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Abstract. Let S be a Riemann surface with genus g > 1 , let ϕ be the hyperelliptic
involution (i.e. ϕ is a conformal involution such that S/〈ϕ〉 has genus 0) and let σ be a symmetry
of S (i.e. σ is an anticonformal involution of S ). We obtain a finite set of real numbers which
determines a canonical fundamental region of the NEC groups uniformizing S/〈ϕ, σ〉 . The real
numbers obtained in this way are used to parametrize the strata of equisymmetric hyperelliptic
Riemann surfaces in the moduli space.

1. Introduction

A Riemann surface S is said to be hyperelliptic if and only if S admits an
automorphism φ ∈ Aut+(S) such that φ2 is the identity and the quotient S/〈φ〉
has genus 0. The automorphism φ is called the hyperelliptic involution. A Rie-
mann surface S is said to be symmetric if and only if S admits an automorphism
ψ ∈ Aut−(S) with ψ2 the identity. In this case ψ is a symmetry of S and
X = S/〈ψ〉 is a Klein surface. If the Riemann surface S is both hyperelliptic and
symmetric then X is a hyperelliptic Klein surface.

Let p be the genus of S . If p ≥ 2, then S and X can be expressed as
quotients of the hyperbolic plane D over surface groups F and Γ, respectively, F
being a Fuchsian group of genus p and Γ a non-Euclidean crystallographic group
(NEC group) of algebraic genus p .

Hyperelliptic Klein surfaces with boundary are characterized by means of
NEC groups in [BEG] and non-orientable Klein surfaces without boundary in
[BBGM].

The aim of this work is to parametrize the strata of the moduli space of
hyperelliptic and symmetric Riemann surfaces S according to the different groups
of automorphisms of the Klein surface X . It is done by means of the construction
of a hyperbolic polygon R with right angles (unless one of them at most). R is
a fundamental region for an NEC group Γ′ such that Γ′/Γ is isomorphic to the
group of automorphisms of X .
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2. Preliminaries on NEC groups

A non-Euclidean crystallographic group (NEC group in short) Γ is a discrete
subgroup of isometries of the hyperbolic plane D with compact quotient D/Γ.
Each NEC group Γ has a signature σ that has the following form [M]

(2.1) σ :
(

g;±; [m1, . . . , mr], {C1, . . . , Ck}
)

,

where Ci = (ni1, . . . , nisi
) , Ci are called cycle-periods, nij link-periods and mi

proper periods.
The numbers in σ are non-negative integers; mi and nij are greater than

or equal to 2. The number g is the topological genus of the surface quotient
D/Γ. This surface is orientable or not according as the sign in σ is ‘+’ or ‘− ’
respectively. The algebraic genus of Γ is p = ηg + k − 1, where η = 2 in the
orientable case or η = 1 otherwise.

If r = 0 or k = 0, we write in σ[−] or {−} , respectively. If the number si is
zero for some i we denote Ci by (−) .

We consider a Fuchsian group F as a particular case of NEC group. Since
every element of F is an orientable isometry of the hyperbolic plane, F has the
following (NEC) signature:

(

g; +; [m1, . . . , mr], {−}
)

.

The signature σ determines a canonical presentation of the group Γ [M], [W]
which is given by the generators

xi,

ei,

cij ,

ai, bi,

di,

i = 1, . . . , r,

i = 1, . . . , k,

i = 1, . . . , k, j = 0, . . . , si,

i = 1, . . . , g, if sign ‘+’,

i = 1, . . . , g, if sign ‘−’,

with the relations

xmi

i = 1, i = 1, . . . , r,

c2ij−1 = c2ij = (cij−1cij)
nij = 1, i = 1, . . . , k, j = 1, . . . , si,

e−1
i ci0eicisi

= 1, i = 1, . . . , k,

r
∏

i=1

xi

k
∏

i=1

ei

g
∏

i=1

[ai, bi] = 1 if sign + or

r
∏

i=1

xi

k
∏

i=1

ei

g
∏

i=1

d2
i = 1 if sign − .
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The area of Γ is the area of each fundamental region of Γ and it is calculated by

µ(Γ) = 2π

(

ηg + k − 2 +

r
∑

i=1

(

1 −
1

mi

)

+
1

2

k
∑

i=1

si
∑

j=1

(

1 −
1

ηij

)

)

.

