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Abstract. Let g be a meromorphic function in the complex plane, and define the homo-
geneous differential polynomial ψ by ψ = W (g, g(k1), g(k2), . . . , g(kn−1)) where W denotes the
Wronskian and k1, k2, . . . , kn−1 are pairwise distinct positive integers.

In the case of an entire function g , we give sharp upper and lower bounds for the Nevanlinna
counting function N(r, 1/ψ) of the zeros of ψ in terms of N(r, 1/g) . In particular, we show that
if g is not an exponential sum then ψ has few zeros in the sense that N(r, 1/ψ) = S(r, g) if and
only if N(r, 1/g) = S(r, g) . One of the main tools is a new result on the proximity function of
quotients of certain Wronskians which might be of independent interest.

For meromorphic functions g , we present two methods to obtain lower bounds for N(r, 1/ψ)
in terms of N(r, 1/g) and N(r, g) . As a tool, we give formulas for the coefficients of the greatest
common divisor of two linear differential operators.

1. Introduction

In this paper the term “meromorphic” will always mean meromorphic in the
complex plane C . We use the standard notations and results of the Nevanlinna
theory (see [9], [5], or [3] for example). In particular, S(r, f) plays the role of an
error term. N0 = {0, 1, 2, . . .} is the set of non-negative integers.

Let f be a non-constant meromorphic function. If a is a meromorphic func-
tion satisfying T (r, a) = S(r, f) and if k0, k1, . . . , kn ∈ N0 then

M [f ] = afk0(f ′)k1 · · · (f (n))kn

is a differential monomial (in f ). The degree γM and the weight ΓM of M are
defined by

γM = k0 + k1 + · · · + kn, ΓM = k0 + 2k1 + · · ·+ (n+ 1)kn.

A finite sum P [f ] =
∑m

j=1Mj[f ] of differential monomials is a differential polyno-

mial (in f ). Degree γP and weight ΓP of P are defined by γP = maxj=1,...,m γMj

and ΓP = maxj=1,...,m ΓMj
. P is called homogeneous if γMj

= γP for j =
1, . . . , m .
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Starting with the fundamental work of Hayman [4], many papers have been
written on the following problem: Decide whether a given differential polynomial
in an entire or meromorphic function has (infinitely many) zeros, and if not, de-
termine the exceptional cases.

This article is concerned with homogeneous differential polynomials. The
work was motivated by the following result of Mues [8, Satz 1].

Theorem A. Let g be an entire function and ψ = gg′′ − ag′
2

where a ∈
C \ {1} . If ψ has no zeros then one of the following cases must occur:

(i) g(z) = eAz+B where A,B ∈ C , A 6= 0;
(ii) a 6= 0 and g(z) = Az +B where A,B ∈ C , A 6= 0;
(iii) a = 1

2 and g(z) = Az2 +Bz + C where A,B,C ∈ C , 4AC −B2 6= 0 .

Results for similar homogeneous differential polynomials were obtained by
Ozawa [11] and G. Lehners [7].

Mues pointed out that Theorem A fails for a = 1. He gave the following
example. If g = exp(Q) with an entire function Q then ψ = gg′′ − g′

2
= Q′′e2Q ,

thus ψ has no zeros if Q =
∫∫

exp(h) with an entire function h . Even for an
arbitrary entire function Q we have

N
(
r,

1

ψ

)
= N

(
r,

1

Q′′

)
≤ T (r, Q′′) +O(1) = S(r, g)

by the lemma of the logarithmic derivative. Hence ψ has “few” zeros if g has no
zeros. Therefore, it seems sensible to compare the Nevanlinna counting function
of the zeros of ψ and the counting function of the zeros of g .

The aim of this paper is to give estimates for the counting function of the
zeros not only for W (g, g′) = gg′′ − g′

2
but more generally for Wronskians of the

form

(1.1) ψ = W
(
g, g(k1), g(k2), . . . , g(kn−1)

)

where k1, k2, . . . , kn−1 ∈ N are pairwise distinct. ψ is a homogeneous differential
polynomial where all monomials not only have the same degree but also the same
weight.

It is necessary to distinguish whether g is or is not an exponential sum. We
call g an exponential sum if

(1.2) g(z) = c1(z)e
γ1z + · · ·+ cp(z)e

γpz

where p ∈ N , c1, . . . , cp are polynomials (not identically zero) and γ1, . . . , γp ∈ C

are pairwise distinct. The number
∑p

j=1(1+deg cj) will be called the order of g .
Note that if ψ in (1.1) is identically zero then g must be an exponential sum.

For entire functions g and the Wronskians

(1.3) ψn = W
(
g, g′, . . . , g(n−1)

)
, n ∈ N,

sharp upper and lower bounds were obtained in [13, Theorem 1 and Theorem 2]:
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Theorem B. Let g be an entire function which is not an exponential sum

and define ψn by (1.3) . Then for every n ∈ N and every ε > 0

(1.4) (1 − ε)N
(
r,

1

g

)
+ S(r, g) ≤ N

(
r,

1

ψn

)
≤ nN

(
r,

1

g

)
+ S(r, g).

The factor (1− ε) cannot be replaced by any factor greater than 1 and the factor

n cannot be replaced by any smaller factor.

Theorem C. Let g be an exponential sum of order m and define ψn by

(1.3) . Then for n = 1, . . . , m− 1

(1.5) N
(
r,

1

ψn

)
= N

(
r,

1

ψm−n

)
+O(log r)

and

(1.6) N
(
r,

1

g

)
+O(log r) ≤ N

(
r,

1

ψn

)
≤ min{n,m− n}N

(
r,

1

g

)
+O(log r).

The bounds in (1.6) are sharp.

Tohge [16] investigated the differential polynomial ψ = gg′′ − ag′
2
, a ∈ C ,

for meromorphic functions g . In the case a = 1, i.e. ψ = W (g, g′) , he obtained
the following result ([16, Theorem 2] in a slightly different notation).

Theorem D. Let g be a non-constant meromorphic function and assume

that ψ = gg′′ − g′
2
6≡ 0 . Then either

N
(
r,

1

g

)
≤ 5N

(
r,

1

ψ

)
+ 4N(r, g) + S(r, g),

or g(z) = c1 exp(λ1z) + c2 exp(λ2z) where λ1, λ2, c1, c2 ∈ C , λ1 6= λ2 and

c1, c2 6= 0 .

In Section 2, we first collect some basic facts about Wronskians. Then we
define generalized Wronskians and prove new results on the proximity functions
of quotients of generalized Wronskians.

