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Abstract. We prove that if a nonconstant holomorphic function f satisfies a non-discrete
family of functional equations of the form f(az + b) = P (f(z)) where a 6= 0 and b are constants
and P is a polynomial of degree k ≥ 2 , then f must be an exponential function.

Let D be a domain of the complex plane C , and let Aff(D) be the group of
all holomorphic polynomials of degree one mapping D onto itself. Every element
φ ∈ Aff(D) is an affine conformal automorphism of D , and Aff(D) is a closed
subgroup of the Lie group Aff(C) .

Let f : D → C be a holomorphic function, and let φ ∈ Aff(D) . We say that
φ is a polymorphism of f if there exists a polynomial P such that f ◦φ = P ◦ f .
If f is nonconstant, then P is uniquely determined by φ ; we say that P is the
polynomial associated with the polymorphism φ , and the degree degP of P is
the f -degree of φ .

Let Π(f) be the set of polymorphisms of f . Then Π(f) is a topological
semigroup: if f ◦ φj = Pj ◦ f for j = 1, 2, then f ◦ (φ1 ◦ φ2) = (P1 ◦P2) ◦ f . The
identity element of Π(f) is the trivial polymorphism of f .

Many elementary functions have nontrivial polymorphisms. For example,
nonconstant homogeneous polynomials are associated with polymorphisms of ez ,
and Chebyshev polynomials are associated with polymorphisms of cos z . The
power function f(z) = zκ has a non-discrete group of polymorphisms of f -degree
one for each κ 6= 0. In general, if f admits nontrivial polymorphisms of f -degree
one, then f is a polymorphic function in the sense of Pommerenke [7].

Each polymorphism of a nonconstant holomorphic function f gives rise to a
linearization of the associated polynomial. The linearizing map f linearizes simul-
taneously all polynomials associated with elements of Π(f) . For entire functions
the problem of simultaneous linearization has been studied already by Fatou [4]
and Julia [6].

We say that two holomorphic functions f : D → C and g: D → C are conju-

gate if there exist σ ∈ Aff(D) and τ ∈ Aff(C) such that f ◦ σ = τ ◦ g . If f and
g are conjugate, then Π(f) and Π(g) are isomorphic.
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Let Πk(f) be the subset of Π(f) of polymorphisms of f -degree k . In this
article we show that Πk(f) is always discrete for k ≥ 2 unless f is either con-
stant or conjugate to the exponential function. This result answers affirmatively
a question raised in [3] where a similar theorem was proved in the case k = 2.

Theorem 1. Let f : D → C be a nonconstant holomorphic function, and

suppose that Πk(f) is not discrete for some k ≥ 2 . Then D is either the whole

plane C or a half plane and f is conjugate to the exponential function ez .

The idea of proof of Theorem 1 differs slightly from the approach used in [3]
where we obtained f as a solution of a differential equation. Now we show, by
using analytic continuation, that under the hypotheses of Theorem 1 f must be
the restriction of an entire function.

For entire functions Theorem 1 can be proved under weaker assumptions. It
suffices to assume that f is locally one-to-one and that there exist k ≥ 2 and
φ ∈ Πk(f) such that φ has a fixed point in C . By using Picard’s theorem as in
[3] we can then show that the polynomial P associated with φ is conjugate to a
homogeneous polynomial and that f satisfies the same differential equation as the
exponential function ez .

Before proving Theorem 1 we introduce some additional terminology. We say
that an element φ ∈ Aff(C) is a pseudopolymorphism of f : D → C if there is a
subdomain D′ ⊂ D and a polynomial P such that φ(D′) ⊂ D and f

(

φ(z)
)

=

P
(

f(z)
)

for each z ∈ D′ . If I is an open interval of R and α ∈ R , we define a
half-strip

S(α, I) = {x+ iy | x > α and y ∈ I}

and a corresponding strip

S(I) = {x+ iy | y ∈ I}.

The following lemma contains the key argument on analytic continuation
needed in the proof of Theorem 1.

Lemma 1. Let g be holomorphic and one-to-one in S(α, I) , and suppose that

there exists β ∈ R such that the translation z 7→ z + β is a pseudopolymorphism

of g .

(a) If β < 0 , then g has a holomorphic extension to S(I) .
(b) If β > 0 , then I can be divided into finitely many subintervals I1, . . . , Im

such that for each j ∈ {1, . . . , m} the restriction of g to S(α, Ij) has a

holomorphic extension to S(Ij) .

Proof. By hypothesis there exists a polynomial P such that

(1) g(z + β) = P
(

g(z)
)
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for each z in a subdomain of S(α, I) .