A signature σ corresponds to an NEC group Γ if and only if µ(Γ) > 0.
If Γ is a subgroup of Γ′ with index N then the following relation between

the areas holds
µ(Γ) = Nµ(Γ′).

An NEC group Γ is a surface group if it has the signature
(

g;±; [−], {(−) · · ·k · · · (−)}
)

,

and in this case we write the signature as

(2.2) (g;±; [−], {(−)k}).

If k = 0 and the sign in σ is ‘+’ then Γ is a Fuchsian surface group.
Let Γ be an NEC group with signature σ . A canonical fundamental region

for Γ found by Wilkie [W] is a hyperbolic polygon W with the sides labelled

ξ1, ξ
′

1, . . . , ξr, ξ
′

r;ε1, γ10, . . . , γ1s1
, ε′i, . . . , εk, γk0, . . . , γksk

, ε′k;

α1, β
′

1, α
′

1, β1, . . . , αg, β
′

g, α
′

g, βg,

if sign ‘+’ and

ξ1, ξ
′

1, . . . , ξr, ξ
′

r; ε1, γ10, . . . , γ1s1
, ε′i, . . . , εk, γk0, . . . , γksk

, ε′k; δ1, δ
∗

1 , . . . , δg, δ
∗

g ,

if sign ‘− ’. The sides are identified in the following way

xi(ξ
′

i) = ξi,

ei(ε
′

i) = εi,

cij(γij) = γij ,

ai(α
′

i) = αi,

bi(β
′

i) = βi,

di(δ
∗

i ) = δi,

i = 1, . . . , r,

i = 1, . . . , k,

i = 1, . . . , k, j = 0, . . . , si,

i = 1, . . . , g,

i = 1, . . . , g,

i = 1, . . . , g,

where ‘∗ ’ denotes a non-orientable transformation.
The angles in the vertices of W are

〈ξi, ξ
′

i〉 = 2π/mi, i = 1, . . . , r,

〈εi, γi0〉 + 〈γisi
, ε′i〉 = π, i = 1, . . . , k,

and without a loss of generality we may assume that both angles are equal to 1
2π ,

〈γij−1, γij〉 = π/nij , i = 1, . . . , k, j = 1, . . . , si,

and the sum of the remaining angles is 2π . We may assume W as a convex
polygon, i.e. there is not an angle in W greater than π .
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3. Surfaces

A Klein surface (a compact surface equipped with a dianalytic structure) of
algebraic genus p ≥ 2 can be expressed as D/Γ where Γ is an NEC group with
signature (2.2).

A group G of order N is a group of automorphisms of X if and only if
there exists an NEC group Γ′ containing Γ as a subgroup of order N such that
Γ′/Γ ≈ G . Let S = D/F a Riemann surface of genus p ≥ 2. S is hyperelliptic
if and only if there exists a Fuchsian group F1 containing F as a subgroup of
index 2 with signature

(

0; +; [22p+2], {−}
)

,

where 22p+2 denotes 2p+ 2 proper periods equal to 2 each one.
Let X = D/Γ be a Klein surface where Γ has signature (2.2). X is hyperel-

liptic if and only if there exists an NEC group Γ1 containing Γ as a subgroup of
index 2, Γ1 having one of the following signatures [BEG], [BBGM]:

i) (0; +; [−] , {(22k)}) if g = 0, in this case k ≥ 3 .

ii) (0; +; [2g+k] , {(−)}) if g > 0 , k 6= 0, sign ‘+’, then k = 1 or 2 .

iii) (0; +; [2g] , {(22k)}) if g > 0 , k 6= 0, sign ‘− ’.

iv) (0; +; [2g] , {(−)}) if g ≥ 3 , k = 0, sign ‘− ’.

v) (1;−; [2g] , {−} if g > 3 , k = 0, sign ‘− ’ in this case g must be even.