In Section 3, we give sharp estimates for the counting function of the zeros
of the Wronskians (1.1) where g is an entire function and k1, . . . , kn−1 ∈ N are
pairwise distinct. Most results in this section are valid only if certain Wronskians
are not identically zero or if g is not an exponential sum.

Two examples in Section 4 show that the results of Section 3 do not hold for
exponential sums. Only if the order of the exponential sum is large enough, the
same estimates can be obtained.

In the sections 5–7, we present two methods to obtain lower estimates for
the zeros of the Wronskians (1.1) where the entire function g is now replaced by
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a meromorphic function f . The first method is to generalize the methods from
Section 3 directly, this is done in Section 5. We will consider only the special case
kj = j in this section.

In Section 7, we use a completely different approach. The function f is
written as the common solution of two linear differential equations. Elimination
of the higher derivatives in these two equations gives a representation of f ′/f as
a rational function of the coefficients of the differential equations. The formulas
for this elimination process are given in Section 6.

This article is based on the author’s Habilitationsschrift [14].

2. Wronskians and linear differential equations

We need the following generalization of the error term S(r, f) . Let f1, . . . , fn

be meromorphic functions. By S(r, f1, . . . , fn) we denote every function φ: (0,∞)
7→ R satisfying φ(r) = o

(∑n
k=1 T (r, fk)

)
for r → ∞ , r /∈ E , where E ⊂ (0,∞)

has finite Lebesgue measure.
We recall some basic facts about Wronskians (see [2, §1], for example).

Lemma 2.1. Let u1, . . . , un , v1, . . . , vm and ϕ be meromorphic functions.

(i) W (u1, . . . , un) ≡ 0 if and only if the functions u1, . . . , un are linearly depen-

dent.

(ii) W (ϕu1, . . . , ϕun) = ϕnW (u1, . . . , un) .

(iii)
(
W (u1, . . . , un)

)′
=

∑n
j=1W (u1, . . . , uj−1, u

′
j, uj+1, . . . , un) .

(iv) W (u1, . . . , un)m−1W (u1, . . . , un, v1, . . . , vm) = W (w1, . . . , wm) , where the

functions w1, . . . , wm are defined by wj = W (u1, . . . , un, vj) , j = 1, . . . , m .

An nth order homogeneous linear differential equation

(2.1) w(n) + an−1(z)w
(n−1) + · · ·+ a1(z)w

′ + a0(z)w = 0

with meromorphic coefficients a0, . . . , an has in general no meromorphic solutions.
If there are meromorphic solutions, at most n of them are linearly independent and
we call a system (f1, . . . , fn) of n linearly independent solutions a meromorphic

fundamental system of (2.1).
If f1, . . . , fn are linearly independent meromorphic functions then there is

exactly one equation of the form (2.1) which has (f1, . . . , fn) as a fundamental
system. This equation can be written as

W (f1, . . . , fn, w)

W (f1, . . . , fn)
= 0.

The following estimates for the proximity function of the coefficients of a linear
differential equation is essential for our results. They are essentially due to Frei [1]
but Frei formulated the estimates only for entire functions and not explicitly in
the form we need here. For the sake of completeness we give a proof.
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Lemma 2.2. Let a0, . . . , an−1 be meromorphic functions. If (f1, . . . , fn) is

a meromorphic fundamental system of the differential equation

(2.2) w(n) + an−1(z)w
(n−1) + · · ·+ a1(z)w

′ + a0(z)w = 0

then we have

(2.3) m(r, ak) = O

( n∑

j=1

m
(
r,
f ′

j

fj

))
+

n∑

j=1

S
(
r,
f ′

j

fj

)
,

and, in particular, m(r, ak) = S(r, f1, . . . , fn) for k = 1, . . . , n− 1 .

Proof. We prove the lemma using induction on n . For n = 1 the differential
equation (2.2) reads w′ + a0(z)w = 0 and (2.3) follows by the lemma of the
logarithmic derivative. Now let n ≥ 2. The substitution w = f1

∫
v in (2.2) gives

(2.4) v(n−1) + bn−2(z)v
(n−2) + · · ·+ b1(z)v

′ + b0(z)v = 0

where

(2.5) bk = ak+1 +

n−1∑

j=k+2

(
j

k + 1

)
aj

f
(j−k−1)
1

f1
+

(
n

k + 1

)
f

(n−k−1)
1

f1

for k = 0, . . . , n− 2. The reduced differential equation (2.4) has the fundamental
system

v1 :=
(f2
f1

)′

, . . . , vn−1 :=
(fn

f1

)′

.

The induction hypotheses gives

(2.6) m(r, bk) = O

(n−1∑

j=1

m
(
r,
v′j
vj

))
+

n−1∑

j=1

S
(
r,
v′j
vj

)

for k = 0, . . . , n− 2. Using

v′j
vj

=

(fj+1

f1

)′′

(fj+1

f1

)′
=

(f ′
j+1

fj+1
−
f ′
1

f1

)′

f ′
j+1

fj+1
−
f ′
1

f1

+
f ′

j+1

fj+1
−
f ′
1

f1

and the lemma of the logarithmic derivative we conclude from (2.6)

(2.7) m(r, bk) = O

( n∑

j=1

m
(
r,
f ′

j

fj

))
+

n∑

j=1

S
(
r,
f ′

j

fj

)
.

From (2.7) and (2.5) the assertion (2.3) follows successively for k = n − 1, n −
2, . . . , 1. Finally, the assertion (2.3) for k = 0 follows by substituting w = f1 in
the differential equation (2.2).



94 Martin Reinders

Definition 2.1. Let f1, . . . , fn be meromorphic functions and j1, . . . , jn ∈
N0 . The function Wj1,...,jn

(f1, . . . , fn) defined by

Wj1,...,jn
(f1, . . . , fn) =

∣∣∣∣∣∣∣∣∣

f
(j1)
1 f

(j1)
2 · · · f

(j1)
n

f
(j2)
1 f

(j2)
2 · · · f

(j2)
n

...
...

...
f

(jn)
1 f

(jn)
2 · · · f

(jn)
n

∣∣∣∣∣∣∣∣∣

is called a generalized Wronskian of f1, . . . , fn .

Let f1, . . . , fn be linearly independent functions and let

w(n) + an−1(z)w
(n−1) + · · ·+ a1(z)w

′ + a0(z)w = 0

be the differential equation with fundamental system (f1, . . . , fn) . Then

aj = (−1)n−jW0,...,j−1,j+1,...,n(f1, . . . , fn)

W (f1, . . . , fn)

for j = 0, . . . , n − 1 and Lemma 2.2 shows that m(r, aj) = S(r, f1, . . . , fn) . We
now prove a corresponding result for quotients of generalized Wronskians.