(a) If β < 0, we can define an extension of g to S(α+ β, I) so that

(2) g(z) = P
(

g(z − β)
)

for each z ∈ S(α + β, I) . This follows from the fact that the right hand side of
(2) is defined and holomorphic in S(α+ β, I) and agrees with g in a subdomain
of S(α, I) . Since z 7→ z + β is a pseudopolymorphism of this extension of g , we
may proceed by induction and obtain an extension of g to S(α+ nβ, I) for each
n > 0.

(b) The forward orbit of a point w ∈ C under P consists of all points of the
form P ◦n(w) where P ◦n is the nth iterate of P . Let Y be the set of all y ∈ I
such that g(x+ iy) is contained in the forward orbit of a critical point of P for
some x > α . Suppose that g(x1 + iy1) and g(x2 + iy2) are contained in the same
orbit so that e.g. g(x1 + iy1) = P ◦ng(x2 + iy2) for some n > 0. Then by iteration
of (1) it follows that g(x1 + iy1) = g(x2 + nβ + iy2) , and hence y1 = y2 because
g is one-to-one. Thus different points of Y correspond to different critical points
of P , and we conclude that Y is finite.

Let J be any open subinterval of I contained in the complement of Y . It
remains to prove that the restriction of g to S(α, J) has a holomorphic extension
to S(J) .

Let D be the set of all w ∈ C such that the forward orbit of w under P
contains points of g

(

S(α, J)
)

. There is an obvious equivalence relation in D :
points w1 , w2 ∈ D are equivalent if their forward orbits intersect each other.
The quotient space under this relation is a Riemann surface X , and the canonical
projection ψ: D → X is a covering map; this follows from the fact that P is
one-to-one in g

(

S(α, J)
)

and orbits of all critical points of P lie outside of D .

A similar equivalence relation can be defined in S(α, J) and in S(J) : two
points are equivalent if their difference is a multiple of β . These relations in
S(α, J) and in S(J) have the same quotient space E , and g maps equivalent
points of S(α, J) to equivalent points of D . Hence g induces a holomorphic
quotient map g∗: E → X , and the restriction of g to S(α, J) is actually a lifting

of the composite map S(α, J)
πα→E

g∗
→X where πα is the natural projection. This

projection extends to the canonical projection π: S(J) → E . Since S(J) is simply
connected and ψ: D → X is a covering map, the map g∗◦π has a lifting g̃: S(J) →
D which agrees with g in S(α, J) and so is the desired holomorphic extension
of g . This completes the proof of Lemma 1.

Lemma 2. If k ≥ 2 and f is nonconstant, then each element of Πk(f) is of

infinite order. Moreover, the intersection of Πk(f) with every abelian subgroup

of Aff (D) is discrete.
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Proof. If φ ∈ Πk(f) , there is a polynomial P of degree k such that f ◦ φ =
P ◦ f . Then f ◦ φ◦n = P ◦n ◦ f for each positive integer n , and we conclude
that φ◦n ∈ Πkn(f) , because deg P ◦n = kn . Thus the polymorphisms φ◦n are all
distinct, because they have different f -degrees .

To prove the second assertion of the lemma let Γ be an abelian subgroup
of Aff(D) . Let P be the set of all polynomials associated with an element of
Γ ∩ Πk(f) . If Pj ∈ P for j = 1, 2, there exist φj ∈ Γ ∩ Πk(f) such that
f ◦ φj = Pj ◦ f . Since f ◦ (φi ◦ φj) = (Pi ◦ Pj) ◦ f for i, j = 1, 2 and since Γ is
abelian, it follows that P1 ◦ P2 = P2 ◦ P1 . Therefore all elements of P commute
with each other. Thus P is finite, because the number of polynomials of degree
k commuting with a given polynomial of degree k is finite [5].

It might happen that a polynomial P ∈ P is associated with several poly-
morphisms in the set Γ∩Πk(f) . However, the set of such polymorphisms is always
a discrete subset of Aff(D) [3, Lemma 4]. Since P is finite, we conclude that
Γ ∩ Πk(f) is discrete.

In the proof of Theorem 1 we shall also need the following result which deals
with contracting polymorphisms of a function defined in the upper half plane
H = {z ∈ C | Im z > 0} . We say that a polymorphism φ ∈ Π(f) is contracting if
|φ′| < 1.

Theorem 2. Suppose that f : H → C is holomorphic and that Π(f) contains

two contracting polymorphisms which do not commute. Then f has a holomorphic

extension to the boundary of H only if f is a polynomial of degree ≤ 1 .

Proof. Let φ1, φ2 ∈ Π(f) be contracting polymorphisms which do not com-
mute. Then there exist polynomials P1, P2 such that

(3) f ◦ φj = Pj ◦ f (j = 1, 2).

