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Abstract. We prove that if a nonconstant holomorphic function f satisfies a non-discrete
family of functional equations of the form f(az 4+ b) = P(f(z)) where a # 0 and b are constants
and P is a polynomial of degree k > 2, then f must be an exponential function.

Let D be a domain of the complex plane C, and let Aff(D) be the group of
all holomorphic polynomials of degree one mapping D onto itself. Every element
¢ € Aff(D) is an affine conformal automorphism of D, and Aff(D) is a closed
subgroup of the Lie group Aff(C).

Let f: D — C be a holomorphic function, and let ¢ € Aff(D). We say that
¢ is a polymorphism of f if there exists a polynomial P such that fo¢p = Po f.
If f is nonconstant, then P is uniquely determined by ¢; we say that P is the
polynomial associated with the polymorphism ¢, and the degree deg P of P is
the f-degree of ¢.

Let II(f) be the set of polymorphisms of f. Then II(f) is a topological
semigroup: if fo¢; = Pjo f for j =1, 2, then fo(¢10¢p2) =(ProPs)of. The
identity element of II(f) is the trivial polymorphism of f.

Many elementary functions have nontrivial polymorphisms. For example,
nonconstant homogeneous polynomials are associated with polymorphisms of e,
and Chebyshev polynomials are associated with polymorphisms of cosz. The
power function f(z) = z" has a non-discrete group of polymorphisms of f-degree
one for each k # 0. In general, if f admits nontrivial polymorphisms of f-degree
one, then f is a polymorphic function in the sense of Pommerenke [7].

Each polymorphism of a nonconstant holomorphic function f gives rise to a
linearization of the associated polynomial. The linearizing map f linearizes simul-
taneously all polynomials associated with elements of II(f). For entire functions
the problem of simultaneous linearization has been studied already by Fatou [4]
and Julia [6].

We say that two holomorphic functions f: D — C and g: D — C are conju-
gate if there exist o € Aff(D) and 7 € Aff(C) such that foo =71o0g. If f and
g are conjugate, then II(f) and II(g) are isomorphic.
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Let IIx(f) be the subset of II(f) of polymorphisms of f-degree k. In this
article we show that IT(f) is always discrete for k£ > 2 unless f is either con-
stant or conjugate to the exponential function. This result answers affirmatively
a question raised in [3] where a similar theorem was proved in the case k = 2.

Theorem 1. Let f: D — C be a nonconstant holomorphic function, and
suppose that I (f) is not discrete for some k > 2. Then D is either the whole
plane C or a half plane and f is conjugate to the exponential function e .

The idea of proof of Theorem 1 differs slightly from the approach used in [3]
where we obtained f as a solution of a differential equation. Now we show, by
using analytic continuation, that under the hypotheses of Theorem 1 f must be
the restriction of an entire function.

For entire functions Theorem 1 can be proved under weaker assumptions. It
suffices to assume that f is locally one-to-one and that there exist £k > 2 and
¢ € I (f) such that ¢ has a fixed point in C. By using Picard’s theorem as in
[3] we can then show that the polynomial P associated with ¢ is conjugate to a
homogeneous polynomial and that f satisfies the same differential equation as the
exponential function e*.

Before proving Theorem 1 we introduce some additional terminology. We say
that an element ¢ € Aff(C) is a pseudopolymorphism of f: D — C if there is a
subdomain D’ C D and a polynomial P such that ¢(D') C D and f(¢(z)) =
P(f(z)) for each z € D’. If T is an open interval of R and a € R, we define a
half-strip

S(a,I)={x+iy|z>aand y eI}

and a corresponding strip
S(I)={z+iy|y eI}

The following lemma contains the key argument on analytic continuation
needed in the proof of Theorem 1.

Lemma 1. Let g be holomorphic and one-to-one in S(«, I), and suppose that
there exists 3 € R such that the translation z — z + 3 is a pseudopolymorphism
of g.