Lemma 2.3. Let f1, . . . , fn be linearly independent meromorphic functions

and j1, . . . , jn ∈ N0 . Then

m
(
r,
Wj1,...,jn

(f1, . . . , fn)

W (f1, . . . , fn)

)
= S(r, f1, . . . , fn).

Proof. Let

w(n) + an−1(z)w
(n−1) + · · ·+ a1(z)w

′ + a0(z)w = 0

be the linear differential equation with fundamental system (f1, . . . , fn) . Lemma
2.2 gives m(r, aj) = S(r, f1, . . . , fn) for j = 0, . . . , n − 1. Differentiating the
equation

f
(n)
j = −a0fj − a1f

′
j − · · · − an−1f

(n−1)
j

successively yields

f
(k)
j = Ak,0fj +Ak,1f

′
j + · · ·+ Ak,n−1f

(n−1)
j

for k ∈ N0 and j = 1, . . . , n , where Ak,l are meromorphic functions satisfying
m(r, Ak,l) = S(r, f1, . . . , fn) . Now the assertion follows directly from the matrix
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equation




f
(j1)
1 f

(j1)
2 · · · f

(j1)
n

f
(j2)
1 f

(j2)
2 · · · f

(j2)
n

...
...

...
f

(jn)
1 f

(jn)
2 · · · f

(jn)
n


 =




Aj1,0 Aj1,1 · · · Aj1,n−1

Aj2,0 Aj2,1 · · · Aj2,n−1

...
...

...
Ajn,0 Ajn,1 · · · Ajn,n−1




×




f1 f2 · · · fn

f ′
1 f ′

2 · · · f ′
n

...
...

...
f

(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n


 .

Lemma 2.4. Let f1, . . . , fn be linearly independent meromorphic functions

and k ∈ N . Then

m

(
r,

∑n
j=1W (f1, . . . , fj−1, f

(k)
j , fj+1, . . . , fn)

W (f1, . . . , fn)

)
= S(r, f1, . . . , fn).

Proof. Let

ψ :=
n∑

j=1

W (f1, . . . , fj−1, f
(k)
j , fj+1, . . . , fn).

We want to show that ψ can be written as a linear combination of some generalized
Wronskians Wj1,...,jn

(f1, . . . , fn) with suitably chosen (j1, . . . , jn) . To this aim let
m := n+ k . We define a function G : Cm × · · · × Cm

︸ ︷︷ ︸
n

7→ C by

G(x1, . . . , xn) =

n∑

j=1

∣∣∣∣∣∣∣∣

x1,1 x2,1 · · · xj−1,1 xj,k+1 xj+1,1 · · · xn,1

x1,2 x2,2 · · · xj−1,2 xj,k+2 xj+1,2 · · · xn,2

...
...

...
...

...
...

x1,n x2,n · · · xj−1,n xj,m xj+1,n · · · xn,n

∣∣∣∣∣∣∣∣

where xl = (xl,1, xl,2, . . . , xl,m)T for l = 1, . . . , n . G is an alternating multilinear
form. A basis for the vector space of all alternating multilinear forms on (Cm)n

are the functions

Fj1,...,jn
(x1, . . . , xn) =

∣∣∣∣∣∣∣∣

x1,j1 x2,j1 · · · xn,j1

x1,j2 x2,j2 · · · xn,j2

...
...

...
x1,jn

x2,jn
· · · xn,jn

∣∣∣∣∣∣∣∣
, 1 ≤ j1 < j2 < · · · < jn ≤ m
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(see [15, Theorem 4–5 and Problem 4–1], for example). Hence there are numbers
cj1,...,jn

∈ C such that

G(x1, . . . , xn) =
∑

1≤j1<j2<···<jn≤m

cj1,...,jn
Fj1,...,jn

(x1, . . . , xn)

for arbitrary vectors x1, . . . , xn ∈ Cm . Setting xl =
(
fl(z), f

′
l (z), . . . , f

(m−1)
l (z)

)T

for l = 1, . . . , n gives

ψ =
∑

1≤j1<j2<···<jn≤m

cj1,...,jn
Wj1−1,j2−1,...,jn−1(f1, . . . , fn).

The assertion follows using Lemma 2.3.

3. Results for entire functions

First we give two examples which will show the sharpness of our estimates.

3.1. Examples. Let h be an entire function which is not a polynomial of
degree at most one. For every j ∈ N0 we have (eh)(j) = τj[h

′]eh where τj[h
′] is

a differential polynomial in h′ . In particular, T (r, τj[h
′]) = S(r, eh) .

Example 3.1. Let g = exp(h) + exp(−h) and define ψ by (1.1) where
1 ≤ k1 < k2 < · · · < kn−1 . Then

N
(
r,

1

ψ

)
= nN

(
r,

1

g

)
+ S(r, g).

Proof. We have

ψ = W
(
eh + e−h, τk1

[h′]eh + τk1
[−h′]e−h, . . . , τkn−1

[h′]eh + τkn−1
[−h′]e−h

)

= Ane
nh + An−2e

(n−2)h + · · ·+ A−n+2e
(−n+2)h +A−ne

−nh,

where An, An−2, . . . , A−n+2, A−n are differential polynomials in h′ . Hence T (r, Aj)
= S(r, eh) for j = −n,−n+ 2, . . . , n− 2, n . In particular,

An = W
(
1, τk1

[h′], . . . , τkn−1
[h′]

)
and A−n = W

(
1, τk1

[−h′], . . . , τkn−1
[−h′]

)
.

Assume that An ≡ 0. Then the functions

eh, (eh)k1 , . . . , (eh)(kn−1)

are linearly dependent, thus w = eh is the solution of a homogeneous linear
differential equation with constant coefficients. It follows that eh is an exponential
sum and hence the order of eh is less than or equal to one. The sharp estimate of
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the proximity function of the logarithmic derivative (see [10], for example) gives
m(r, h′) = m

(
r, (eh)′/eh

)
= o(log r) . This is only possible if h′ is constant in

contradiction to our assumption.
Thus An 6≡ 0 and, analogously, A−n 6≡ 0. Using [13, Lemma 2] we conclude

that

N
(
r,

1

ψ

)
= 2nT (r, eh) + S(r, eh) = nN

(
r,

1

g

)
+ S(r, g).