Table 1

The case v) corresponds to hyperelliptic surfaces admitting symmetries with-
out fixed points, i.e. these surfaces correspond to purely imaginary curves. We are
interested in the other cases because they provide real algebraic curves.

Let S = D/Γ a hyperelliptic and symmetric Riemann surface and let ψ be
a symmetry. Then X = S/〈ψ〉 is a hyperelliptic Klein surface. Let G = Γ′/Γ =
Aut(X) with order 2N . We have the following diagram that relates the different
groups.

The signatures of Γ′ appears in the following table, where p = ηg + k − 1
[BBM], [BBGM]. The cases of the second column are as Table 1.
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σ(Γ) σ(Γ1) σ(Γ′) Aut(X) Case

g = 0, i) (0; +; [N ], {(22k/N )}) , ZN × Z2 1

k ≥ 3 N | k , N 6= k

(0; +; [−], {( 1
2N, 2

2k/N )}) , DN/2 × Z2 2

N even, N | 2k

g 6= 0, ii) (0; +; [2N, 2p/N ], {(−)}) , Z2N 3

k = 1, 2 N | p , N 6= p

sign ‘+’ (0; +; [N, 2(p+1)/N ], {(−)}) , ZN × Z2 4

N | p+ 1, N 6= p+ 1

(0; +; [2r], {(N, 2s)}) , DN 5

s = 2p/N + 2 − 2r , N even, N | 2p

(0; +; [2r], {(N/2, 2s)}) , DN/2 × Z2 6

s = 2(p+ 1)/N + 2 − 2r , N even, N | 2(p+ 1)

g 6= 0, iii) (0; +; [2N, 2r], {(2s)}) , Z2N 7

k 6= 0, s = (2g + 2k − 2)/N − 2r , s 6= 0, N | g − 1 , N | k

sign‘− ’ (0; +; [N, 2r], {(2s)} , ZN × Z2 8

s = (2g + 2k)/N − 2r , s 6= 0, N | g , N | k

(0; +; [2r], {(N, 2s)}) , DN 9

s = (2g + 2k − 2)/N + 2 − 2r ,

N even, N | 2k , N | 2(g − 1)

(0; +; [2r], {(N/2, 2s)}) , DN/2 × Z2 10

s = (2g + 2k)/N + 2 − 2r , N even, N | 2k , N | 2g

g > 3 , iv) (0; +; [N, 2g/N ], {(−)}), Z2N 11

k = 0, N | g − 1 , N 6= g − 1 , or N | g , N 6= g , N even

g odd, (0; +; [2N, 2(g−1)/N ], {(−)}) , ZN × Z2 12

sign ‘− ’ N | g , N 6= g , N even, N 6= 2

(0; +; [2r], {(N/2, 2s)}) , DN 13

s = 2g/N − 2r + 2,

N | 2(g − 1) , N even or N | 2g , N 6= 4t

(0; +; [2r], {(N, 2s)}) , DN/2 × Z2 14

s = 2(g − 1)/N − 2r + 2, N | 2g , 4 | N .

Table 2

These fourteen signatures can be put in five different classes:

A :
(

0; +; [N ], {(22k/N)}
)

,

B :
(

0; +; [−], {(N/2, 22k/N+2)}
)

,

C :
(

0; +; [M, 2α], {(−)}
)

,

D :
(

0; +; [2α], {(M, 2β)}
)

,

E :
(

0; +; [M, 2α], {(2β)}
)

which correspond to the cases from Table 2:
1,
2,
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3, 4, 11 and 12,
5, 6, 9, 10, 13 and 14,
7 and 8,

respectively, and M , α , and β take different values according to the different
cases.