(a) If 3 <0, then g has a holomorphic extension to S(I).
(b) If B > 0, then I can be divided into finitely many subintervals Iy,..., I,

such that for each j € {1,...,m} the restriction of g to S(a,I;) has a

holomorphic extension to S(I;).

Proof. By hypothesis there exists a polynomial P such that

(1) 9(z+0) = P(g(2))
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for each z in a subdomain of S(a,I).

(a) If B <0, we can define an extension of g to S(a+ 3,1) so that

(2) 9(z) = P(g(z— 9))

for each z € S(a + (3,1). This follows from the fact that the right hand side of
(2) is defined and holomorphic in S(a + 3,1) and agrees with g in a subdomain
of S(a,I). Since z — z + 3 is a pseudopolymorphism of this extension of g, we
may proceed by induction and obtain an extension of g to S(a + ng,I) for each
n>0.

(b) The forward orbit of a point w € C under P consists of all points of the
form P°"(w) where P°" is the nth iterate of P. Let Y be the set of all y € T
such that g(z + iy) is contained in the forward orbit of a critical point of P for
some = > «. Suppose that g(z; +1iy1) and g(z2 +iy2) are contained in the same
orbit so that e.g. g(z1+iy1) = P°"g(x2 +iy2) for some n > 0. Then by iteration
of (1) it follows that g(x1 + iy1) = g(x2 + nB + iys2), and hence y; = y2 because
g is one-to-one. Thus different points of Y correspond to different critical points
of P, and we conclude that Y is finite.

Let J be any open subinterval of I contained in the complement of Y. It
remains to prove that the restriction of g to S(«,J) has a holomorphic extension
to S(J).

Let D be the set of all w € C such that the forward orbit of w under P
contains points of g(S (a, J )) There is an obvious equivalence relation in D:
points wi, we € D are equivalent if their forward orbits intersect each other.
The quotient space under this relation is a Riemann surface X, and the canonical
projection ©: D — X is a covering map; this follows from the fact that P is
one-to-one in g(S(w, J)) and orbits of all critical points of P lie outside of D.

A similar equivalence relation can be defined in S(«,J) and in S(J): two
points are equivalent if their difference is a multiple of 3. These relations in
S(a,J) and in S(J) have the same quotient space F, and g maps equivalent
points of S(a,.J) to equivalent points of D. Hence g induces a holomorphic
quotient map g.: £ — X, and the restriction of g to S(a,J) is actually a lifting

of the composite map S(«, J) " B2 X where T, is the natural projection. This
projection extends to the canonical projection m: S(J) — E. Since S(J) is simply
connected and 1: D — X is a covering map, the map g,on has a lifting g: S(J) —
D which agrees with g in S(«,J) and so is the desired holomorphic extension
of g. This completes the proof of Lemma 1.

Lemma 2. If k > 2 and f is nonconstant, then each element of Il (f) is of

infinite order. Moreover, the intersection of Il (f) with every abelian subgroup
of Aff (D) is discrete.
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Proof. If ¢ € T (f), there is a polynomial P of degree k such that fo¢ =
Po f. Then fo¢°™ = P°" o f for each positive integer n, and we conclude
that ¢°™ € Ik, (f), because deg P°"™ = kn. Thus the polymorphisms ¢°" are all
distinct, because they have different f-degrees.

To prove the second assertion of the lemma let I' be an abelian subgroup
of Aff(D). Let & be the set of all polynomials associated with an element of
I NI(f). If P, € & for j = 1, 2, there exist ¢; € I' N IIx(f) such that
fop; =Pjof. Since fo(p;o0¢;)=(P;oP;)of fori, j=1, 2 and since I is
abelian, it follows that P; o P, = P, o P;. Therefore all elements of & commute
with each other. Thus & is finite, because the number of polynomials of degree
k commuting with a given polynomial of degree k is finite [5].

It might happen that a polynomial P € & is associated with several poly-
morphisms in the set I'NII,(f). However, the set of such polymorphisms is always
a discrete subset of Aff(D) [3, Lemma 4]. Since & is finite, we conclude that
NI, (f) is discrete.