Example 3.2. Let g = 1 + exp(h) and define ψ by (1.1) where 1 ≤ k1 <
k2 < · · · < kn−1 . Then

N
(
r,

1

ψ

)
= N

(
r,

1

g

)
+ S(r, g).

Proof. Now we have

ψ = W
(
1 + eh, τk1

[h′]eh, τk2
[h′]eh, . . . , τkn−1

[h′]eh
)

= An−1e
(n−1)h + Ane

nh

where

An−1 = W
(
τk1+1[h

′], τk2+1[h
′], . . . , τkn−1+1[h

′]
)

and

An = W
(
1, τk1

[h′], τk2
[h′], . . . , τkn−1

[h′]
)
.

Arguing as in the proof of Example 3.1, we get

N
(
r,

1

ψ

)
= T (r, eh) + S(r, eh) = N

(
r,

1

g

)
+ S(r, g).

3.2. An estimate from above. For an entire function g we can estimate
the counting function of the zeros of the Wronskians (1.1) from above in terms of
the counting function of the zeros of g .

Theorem 3.1. Let g be an entire function and

ψ = W
(
g, g(k1), g(k2), . . . , g(kn−1)

)

where 1 ≤ k1 < k2 < · · · < kn−1 . If ψ 6≡ 0 then

N
(
r,

1

ψ

)
≤ nN

(
r,

1

g

)
+ S(r, g).

The factor n is best possible.

Proof. From

ψ = gnW
(
1,
g(k1)

g
,
g(k2)

g
, . . . ,

g(kn−1)

g

)

and the lemma of the logarithmic derivative we conclude that m(r, ψ/gn) =
S(r, g) . Hence

N
(
r,

1

ψ

)
− nN

(
r,

1

g

)
= N

(
r,
gn

ψ

)
−N

(
r,
ψ

gn

)

= m
(
r,
ψ

gn

)
−m

(
r,
gn

ψ

)
+O(1) ≤ S(r, g)

and the assertion follows. Example 3.1 shows that the factor n is best possible.



98 Martin Reinders

Remark 3.1. In Theorem 3.2, the Wronskian W
(
g, g(k1), g(k2), . . . , g(kn−1)

)

can be replaced by an arbitrary homogeneous differential polynomial in g with
degree n .

3.3. Estimates from below. Now we estimate the counting function of the
zeros of the Wronskian (1.1) from below in terms of the counting function of the
zeros of g . The main tools are Lemma 2.4 and the following lemma.

Lemma 3.1. Let g be an entire function, k0, k1, . . . , kn ∈ N0 pairwise

distinct and assume that

(3.1) W
(
g(k0), g(k1), . . . , g(kn)

)
6≡ 0.

Then

N
(
r,

1

W
(
g(k0), . . . , g(kn−2)

)
)

+N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1), g(kn)

)
)

≤ N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
)
+N

(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn)

)
)
+S(r, g).

Proof. Using Lemma 2.1 (iv) we get

(3.2)

W
(
g(k0), . . . , g(kn−2)

)
·W

(
g(k0), . . . , g(kn−2), g(kn−1), g(kn)

)

= W
(
W

(
g(k0), . . . , g(kn−2), g(kn−1)

)
,W

(
g(k0), . . . , g(kn−2), g(kn)

))

= W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
·W

(
g(k0), . . . , g(kn−2), g(kn)

)
· q

where we have set

q :=
W

(
g(k0), . . . , g(kn−2), g(kn)

)′

W
(
g(k0), . . . , g(kn−2), g(kn)

) −
W

(
g(k0), . . . , g(kn−2), g(kn−1)

)′

W
(
g(k0), . . . , g(kn−2), g(kn−1)

) .

The assumption (3.1) guarantees that all the Wronskians are not identically zero.
Applying the first main theorem to (3.2) gives

N
(
r,

1

W
(
g(k0), . . . , g(kn−2)

)
)

+N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1), g(kn)

)
)

−N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
)

−N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn)

)
)

= m(r, q) −m
(
r,

1

q

)
+O(1) ≤ S(r, g).

The last inequality follows from the lemma of the logarithmic derivative.
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Theorem 3.2. Let g be an entire function and k ∈ N . Define functions ψn ,

n ∈ N0 , by ψ0 = 1 and

ψn = W
(
g, g(k), g(2k), . . . , g(nk−k)

)
for n ∈ N.

If m ∈ N and ψn 6≡ 0 for n = 1, . . . , m then

(3.3) N
(
r,

1

ψb

)
≥
c− b

c− a
N

(
r,

1

ψa

)
+
b− a

c− a
N

(
r,

1

ψc

)
+ S(r, g)

for 0 ≤ a < b < c ≤ m .

Proof. Setting fj = g(jk−k) , j = 1, . . . , n , in Lemma 2.4 gives

m
(
r,

W
(
g, g(k), . . . , g(nk−2k), g(nk)

)

W
(
g, g(k), . . . , g(nk−2k), g(nk−k)

)
)

= S(r, g)

for n = 1, . . . , m− 1. It follows that

N
(
r,

1

W
(
g, g(k), . . . , g(nk−2k), g(nk)

)
)
≤ N

(
r,

1

ψn

)
+ S(r, g).

Together with Lemma 3.1 (with kj = jk , j = 0, . . . , n) we get the estimate

(3.4) N
(
r,

1

ψn−1

)
+N

(
r,

1

ψn+1

)
≤ 2N

(
r,

1

ψn

)
+ S(r, g).

Now let 0 ≤ a < b < c ≤ m . From (3.4) we conclude that
(3.5)

S(r, g) ≥

c∑

µ=b+1

µ−1∑

ν=b+1

{(
N

(
r,

1

ψν+1

)
−N

(
r,

1

ψν

))
−

(
N

(
r,

1

ψν

)
−N

(
r,

1

ψν−1

))}

=

c∑

µ=b+1

{(
N

(
r,

1

ψµ

)
−N

(
r,

1

ψµ−1

))
−

(
N

(
r,

1

ψb+1

)
−N

(
r,

1

ψb

))}

= N
(
r,

1

ψc

)
−N

(
r,

1

ψb

)
− (c− b)

(
N

(
r,

1

ψb+1

)
−N

(
r,

1

ψb

))

and that
(3.6)

S(r, g) ≥
b−1∑

µ=a

b∑

ν=µ+1

{(
N

(
r,

1

ψν+1

)
−N

(
r,

1

ψν

))
−

(
N

(
r,

1

ψν

)
−N

(
r,

1

ψν−1

))}

=

b−1∑

µ=a

{(
N

(
r,

1

ψb+1

)
−N

(
r,

1

ψb

))
−

(
N

(
r,

1

ψµ+1

)
−N

(
r,

1

ψµ

))}

= (b− a)

(
N

(
r,

1

ψb+1

)
−N

(
r,

1

ψb

))
−N

(
r,

1

ψb

)
+N

(
r,

1

ψa

)
.