For each one of these signatures we will construct a hyperbolic polygon R that
will be a fundamental region for the group Γ′ and the lengths of some sides of R
will parametrize the strata of the moduli space of the hyperelliptic and symmetric
Riemann surfaces S .

About the general construction of a right-angled hyperbolic polygon, with n
sides, see [CM].

4. Surfaces and polygons

Class A. For this class Γ′ has the following signature:

(4.1)
(

0; +; [N ], {(22k/N)}
)

where N | k and N 6= k .
We take as parameters the lengths of the sides γ1, . . . , γs−1 , where s = 2k/N ,

and we construct a right-angled polygon PA

The length of the side λ is determined by γ1, . . . , γs−1 . Now we construct a
hyperbolic pentagon with an angle α = 2π/N and four right angles, such that the
length of the opposite side to the angle α be λ and the two sides of the angle α
be equal. In this condition the pentagon is unique. We join this pentagon with
the polygon PA by pasting the sides ‘λ ’ and so we obtain a polygon RA that is
a fundamental region for the group Γ′ with the signature (4.1). See next figure.

Class B. The signature of Γ′ is in this case

(4.2)
(

0; +; [−], {(N/2, 22k/N+2)}
)

,

where N is even and N | 2k .
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We take as parameters the lengths of the sides γ2, . . . , γs−1 , where s = 2k/N+
2, and we construct the right-angled polygon PB . See next figure.

Now we construct a hyperbolic quadrilateral with an angle α = 2π/N and
three right angles, such that the lengths of the opposite side of α be λ . This
quadrilateral is unique. We join the quadrilateral with PB pasting the sides la-
belled ‘λ ’ and we obtain the following fundamental region RB for a group Γ′ with
signature (4.2).

Class C. Let Γ′ be an NEC group with signature

(4.3)
(

0; +; [M, 2r], {(−)}
)

,
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where M and r take different values according to the different cases from Table 2.
Let W a fundamental region of Wilkie for Γ′ where

∑r+1
i=0 θi = 2π .

We draw the orthogonal lines to γ from the points Xi , i = 0, 1, . . . , r . The
side γ becomes divided in different parts labelled γ0, γ1, . . . , γr+1 , according to
the ‘opposite’ angle θi . Let λi be the length from Xi to γ as it is shown in the
next figure

We cut by λr and we transform the region W in the new region
(

W − (λr, ξr, ξ
′

r, γr+1) ∪ xr+1(λr, ξr, ξ
′

r, γr+1)
)

.
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In the next step we cut the new region by λr−1 and apply xr−1 in a similar
way and so on. In the last step we obtain the polygon PC that is a fundamental
region for the group Γ′

This region is a hyperbolic polygon with 2r + 3 sides, an angle α = 2π/M
and the remaining angles are equal to 1

2π . The lengths of the sides are λ0 (two
sides), 2λi (i = 1, . . . , r ), γi (i = 1, . . . , r ) and γ0 + γr+1 .

Like we saw for polygons of Class A, we may construct a hyperbolic right-
angled polygon taking as parameters 2λ1, γ2, 2λ2, γ3, . . . , 2λr , and a hyperbolic
pentagon with four right angles and the fifth angle equal to α .

Class D. Let Γ′ be an NEC group with signature

(4.4)
(

0; +; [2r], {(M, 2s)}
)

,

where M, r > 0 and s > 0 take different values according to the respective cases
from Table 2.

A Wilkie fundamental region in this case is W where
∑r+1

i=1 θi = 2π .

We draw the orthogonal lines to γ0 from Xi , i = 1, . . . , r . Let us denote
the distance from Xi to γ0 by λi . The side γ0 becomes divided in several parts
labelled γ∗1 , γ

∗

2 , . . . , γ
∗

r+1 , according to the ‘opposite’ angle θi .
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In a similar way to Class C we cut by λr and we transform the region W in
the new region

(

W − (ξ′r, ε, γ
∗

1 , λr)
)

∪ xr(ξ
′

r, ε, γ
∗

1 , λr

)

.