In the proof of Theorem 1 we shall also need the following result which deals
with contracting polymorphisms of a function defined in the upper half plane
H ={z€ C|Imz > 0}. We say that a polymorphism ¢ € II(f) is contracting if
¢'] < 1.

Theorem 2. Suppose that f: H — C is holomorphic and that II( f) contains
two contracting polymorphisms which do not commute. Then f has a holomorphic
extension to the boundary of H only if f is a polynomial of degree < 1.

Proof. Let ¢1,¢2 € II(f) be contracting polymorphisms which do not com-
mute. Then there exist polynomials P;, P, such that

(3) fogj=PFiof (1=1,2)

Suppose that f has a holomorphic extension to the boundary of H, and let &;
be the attracting fixed point of ¢;. Note that {; # > because ¢; and ¢ do not
commute. Since ¢; and ¢, are contracting, both & and &5 lie on the real axis;
we may assume that & < &;.

We prove first that the holomorphic extension of f to any domain containing
& and & is either constant or one-to-one. If f is not one-to-one, there exist z;
and zo such that z; # zo and f(z1) = f(22). Then iteration of (3) shows that
F(#5™(z1)) = f(#3™(22)) for each n > 1, and it follows that f is not locally
one-to-one at & = lim, o0 @5 (21) = lim;, o0 #5"(22). Thus f'(£2) = 0, and by
differentiation of f o ¢{™ = Pf™ o f we conclude that f(¢7"(£2)) = 0 for each
n > 1. But then the zeros of f’ accumulate at & = lim,,_, ¢7"(£2) and we see
that f must be constant.

Next assume that the extension of f is one-to-one. It suffices to prove that
f is the restriction of an entire function, because every holomorphic injection of

C is an element of Aff(C).
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The function g defined by

(4) g(w) = f(e™" + &)

satisfies the hypotheses of Lemma 1 (b) for 8 = log1/¢,. In fact, since f has a
holomorphic extension to a neighborhood V of &, g is defined and holomorphic
in S(a, (0,7)) if o is sufficiently large. Moreover, because (3) holds in V by
analytic continuation and because ¢2(z) = (z — &2)¢h + &2 for each z € C, we
have

(5) g(w+B) = fle” T+ &) = fpa(e ™ +&)) = Po(f(e™™ +&)) = Pag(w)

for each w € S(e, (0,7)).

Let Y be the set of all y € (0, 7) such that the restriction of g to S(a, (0,y))
has a holomorphic extension to S ((O, y)) By Lemma 1 (b) Y is not empty, and
it is evident that Y is closed in (0, 7). We show next that Y is also open.

The domain of the equations (3), (4) and (5) can be enlarged by analytic
continuation. In fact, g can be defined by (4) not only in S(a, (0,7)) but also in
S((—,0)) and on the real axis. By analytic continuation (5) holds also in this
larger domain. For j = 1 equation (3) is equivalent to

(6) g (log = Pig (log

50-5) =

¢1(2) — & z—&

where z € H. If y € Y, the right side of (6) is defined and holomorphic in the
domain A, = {z € C\ {&} | —y < arg(z — &) < 7}, and therefore (6) defines a

holomorphic extension of g to the domain

1
; g1 |-ea,)
( ) g (bl (Z) o 52 Yy
Since & < & and ¢; is contracting, A, contains all points of the form 1t (2)
where arg(z — &) = —y. Consequently the domain (7) contains all points w with

Imw =y. Hence Y is open.

We conclude that Y = (0,7), because Y is nonempty, open and closed in
(0,7). Thus g is holomorphic in S((—m, 7)), and it follows that f has a holomor-
phic extension to the whole complex plane C. Note that branch points cannot
occur, because by assumption f has a single-valued holomorphic extension to the
real axis. The proof of Theorem 2 is now complete.