Suppose that f has a holomorphic extension to the boundary of H , and let ξj
be the attracting fixed point of φj . Note that ξ1 6= ξ2 because φ1 and φ2 do not
commute. Since φ1 and φ2 are contracting, both ξ1 and ξ2 lie on the real axis;
we may assume that ξ1 < ξ2 .

We prove first that the holomorphic extension of f to any domain containing
ξ1 and ξ2 is either constant or one-to-one. If f is not one-to-one, there exist z1
and z2 such that z1 6= z2 and f(z1) = f(z2) . Then iteration of (3) shows that
f
(

φ◦n
2 (z1)

)

= f
(

φ◦n
2 (z2)

)

for each n ≥ 1, and it follows that f is not locally
one-to-one at ξ2 = limn→∞ φ◦n

2 (z1) = limn→∞ φ◦n
2 (z2) . Thus f ′(ξ2) = 0, and by

differentiation of f ◦ φ◦n
1 = P ◦n

1 ◦ f we conclude that f ′
(

φ◦n
1 (ξ2)

)

= 0 for each
n ≥ 1. But then the zeros of f ′ accumulate at ξ1 = limn→∞ φ◦n

1 (ξ2) and we see
that f must be constant.

Next assume that the extension of f is one-to-one. It suffices to prove that
f is the restriction of an entire function, because every holomorphic injection of
C is an element of Aff(C) .
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The function g defined by

(4) g(w) = f(e−w + ξ2)

satisfies the hypotheses of Lemma 1 (b) for β = log 1/φ′2 . In fact, since f has a
holomorphic extension to a neighborhood V of ξ2 , g is defined and holomorphic
in S

(

α, (0, π)
)

if α is sufficiently large. Moreover, because (3) holds in V by
analytic continuation and because φ2(z) = (z − ξ2)φ

′

2 + ξ2 for each z ∈ C , we
have

(5) g(w+β) = f
(

e−(w+β) + ξ2
)

= f
(

φ2(e
−w + ξ2)

)

= P2

(

f(e−w + ξ2)
)

= P2g(w)

for each w ∈ S
(

α, (0, π)
)

.

Let Y be the set of all y ∈ (0, π) such that the restriction of g to S
(

α, (0, y)
)

has a holomorphic extension to S
(

(0, y)
)

. By Lemma 1 (b) Y is not empty, and
it is evident that Y is closed in (0, π) . We show next that Y is also open.

The domain of the equations (3), (4) and (5) can be enlarged by analytic
continuation. In fact, g can be defined by (4) not only in S

(

α, (0, π)
)

but also in

S
(

(−π, 0)
)

and on the real axis. By analytic continuation (5) holds also in this
larger domain. For j = 1 equation (3) is equivalent to

(6) g
(

log
1

φ1(z) − ξ2

)

= P1g
(

log
1

z − ξ2

)

where z ∈ H . If y ∈ Y , the right side of (6) is defined and holomorphic in the
domain ∆y = {z ∈ C \ {ξ2} | −y < arg(z − ξ2) < π} , and therefore (6) defines a
holomorphic extension of g to the domain

(7)
{

log
1

φ1(z) − ξ2

∣

∣

∣
z ∈ ∆y

}

.

Since ξ1 < ξ2 and φ1 is contracting, ∆y contains all points of the form φ−1
1 (z)

where arg(z− ξ2) = −y . Consequently the domain (7) contains all points w with
Imw = y . Hence Y is open.

We conclude that Y = (0, π) , because Y is nonempty, open and closed in
(0, π) . Thus g is holomorphic in S

(

(−π, π)
)

, and it follows that f has a holomor-
phic extension to the whole complex plane C . Note that branch points cannot
occur, because by assumption f has a single-valued holomorphic extension to the
real axis. The proof of Theorem 2 is now complete.

Proof of Theorem 1. Let k ≥ 2 be such that Πk(f) is not discrete. Then there
exists a sequence of distinct polymorphisms φj ∈ Πk(f) such that limj→∞ φj =
ψ ∈ Πk(f) . Moreover, since Πk(f) is contained in Aff(D) , the group Aff(D) is not
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discrete. Domains with this property have been classified in [2]. The classification
shows that if D is not the whole plane C or a half plane, then either Aff(D) is
abelian or D is the image of a strip under an element of Aff(C) .

If D is affinely equivalent to a strip, then each element of Πk(f) is either
a translation or an involution of order two. However, in view of Lemma 2 no
involutions can occur, so that each element of Πk(f) belongs to the abelian group
of translations of D . By Lemma 2 this is impossible, because Πk(f) is not discrete.
It also follows from Lemma 2 that Aff(D) cannot be abelian if Πk(f) is not
discrete. We conclude that D is either the whole plane C or a half plane.