Repeating this process for xr−1, xr−2, . . . , x1 we obtain the polygon PD

This polygon has an angle α = π/M and the remaining angles are equal
to 1

2π . The lengths of the sides are 2λi , i = 1, . . . , r , γ∗i , i = 1, . . . , r − 1,
γ1, γ2, . . . , γs+1, γ

∗

r .
We may construct a right-angled polygon with sides

2λ1, γ
∗

2 , . . . , 2λr, γs+1 + γ∗r , γs, . . . , γ3, a, b, c,

where the lengths a , b , c are determined by the lengths of the remaining angles.
Now we construct a hyperbolic quadrilateral with three right angles, the fourth
angle equal to α and the opposite side to α with length b . Joining this quadri-
lateral to the right-angled polygon by pasting the sides ‘b ’ we obtain the region
PD for the group Γ′ with signature (4.4)

Class E. The group Γ′ has the following signature

(4.5)
(

0; +; [M, 2r], {(2s)}
)

,
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where M, r > 0 and s > 0 take different values according to the respective cases
from Table 2.

A Wilkie fundamental region for Γ′ is in this case with
∑r+1

i=0 θi = 2π . See
the above figure.

We draw the orthogonal lines from X0, X1, . . . , Xr to γ0 . This last side
becomes divided in parts labelled γ∗0 , γ

∗

1 , . . . , γ
∗

r+1 , according to the ‘opposite’
angle θi . Let λi be the segment from Xi to γ0 . We cut the region W by λr and
we transform W in a new region

(

W − (λr, γ
∗

r , ε, ξ
′

r)
)

∪ xr(λr, γ
∗

r , ε, ξ
′

r).

Now we cut by λr−1 and so on. Repeating the process we finally obtain a polygon
with an angle α = 2π/M , the remaining angles equal to 1

2π and sides labelled in
counterclockwise

γ∗0 , γ1, . . . , γs, x0x1 · · ·xr(λr), x0x1 · · ·xr−1(λr),

x0x1 · · ·xr−1(γ
∗

r−1), x0x1 · · ·xr−1(λr−1),

x0x1 · · ·xr−2(λr−2), x0x1 · · ·xr−2(γ
∗

r−2), . . . , x0x1(λ1),

x0(λ1), x0(γ
∗

1), x0(λ0), λ0.

We may construct a hyperbolic right-angled polygon with parameters

γ1, γ2, . . . , γs, 2λr, γ
∗

r−1, 2λr−1, γ
∗

r−2, . . . , 2λ1,

and the three remaining sides a , b , c , are determined by these parameters.
The length b and the angle α determine a unique pentagon with the condition

that the two sides of σ be equal. We join this pentagon to the right-angled polygon
by pasting the sides ‘b ’ and we finally obtain the region PE that is a fundamental
region for the group Γ′ with signature (4.5).

5. Parametrization of the moduli space

Let Γ be an abstract surface Fuchsian group of genus p . We consider Ω =
Aut(D) as a topological group. The Weil space of Γ with respect to Ω is the set

R(Γ) = {group of monomorphisms r: Γ → Ω

such that r(Γ)is a surface Fuchsian group}.
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The Teichmüller space of Γ is the orbit space T (Γ) = R(Γ)/Aut(Ω). The mod-

ular space of Γ is Mod(Γ) = Aut(Γ)/ Inn(Γ) and the moduli space M(p) is
T (Γ)/Mod(Γ). We may also define M(p) as the set of complex structures on
surfaces of genus p modulo orientation preserving diffeomorphisms [SS].

In this section we want to obtain a parametrization of the equisymmetric
strata of the subspace of M(p) given by hyperelliptic and symmetric Riemann
surfaces of genus p . Now we need to know in our first definition of moduli space
which is the subspace to be parametrized.