Proof of Theorem 1. Let k > 2 be such that II;(f) is not discrete. Then there
exists a sequence of distinct polymorphisms ¢; € II;(f) such that lim; . ¢; =
Y € i (f). Moreover, since II;(f) is contained in Aff(D), the group Aff(D) is not
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discrete. Domains with this property have been classified in [2]. The classification
shows that if D is not the whole plane C or a half plane, then either Aff(D) is
abelian or D is the image of a strip under an element of Aff(C).

If D is affinely equivalent to a strip, then each element of IIj(f) is either
a translation or an involution of order two. However, in view of Lemma 2 no
involutions can occur, so that each element of Il (f) belongs to the abelian group
of translations of D. By Lemma 2 this is impossible, because IT;(f) is not discrete.
It also follows from Lemma 2 that Aff(D) cannot be abelian if II;(f) is not
discrete. We conclude that D is either the whole plane C or a half plane.

Next we show that f’(z) # 0 for each z € D. For each j choose a polynomial
P; such that deg P; = k and

(8) foo;="Pjof,

and let X = {z € D | f’(2) = 0}. Differentiation of (8) shows that ¢;(X) C X
for each j. Since {¢;} is not discrete in Aff(D), Lemma 3 of [3] implies that
there exists at most one point zo € D such that the set of points ¢;(2¢) is discrete
in D. On the other hand X is discrete in D because f is nonconstant. It follows
that X contains at most one point. However, such a point would be a fixed point
of each ¢;, because ¢;(X) C X for each j. This contradicts Lemma 2, because
the stabilizer of a point of D is an abelian subgroup of Aff(D). We conclude that
X must be empty.
To examine the dependence of P; on ¢; we write

Pj(w) = ajo + ajyw + - - - + ajpw”

and try to express the coefficients ajo, ..., a;, of P; in terms of ¢;. To this end
we differentiate (8) k times with respect to the independent variable z € D. Since
(,75"7 is a nonzero constant, this differentiation yields

(f/°¢j)¢;' :(Pj{of)f/:le(ﬁf/)

9 (f" 0 ¢;)(05)* = (P] o f)(f')* + (Pjo f)f" = Qpa(f, ', )

(F® 0 ) ()" = Quu(fo £, 1o F )

where each ();, is a polynomial of v + 1 variables whose coefficients are linear
expressions of the coefficients of P;. Therefore, together with (8) the equations (9)
constitute a system which is linear with respect to ajo,aj1,...,a;; and admits a
unique solution. More precisely, there is a unique set of constants ajo, a;1, ..., a;x
such that (8) and (9) are satisfied at each z € D.

We show next that these constants depend holomorphically on ¢; and z. The
proof will depend on the following lemma.
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Lemma 3. The Wronskian determinant W (1, f, f2,..., f*) is equal to
A (f/)k(k+1)/2

where k!l = 11-2!.. . k!.

Proof. For the proof of this lemma I am indebted to Kari Katajaméki and
Ilpo Laine.
By definition,

difj>

- <1i1,7<k
2 (0<4,5 <k)

WL, 1% 1) = det
so that W (1, f, f2,..., f¥) is also the determinant of the linear system (8)—(9).
Successive expansion of the determinant in terms of the elements of the first
column shows that
(10)
W(la f, fQ7 e fk) _ V!!(V!>(k—u)(f/)V(Qk—V-l-l)/Q

(e ()

for each v =1,... k. The assertion follows from (10) when v = k.

Lemma 3 implies that the determinant of the linear system (8)—(9) is nonzero
at each z € D. In particular, the system admits a unique solution of the form

ajo = ao(Pj, 2), .-, ajr = ag(p;, 2)

where ag, ..., aj are holomorphic functions defined in a subdomain of Aff(C)xD.
Moreover, since the expressions ag(¢;, 2), ..., ar(¢;, 2) are constant with respect
to z for each j, we have

O
(11) @al,(cb,zo):(] 0<v<k p=1,2...)

whenever zy € D and ¢ = ¢; for some j. As in [3] we conclude that given
29 € D there is a subdomain N of Aff(C) containing 1 such that the set M of
all ¢ € N satisfying (11) is a non-discrete complex analytic subset of N. Since
the complex dimension of M at v is positive, it follows from the structure theory
of one-dimensional complex analytic sets [1, p. 68] that there exists a nonconstant
holomorphic map 7 from the open unit disk U into M such that n(0) = .