Elimination of N(r, 1/ψb+1) from (3.5) and (3.6) gives exactly the assertion (3.3).
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Corollary 3.1. Let g , k and ψn be as in Theorem 3.2 . If g is not an

exponential sum then

(3.7) N
(
r,

1

ψn

)
≥ (1 − ε)N

(
r,

1

ψn−1

)
+ S(r, g)

for all n ∈ N and all ε > 0 . In particular,

(3.8) N
(
r,

1

ψn

)
≥ (1 − ε)N

(
r,

1

g

)
+ S(r, g)

for all n ∈ N and all ε > 0 . The factor 1 − ε in (3.7) and (3.8) cannot be

replaced by any factor greater than 1 .

Proof. Theorem 3.2 with a = n− 1, b = n gives

N
(
r,

1

ψn

)
≥

c− n

c− n+ 1
N

(
r,

1

ψn−1

)
+ S(r, g).

By letting c → ∞ the assertion (3.7) follows. Example 3.2 shows that the factor
(1 − ε) is best possible in the sense stated in the corollary.

Remark 3.2. If we neglect the term S(r, g) in equation (3.3), this equation
means that for every fixed r > 0 the function n 7→ N(r, 1/ψn) is concave on
{0, 1, . . . , m} .

Remark 3.3. Setting a = 0 in (3.3) and using N(r, 1/ψ0) = 0 gives

1

c
N

(
r,

1

ψc

)
≤

1

b
N

(
r,

1

ψb

)
+ S(r, g)

for 0 < b < c ≤ m . This is a more precise estimate for the functions ψn than the
estimate of the more general Theorem 3.1.

Combining Lemma 3.1 and Corollary 3.1 we now prove that the counting
function of the zeros of a Wronskian of g and arbitrary derivatives of g can be
estimated from below in terms of the counting function of the zeros of g .

Theorem 3.3. Let g be an entire function which is not an exponential sum.

Let k0, k1, . . . , kn−1 ∈ N0 be pairwise distinct. Then we have for every ε > 0
(3.9)

N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
)
≥ (1−ε)N

(
r,

1

W
(
g(k0), . . . , g(kn−2)

)
)
+S(r, g).

If min{k0, . . . , kn−1} = 0 then, in particular, for every ε > 0

(3.10) N
(
r,

1

W
(
g(k0), . . . , g(kn−1)

)
)
≥ (1 − ε)N

(
r,

1

g

)
+ S(r, g).

The factor (1 − ε) in (3.9) and (3.10) cannot be replaced by any factor greater

than 1 .
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Proof. We may assume that min{k0, . . . , kn−1} = 0. First we prove that

(3.11)

N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
)
≥ N

(
r,

1

W
(
g(k0), . . . , g(kn−2)

)
)

− εN
(
r,

1

g

)
+ S(r, g)

for every ε > 0. Applying (3.11) repeatedly gives (3.10). Finally (3.9) follows
from (3.11) and (3.10).

We prove (3.11) using induction on

d := d(k0, . . . , kn−1) := max{k0, . . . , kn−1} − n.

Note that d ≥ −1.
First we consider the case d = −1. Then {k0, . . . , kn−1} is a permutation of

{0, 1, . . . , n− 1} . We set j := kn−1 and define functions ψl , l ∈ N0 , by ψ0 = 1
and

ψl := W
(
g, g′, . . . , g(l−1)

)
for l ∈ N.

There exist s1, s2 ∈ {−1, 1} such that

W
(
g(k0), . . . , g(kn−1)

)
= s1ψn

and

W
(
g(k0), . . . , g(kn−2)

)
= s2W

(
g, . . . , g(j−1), g(j+1), . . . , g(n−1)

)

= s2W0,...,j−1,j+1,...,n−1

(
g, g′, . . . , g(n−2)

)

= s2
W0,...,j−1,j+1,...,n−1

(
g, g′, . . . , g(n−2)

)

W
(
g, g′, . . . , g(n−2)

) ψn−1.

Using Lemma 2.3 and the first main theorem of the Nevanlinna theory it follows
that

(3.12)

N
(
r,

1

W
(
g(k0), . . . , g(kn−2)

)
)
−N

(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
)

≤ N
(
r,

1

ψn−1

)
−N

(
r,

1

ψn

)
+ S(r, g).

Because of Corollary 3.1 and Theorem 3.1, the right hand side of (3.12) can be
estimated from above by

εN
(
r,

1

ψn

)
+ S(r, g) ≤ εnN

(
r,

1

g

)
+ S(r, g)
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for every ε > 0. This proves (3.11) in the case d = −1.
Now let d ≥ 0. There exists kn ∈ N0 such that

kn ≤ max{k0, . . . , kn−1} and kn /∈ {k0, . . . , kn−1}.

Applying Lemma 3.1 gives

N
(
r,

1

W
(
g(k0), . . . , g(kn−2)

)
)
−N

(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1)

)
)

≤ N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn)

)
)

−N
(
r,

1

W
(
g(k0), . . . , g(kn−2), g(kn−1), g(kn)

)
)

+ S(r, g).

Since

d(k0, . . . , kn) = max{k0, . . . , kn} − (n+ 1) = d− 1,

the assertion (3.11) follows using the induction hypothesis.

From Theorem 3.1 and Theorem 3.3 we conclude

Corollary 3.2. Let g be an entire function which is not an exponential sum.

If k1, . . . , kn−1 ∈ N are pairwise distinct then

N
(
r,

1

W
(
g, g(k1), . . . , g(kn−1)

)
)

= S(r, g) if and only if N
(
r,

1

g

)
= S(r, g).

4. Results for exponential polynomials

The counting function of the zeros of an exponential sum g is determined by
the exponents γ1, . . . , γp in the representation (1.2).

Lemma 4.1 ([12, §2]). Let g be the exponential sum (1.2) . Then

N
(
r,

1

g

)
=

L

2π
r +O(log r) for r → ∞

where L is the length of the convex hull of the points γ1, . . . , γp in C .

