature o and there is § € E, such that 0: IV — G and ker # uniformizes S. If
IV has no proper periods then I only admits one element of P, as a fundamental
region. Since Aut(S) is finite there is only a finite number of NEC groups with
signature as I containing the Fuchsian group which uniformizes S. In this case
7 is a finite-to-one map.

If there is a proper period in the signature o then the orbifold D/T” has a
unique conic point and the polygons of P, are obtained from different ways by
cutting on the orthogonal line from the conic point to the boundary of D/I”.
Since the number of such ‘cuts’ is finite then the number of elements in P, for a
given group I is finite. As FE, is finite for a given group I” we obtain again that
7 is a finite-to-one map.

1 can be an infinite set

If there are more than one proper period in ¢ then 7~
as we may see in the following example.

Let o be the signature (0;+;[2,2]{(2,2,2)}). Then there are infinite elements
of P, corresponding to the same I and so they give by 7 the same element in

My, s(p). To see it let us consider the element P € P, represented by the following
polygon:

We cut by the orthogonal line to &' and 73 3; by the orthogonal line from
X1 to 733 and by the orthogonal line from X, to &; as it is showed in the next
figure. Identifying the sides properly we obtain a new element P; € P, that is, in
general, different from P.
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We can repeat this process as many times as we want and we obtain different
elements of P, providing by 7 the same element of M}, s(p).
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