From the definition of M it follows that for each t € U the polynomial P;
with coefficients ag(n(t), 20), ..., ar(n(t), z0) satisfies

(12) F(n()(2)) = Pi(f(2))
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for each z in a neighborhood of zy. Moreover, because the function ¢ — deg P; is
semicontinuous and deg Py = k, we may assume that deg P, > k for each t € U.

From (12) we see that each element of n(U) is a pseudopolymorphism of f
and, if we choose N small enough as in [3] the composite of two elements of n(U)
is again a pseudopolymorphism of f. Since each abelian subgroup of Aff(C)
contains at most countably many of such pseudopolymorphisms corresponding
to nonlinear polynomials [3, Lemma 6], by repeating the argument presented in
[3, p. 76-77] we conclude that there exists a constant a # 1 and a nonconstant
holomorphic function b: U — C such that

n(t)(2) = az + b(t)

for each (t,z) € U x C.

Let us first consider the case when D is the whole complex plane C. Then
(12) holds by analytic continuation for each (¢,2) € U x C, and we see that II;(f)
is uncountable. Theorem 2 of [3] implies that f is conjugate to the exponential
function e*.

In the remaining case D is a half plane, and by conjugation we may assume
that D is the upper half plane H. Even in this case it suffices to prove that f is
the restriction of an entire function.

Since ¢;(H) = H for each j, ¢;(0) is real and ¢} > 0 for each j. Thus by
continuity b(0) = lim;_, ¢;(0) is real and

d .
a:@n(O):zﬁ’: lim (;5;-

J—00
is real and positive.

Since b is holomorphic and nonconstant and since b(0) is real, there is to € U
such that Imb(tp) < 0. Then (12) defines a holomorphic extension of f to the
domain 7(tp)(H). In particular, f has a holomorphic extension to the real axis,
because Imb(ty) < 0.

There are two cases to consider, according as a <1 or a > 1.

The case a > 1 is easy. In fact, iteration of (12) yields

fon(te)™ =Py, o f

in a subdomain of H, and this equation defines a holomorphic extension of f to
the domain 7(ty)°"(H) for each n > 1. Thus f is the restriction of an entire
function, and by Theorem 2 of [3] f is conjugate to the exponential function e*.
If a < 1, there exist t1, to € U such that b(t;) and b(ty) are different real
numbers. Then 7(¢1) and n(f2) are contracting polymorphisms of f which do
not commute, and f has a holomorphic extension to the boundary of H. By
Theorem 2 f must be the restriction of a linear polynomial. Hence f is the
restriction of an entire function. This completes the proof of Theorem 1.
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For a given domain D it may be of interest to determine the semigroup
Pol (D) of all holomorphic polynomials mapping D one-to-one onto itself. If D
is a strip, a disk or a half plane, it is known that Pol (D) = Aff(D). In these
simple cases Pol (D) does not contain any nonlinear polynomials. On the other
hand, if D is a Siegel disk of a nonlinear polynomial, then Pol (D) contains a
non-discrete subset of nonlinear polynomials, all of which are irrational rotations
of the Siegel disk. We do not know any examples of a situation where Pol (D)
would contain two nonlinear polynomials which are not permutable. However, by
using Theorem 1 we can prove the following general result.

Theorem 3. For each k > 2 the set {P € Pol (D) | deg P = k} is a discrete
subset of the Lie group of conformal automorphisms of D.

In particular, it follows from Theorem 3 that the number of nonlinear poly-
nomials in the group of conformal automorphisms of D is at most countable. A
proof will appear in a different article.
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