For the Wronskians ψn := W
(
g, g′, . . . , g(n−1)

)
, n ∈ N , Theorem C gives

sharp upper and lower bounds for the counting function of the zeros.
Now we give two examples to show that, in general, it is not possible to

estimate the zeros of W
(
g, g(k1), . . . , g(kn−1)

)
from below in terms of the zeros

of g , if g is an exponential sum.
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Example 4.1. Let 0 < γ < δ and g(z) = e−γz + eγz + eδz . Then

W (g, g′′) = (δ2 − γ2)
(
(δ + γ)e(δ−γ)z + (δ − γ)e(δ+γ)z

)
.

Lemma 4.1 gives

N
(
r,

1

g

)
=
δ + γ

π
r +O(log r) and N

(
r,

1

W (g, g′′)

)
=

2γ

π
r +O(log r),

hence

N
(
r,

1

W (g, g′′)

)
=

2γ

δ + γ
N

(
r,

1

g

)
+O(log r).

Example 4.2. Let δ > 0 and g(z) = z + eδ . Then

W (g, g′′) = δ3zeδz .

Now we have

N
(
r,

1

g

)
=
δ

π
r +O(log r) and N

(
r,

1

W (g, g′′)

)
= O(log r),

thus

N
(
r,

1

W (g, g′′)

)
= S(r, g).

Only if the order m of the exponential sum is large enough, the methods from
the last section can be used again.

Theorem 4.1. Let g be an exponential sum of order m and 1 ≤ k1 < k2 <
· · · < kn−1 . If m ≥ 2kn−1 + 1 then

N
(
r,

1

W
(
g, g(k1), . . . , g(kn−2), g(kn−1)

)
)
≥ N

(
r,

1

W
(
g, g(k1), . . . , g(kn−2)

)
)
+O(log r)

and, in particular,

N
(
r,

1

W
(
g, g(k1), . . . , g(kn−1)

)
)
≥ N

(
r,

1

g

)
+O(log r).

Proof. Again we define for l ∈ N

ψl = W
(
g, g′, g′′, . . . , g(l−1)

)
.

Proceeding as in the proof of Theorem 3.3, repeated application of Lemma 3.1
gives

(4.1)

N
(
r,

1

W
(
g, g(k1), . . . , g(kn−2)

)
)
−N

(
r,

1

W
(
g, g(k1), . . . , g(kn−2), g(kn−1)

)
)

≤ N
(
r,

1

ψkn−1

)
−N

(
r,

1

ψ1+kn−1

)
+O(log r).

From Theorem C we have

N
(
r,

1

ψkn−1

)
= N

(
r,

1

ψm−kn−1

)
+O(log r).

Since kn−1 < 1+kn−1 ≤ m−kn−1 , we can use (3.3) in Theorem 3.2 with a = kn−1 ,
b = 1 + kn−1 and c = m− kn−1 . It follows that the right hand side of (4.1) is less
than O(log r) .
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5. Estimates for meromorphic functions using the

recursion formulas for Wronskians

In this section f will always be a meromorphic function which is not an
exponential sum. Define the functions ψn, n ∈ N0 , by

(5.1) ψ0 = 1, ψn = W
(
f, f ′, f ′′, . . . , f (n−1)

)
for n ∈ N.

Lemma 5.1. N(r, ψn) = nN(r, f) + (n− 1)nN(r, f) for n ∈ N0 .

Proof. ψn can have a pole only where f has a pole. It remains to show that if
f(z0) = ∞ with multiplicity p then ψn(z0) = ∞ with multiplicity np+ (n− 1)n .
This follows from the following lemma.

Lemma 5.2. Let f1, . . . , fn be meromorphic functions and z0 ∈ C . If

fj(z0) = ∞ with multiplicity pj , j = 1, . . . , n,

where 1 ≤ p1 < p2 < · · · < pn , then W (f1, f2, . . . , fn)(z0) = ∞ with multiplicity

p1 + · · ·+ pn + 1
2
(n− 1)n.

Proof. (By induction.) For n = 1 there is nothing to show. For n ≥ 2 we
have

W (f1, . . . , fn) = fn
1 W

(
1,
f2
f1
, . . . ,

fn

f1

)
= fn

1 W

((f2
f1

)′

, . . . ,
(fn

f1

)′
)
.

Using the induction hypothesis, the right hand side has a pole of multiplicity

np1+(p2−p1+1)+· · ·+(pn−p1+1)+ 1
2
(n− 2)(n− 1) = p1+· · ·+pn+ 1

2
(n− 1)n.

Lemma 5.3. For n ∈ N we have

N
(
r,

1

ψn−1

)
+N

(
r,

1

ψn+1

)
≤ 2N

(
r,

1

ψn

)
+ 2N(r, f) + S(r, f).

Proof. As in the proof of Lemma 3.1, it follows from the recursion formulas
for Wronskians (Lemma 2.1 (iv)) that

(5.2) ψn−1ψn+1 = W (ψn, ψ
′
n) = ψ2

n

(ψ′
n

ψn

)′

.

Applying the first main theorem to (5.2) gives

(5.3)

N
(
r,

1

ψn−1

)
−N(r, ψn−1) +N

(
r,

1

ψn+1

)
−N(r, ψn+1)

= 2N
(
r,

1

ψn

)
− 2N(r, ψn) +m(r, q′n) −m

(
r,

1

q′n

)
+O(1)

with qn := ψ′
n/ψn . The lemma of the logarithmic derivative yields m(r, q′n) =

S(r, f) . From Lemma 5.1 we conclude that

N(r, ψn−1) − 2N(r, ψn) +N(r, ψn+1) = 2N(r, f).

Combining this with (5.3) gives the assertion.
Proceeding now as in the proof of Theorem 3.2, we conclude the following

theorem from Lemma 5.3.
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Theorem 5.1. Let f be a meromorphic function which is not an exponential

sum and define the functions ψn, n ∈ N0 , by (5.1) . Then

N
(
r,

1

ψb

)
≥
c− b

c− a
N

(
r,

1

ψa

)
+
b− a

c− a
N

(
r,

1

ψc

)
− (b− a)(c− b)N(r, f) + S(r, f)

for 0 ≤ a < b < c .

Setting a = 1, b = n , c = n+m and using N(r, 1/ψc) ≥ 0 for r > 1 gives

Corollary 5.1. Let f and ψn be as in Theorem 5.1 . Then

(5.4) N
(
r,

1

f

)
≤

(
1 +

n− 1

m

)
N

(
r,

1

ψn

)
+ (n− 1)(n+m− 1)N(r, f) + S(r, f)

for n,m ∈ N .

Remark 5.1. If f is an entire function or, more generally, N(r, f) = S(r, f) ,
one can let m tend to ∞ in (5.4). The result is again the left hand inequality of
Theorem B.