We are interested in the parametrization of the Fuchsian groups F such that
D/F is a symmetric and hyperelliptic Riemann surface modulo conjugation by
elements of Ω and elements of Mod(F ) . If F uniformizes a hyperelliptic and
symmetric Riemann surface then F < Γ′ and Γ′ has one of the signatures from
Table 2.

Given a group Γ′ in some cases it is possible to obtain several groups F , with
F < Γ′ such that D/F is a hyperelliptic and symmetric Riemann surface. In fact
if Γ′/F ≃ G , each epimorphism θ: Γ′ → G such that θ has a kernel which is a
surface Fuchsian group of genus p and θ induces a diagram as one of Section 3
and then D/ ker θ is a symmetric and hyperelliptic Riemann surface.

Let E(F,Γ′) be the set of epimorphisms

θ: Γ′ → G ≃ Γ′/F,

such that ker θ is a hyperelliptic and symmetric Riemann surface modulo the
following equivalence relation:

θ ≈ θ′ ⇐⇒ ker θ′ = ker θ.

Each element θ of E(F,Γ′) gives us a way to construct a fundamental region RF

of F as union of n (= index of F in Γ′ ) copies of a fundamental region R′ of
Γ′ and the sides of RF identified according to some rules given by θ . Let us note
that E(F,Γ′) is a finite set.

Let σ be a signature from Table 2 and column σ(Γ′) . Let Pσ be the set of
classes of congruence of polygons that are fundamental regions of a group with
signature σ and with the geometrical conditions described in Section 4. Each
element of Pσ provides a group Γ′ with signature σ and a set of epimorphisms
E(F,Γ′) . Let Pσ ×Eσ be the set of pairs given by the class of congruence of poly-
gons and the set of classes of epimorphisms corresponding to the group Γ′ having
as fundamental region a polygon of the given class. Each pair of Pσ × Eσ pro-
vides in a natural way a group F such that D/F is a hyperelliptic and symmetric
Riemann surface and then an element of Mh,s(p) (subspace of hyperelliptic and
symmetric Riemann surfaces of genus p). We have in this way a parametrization:

π: Ps × Es →Mh,s(p).

Theorem. If the signature σ has at most one proper period then π is a

finite-to-one map.
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Proof. Let S be a surface representing a point of Mh,s(p) in the image of Ps×
Es by π . Let G be the subgroup of Aut(S) such that S/G ≃ D/Γ′ where Γ′ has
signature σ and there is θ ∈ Eσ such that θ: Γ′ → G and ker θ uniformizes S . If
Γ′ has no proper periods then Γ′ only admits one element of Pσ as a fundamental
region. Since Aut(S) is finite there is only a finite number of NEC groups with
signature as Γ′ containing the Fuchsian group which uniformizes S . In this case
π is a finite-to-one map.

If there is a proper period in the signature σ then the orbifold D/Γ′ has a
unique conic point and the polygons of Pσ are obtained from different ways by
cutting on the orthogonal line from the conic point to the boundary of D/Γ′ .
Since the number of such ‘cuts’ is finite then the number of elements in Pσ for a
given group Γ′ is finite. As Eσ is finite for a given group Γ′ we obtain again that
π is a finite-to-one map.

If there are more than one proper period in σ then π−1 can be an infinite set
as we may see in the following example.

Let σ be the signature
(

0; +; [2, 2]{(2, 2, 2)}
)

. Then there are infinite elements
of Pσ corresponding to the same Γ′ and so they give by π the same element in
Mh,s(p) . To see it let us consider the element P ∈ Pσ represented by the following
polygon:

We cut by the orthogonal line to ξ′ and γ3,3 ; by the orthogonal line from
X1 to γ3,3 and by the orthogonal line from X2 to ξ1 as it is showed in the next
figure. Identifying the sides properly we obtain a new element P1 ∈ Pσ that is, in
general, different from P .
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We can repeat this process as many times as we want and we obtain different
elements of Pσ providing by π the same element of Mh,s(p) .
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