Example 5.1. If f is not an exponential sum then setting n = 2 and m = 1
in (5.4) gives

N
(
r,

1

f

)
≤ 2N

(
r,

1

W (f, f ′)

)
+ 2N(r, f) + S(r, f).

6. Common solutions of two linear differential equations

Given two homogeneous linear differential equations L1[w] = 0 and L2[w] = 0
there always exists a homogeneous linear differential equation M [w] = 0 whose
solutions are exactly the common solutions of the given two equations. The co-
efficients of M are rational functions of the coefficients of L1 and L2 and their
derivatives.

In this section, we develop formulas to compute the coefficients of M in terms
of the coefficients of L1 and L2 .

We denote by L the vector space of all linear differential operators

L = anDn + an−1D
n−1 + · · ·+ a1D + a0

where D = d/dz and the coefficients a0, . . . , an are meromorphic functions. If
an 6≡ 0, ord(L) = n is the order of L , ord(0) = −∞ .

Together with the composition as multiplication, L is a non-commutative
ring.

Lemma 6.1 ([6, §5.4]). Given L1, L2 ∈ L \ {0} there exist P,Q ∈ L such

that

L1 = PL2 +Q and ord(Q) < ord(L2).

Using the Euclidean algorithm, the following lemma is an easy consequence
of the previous one.
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Lemma 6.2. Given L1, L2 ∈ L \{0} there exists a unique M ∈ L satisfying

(i) M = P1L1 + P2L2 with some P1, P2 ∈ L ,

(ii) L1 = Q1M and L2 = Q2M with some Q1, Q2 ∈ L ,

(iii) the main coefficient of M is 1 .

M is called the greatest common divisor of L1 and L2 .

Lemma 6.3. Let L1, L2 ∈ L \ {0} and let M be the greatest common

divisor of L1 and L2 . Let m = ord(L1) and n = ord(L2) . Then for every

k ∈ N0 , ord(M) ≥ k if and only if there exist R1, R2 ∈ L \ {0} such that

(6.1) ord(R1) ≤ n− k, ord(R2) ≤ m− k and R1L1 = R2L2.

Proof. Let U be an open disk in the plane where all the coefficients of L1 ,
L2 and M are holomorphic and the main coefficients have no zeros.

Suppose that there exist R1, R2 ∈ L \{0} satisfying (6.1). Let f1, . . . , fm be
a fundamental system of L1[w] = 0 in U . Then R2L2[fj ] = 0 for j = 1, . . . , m .
Since ord(R2) ≤ m − k , at most m − k of the functions L2[f1], . . . , L2[fm] are
linearly independent. Without loss of generality we may assume that

L2[fj] = cj,k+1L2[fk+1] + · · ·+ cj,mL2[fm]

with constants cj,k+1, . . . , cj,m ∈ C , j = 1, . . . , k . Define functions v1, . . . , vk by

vj = fj − cj,k+1fk+1 − · · · − cj,mfm, j = 1, . . . , k.

Then L2[vj ] = 0 and hence M [vj] = 0. Since v1, . . . , vk are linearly independent,
it follows that ord(M) ≥ k .

Now we suppose that ord(M) ≥ k . Let (f1, . . . , fl) be a fundamental sys-
tem of M [w] = 0 in U , l = ord(M) . There are functions g1, . . . , gm−l and
h1, . . . , hn−l , holomorphic in U , such that

(f1, . . . , fl, g1, . . . , gm−l) is a fundamental system of L1[w] = 0 in U and

(f1, . . . , fl, h1, . . . , hn−l) is a fundamental system of L2[w] = 0 in U.

Define K ∈ L by

K[w] = W (f1, . . . , fl, g1, . . . , gm−l, h1, . . . , hn−l, w).

Every solution of L1[w] = 0 is also a solution of K[w] = 0. Using Lemma 6.1 we
see that there is a R1 ∈ L such that K = R1L1 . We have

ord(R1) = ord(K) − ord(L1) = (m+ n− l) −m = n− l ≤ n− k.

Similarly, there exists a R2 ∈ L satisfying K = R2L2 and ord(R2) ≤ m − k .
Then R1L1 = K = R2L2 and the assertion follows.
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Lemma 6.4. Let L1, L2 ∈ L \ {0} be defined by

L1 = amDm + am−1D
m−1 + · · ·+ a1D + a0, am 6≡ 0,

L2 = bnDn + bn−1D
n−1 + · · · + b1D + b0, bn 6≡ 0.

Let M be the greatest common divisor of L1 and L2 , k = ord(M) . Then

M = Dk +
ck−1

ck
Dk−1 + · · ·+

c1
ck

D +
c0
ck

where

cj =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,0 ak+1,0 · · · am,0 0 · · · 0
aj,1 ak+1,1 · · · am+1,1 0 · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...
...

...
. . . 0

aj,n−k−1 ak+1,n−k−1 · · · am+n−k−1,n−k−1

bj,0 bk+1,0 · · · bn,0 0 · · · 0
bj,1 bk+1,1 · · · bn+1,1 0 · · · 0
...

...
. . .

. . .
...

...
...

. . . 0
bj,m−k−1 bk+1,m−k−1 · · · bm+n−k−1,m−k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for j = 0, . . . , k . The meromorphic functions al,j and bl,j are defined by

DjL1 =

m+j∑

l=0

al,jD
l for j = 0, . . . , n− k − 1,

DjL2 =

n+j∑

l=0

bl,jD
l for j = 0, . . . , m− k − 1.

Proof. Let
P1 = αn−k−1D

n−k−1 + · · ·+ α1D + α0,

P2 = βm−k−1D
m−k−1 + · · · + β1D + β0

and M̃ = P1L1 +P2L2 with meromorphic coefficients α0, . . . , αn−k−1 and β0, . . .,
βm−k−1 . Setting

al,j = 0 for l > m+ j and bl,j = 0 for l > n+ j,
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gives

M̃ =
n−k−1∑

j=0

αj

m+j∑

l=0

al,jD
l +

m−k−1∑

j=0

βj

n+j∑

l=0

bl,jD
l

=
m+n−k−1∑

l=0

(n−k−1∑

j=0

al,jαj +
m−k−1∑

j=0

bl,jβj

)
Dl.

We try to determine the functions α0, . . . , αn−k−1 and β0, . . . , βm−k−1 in a way

that M̃ has the exact order k and the main coefficient 1, hence

(6.2)

n−k−1∑

j=0

al,jαj +

m−k−1∑

j=0

bl,jβj =

{
1 for l = k,
0 for l = k + 1, . . . , m+ n− k − 1.

This is a linear system of m+ n− 2k equations for the same number of variables.
Let us first assume that the determinant of the coefficients is identically zero.

In this case we can choose P1 and P2 (not both equal to zero) in such a way that

ord(M̃) < k . On the other hand, using Lemma 6.2 (ii) we see that M̃ = RM

with some R ∈ L , hence M̃ = 0. It follows that

P1L1 = −P2L2, ord(P1) ≤ n− k − 1, ord(P2) ≤ m− k − 1.

This is a contradiction to Lemma 6.3.
Thus the determinant of the coefficients of (6.2) is not identically zero and

there exists a (unique) solution. Because of M̃ = RM with some R ∈ L and

since M and M̃ have the same order and the same main coefficient, it follows
that M̃ = M .

Applying Cramer’s rule to (6.2) gives for the coefficients of M

n−k−1∑

j=0

al,jαj +
m−k−1∑

j=0

bl,jβj =
cl
ck
, l = 0, . . . , k.

7. An estimate using the “method of the greatest common divisor”

Theorem 7.1. Let f be a meromorphic function and define ϕ by

ϕ = W
(
f, f (k1), f (k2), . . . , f (kn−1)

)

where 1 ≤ k1 < k2 < · · · < kn−1 . Assume that

(7.1)
W

(
f, f (k1), f (k2), . . . , f (kn−1), f (kn−1+k1), f (kn−1+k2), . . . , f (kn−1+kn−1)

)
6≡ 0.

Then

N
(
r,

1

f

)
≤ (C + 1)N

(
r,

1

ϕ

)
+ CN(r, f)

where C = (n− 1 + kn−1)(n− 1) .
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Remark 7.1. Note that (7.1) is satisfied if f is not an exponential sum, in
particular if f has at least one pole.

Example 7.1. (Compare Theorem D.) Let f be a meromorphic function. If
W (f, f ′, f ′′) 6≡ 0 then

N
(
r,

1

f

)
≤ 3N

(
r,

1

W (f, f ′)

)
+ 2N(r, f) + S(r, f).

Proof of Theorem 7.1. Let p := kn−1 . We define linear differential operators
L1, L2 ∈ L by

L1[w] =
W

(
f, f (k1), f (k2), . . . , f (kn−1), w

)

W
(
f, f (k1), f (k2), . . . , f (kn−1)

) and L2[w] = L1[w
(p)].

Let M be the greatest common divisor of L1 and L2 . Since L1[f ] = L2[f ] = 0
we have

(7.2) M [f ] = 0.

We want to show that ord(M) = 1. To this aim, let v be an arbitrary local
solution of M [w] = 0. Then L1[v] = L2[v] = 0 and hence

v = α0f + α1f
(k1) + · · · + αn−1f

(kn−1) where α0, . . . , αn−1 ∈ C

and

v(p) = β0f + β1f
(k1) + · · · + βn−1f

(kn−1) where β0, . . . , βn−1 ∈ C.

Thus

α0f
(kn−1)+α1f

(kn−1+k1)+· · ·+αn−1f
(kn−1+kn−1) = β0f+β1f

(k1)+· · ·+βn−1f
(kn−1).

Using the assumption (7.1) it follows that α1 = α2 = · · · = αn−1 = 0. Hence we
have v = α0f with α0 ∈ C . It follows that the order of M is equal to 1.

Now we write L1 in the form

L1 = Dn + an−1D
n−1 + · · ·+ a1D + a0.

Then
L2 = Dp+n + an−1D

p+n−1 + · · · + a1D
p+1 + a0D

p

and M = D + c0/c1 where c0 and c1 are given in Lemma 6.4. It follows from
(7.2) that f ′/f = −c0/c1 and hence

(7.3)
N

(
r,

1

f

)
+N(r, f) ≤ N(r, c0) +N

(
r,

1

c1

)

≤ N(r, c0) +N(r, c1) +m(r, c1) +O(1).



110 Martin Reinders

We will estimate the terms on the right hand side of this inequality separately.
Using Lemma 6.4 gives

(7.4)

cj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,0 a2,0 · · · an−1,0 1 0 · · · · · · · · · · · · · · · 0
aj,1 a2,1 · · · · · · an,1 1 0 · · · · · · · · · · · · 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
aj,n+p−2 a2,n+p−2 · · · · · · · · · · · · · · · · · · · · · · · · a2n+p−3,n+p−2 1

0 · · · 0 a0,0 · · · · · · · · · an−1,0 1 0 · · · 0

0 · · · 0 a0,1 · · · · · · · · · · · · an,1 1
. . .

...
...

...
...

. . .
. . . 0

0 · · · 0 a0,n−2 · · · · · · · · · · · · · · · · · · a2n−3,n−2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for j = 0 and j = 1. Here the meromorphic functions al,j are defined by

DjL = Dn+j +

n+j−1∑

l=0

al,jD
l for j = 0, . . . , n+ p− 2.

The al,j are polynomials in the coefficients a0, . . . , an−1 of L1 and their deriva-
tives. It follows from Lemma 2.2 that

m(r, al,j) = S(r, f) for j = 0, . . . , n+ p− 2 and l = 0, . . . , n+ j − 1.

Hence

(7.5) m(r, c1) = S(r, f).

Poles of c0 and c1 can only occur where at least one of the functions al,j and
hence at least one of the functions a0, . . . , an−1 has a pole. Since

al = (−1)n−lW0,...,l−1,l+1,...,n

(
f, f (k1), f (k2), . . . , f (kn−1)

) 1

ϕ

for l = 0, . . . , n− 1, we have

(7.6) N(r, c0) ≤ N
(
r,

1

ϕ

)
+N(r, f).
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Now let z0 be a pole of c1 . The Fuchsian theory (see [6, §15.3], for example)
applied to the equation L1[w] = 0 gives

al(z0) = ∞ with multiplicity at most n− l

for l = 0, . . . , n− 1. It follows that

al,j(z0) = ∞ with multiplicity at most n+ j − l

for j = 0, . . . , n+ p− 2 and l = 0, . . . , n+ j − 1. Using (7.4) with j = 1 we get

c1(z0) = ∞ with multiplicity at most (n+ p− 1)(n− 1)

and thus

(7.7) N(r, c1) ≤ (n+ p− 1)(n− 1)

(
N

(
r,

1

ϕ

)
+N(r, f)

)
.

Substitution of (7.5), (7.6) and (7.7) in (7.3) gives exactly the assertion of the
theorem.
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