Next we show that f ′(z) 6= 0 for each z ∈ D . For each j choose a polynomial
Pj such that degPj = k and

(8) f ◦ φj = Pj ◦ f,

and let X = {z ∈ D | f ′(z) = 0} . Differentiation of (8) shows that φj(X) ⊂ X
for each j . Since {φj} is not discrete in Aff(D) , Lemma 3 of [3] implies that
there exists at most one point z0 ∈ D such that the set of points φj(z0) is discrete
in D . On the other hand X is discrete in D because f is nonconstant. It follows
that X contains at most one point. However, such a point would be a fixed point
of each φj , because φj(X) ⊂ X for each j . This contradicts Lemma 2, because
the stabilizer of a point of D is an abelian subgroup of Aff(D) . We conclude that
X must be empty.

To examine the dependence of Pj on φj we write

Pj(w) = aj0 + aj1w + · · · + ajkw
k

and try to express the coefficients aj0, . . . , ajk of Pj in terms of φj . To this end
we differentiate (8) k times with respect to the independent variable z ∈ D . Since
φ′j is a nonzero constant, this differentiation yields

(9)

(f ′ ◦ φj)φ
′

j = (P ′

j ◦ f)f ′ = Qj1(f, f
′)

(f ′′ ◦ φj)(φ
′

j)
2 = (P ′′

j ◦ f)(f ′)2 + (P ′

j ◦ f)f ′′ = Qj2(f, f
′, f ′′)

...

(f (k) ◦ φj)(φ
′

j)
k = Qjk(f, f ′, f ′′, . . . , f (k))

where each Qjν is a polynomial of ν + 1 variables whose coefficients are linear
expressions of the coefficients of Pj . Therefore, together with (8) the equations (9)
constitute a system which is linear with respect to aj0, aj1, . . . , ajk and admits a
unique solution. More precisely, there is a unique set of constants aj0, aj1, . . . , ajk

such that (8) and (9) are satisfied at each z ∈ D .
We show next that these constants depend holomorphically on φj and z . The

proof will depend on the following lemma.
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Lemma 3. The Wronskian determinant W (1, f, f2, . . . , fk) is equal to

k!! (f ′)k(k+1)/2

where k!! = 1! · 2! · · ·k! .

Proof. For the proof of this lemma I am indebted to Kari Katajamäki and
Ilpo Laine.

By definition,

W (1, f, f2, . . . , fk) = det
(dif j

dzi

)

(0 ≤ i, j ≤ k)

so that W (1, f, f2, . . . , fk) is also the determinant of the linear system (8)–(9).
Successive expansion of the determinant in terms of the elements of the first

column shows that
(10)

W (1, f, f2, . . . , fk) = ν!!(ν!)(k−ν)(f ′)ν(2k−ν+1)/2

×W

(

(

ν + 0

0

)

f0,

(

ν + 1

1

)

f1, . . . ,

(

ν + (k − ν)

k − ν

)

fk−ν

)

for each ν = 1, . . . , k . The assertion follows from (10) when ν = k .

Lemma 3 implies that the determinant of the linear system (8)–(9) is nonzero
at each z ∈ D . In particular, the system admits a unique solution of the form

aj0 = a0(φj , z), . . . , ajk = ak(φj , z)

where a0, . . . , ak are holomorphic functions defined in a subdomain of Aff(C)×D .
Moreover, since the expressions a0(φj , z), . . . , ak(φj , z) are constant with respect
to z for each j , we have

(11)
∂µ

∂zµ
aν(φ, z0) = 0 (0 ≤ ν ≤ k; µ = 1, 2, . . .)

whenever z0 ∈ D and φ = φj for some j . As in [3] we conclude that given
z0 ∈ D there is a subdomain N of Aff(C) containing ψ such that the set M of
all φ ∈ N satisfying (11) is a non-discrete complex analytic subset of N . Since
the complex dimension of M at ψ is positive, it follows from the structure theory
of one-dimensional complex analytic sets [1, p. 68] that there exists a nonconstant
holomorphic map η from the open unit disk U into M such that η(0) = ψ .

From the definition of M it follows that for each t ∈ U the polynomial Pt

with coefficients a0

(

η(t), z0
)

, . . . , ak

(

η(t), z0
)

satisfies

(12) f
(

η(t)(z)
)

= Pt

(

f(z)
)
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for each z in a neighborhood of z0 . Moreover, because the function t 7→ degPt is
semicontinuous and degP0 = k , we may assume that deg Pt ≥ k for each t ∈ U .

From (12) we see that each element of η(U) is a pseudopolymorphism of f
and, if we choose N small enough as in [3] the composite of two elements of η(U)
is again a pseudopolymorphism of f . Since each abelian subgroup of Aff(C)
contains at most countably many of such pseudopolymorphisms corresponding
to nonlinear polynomials [3, Lemma 6], by repeating the argument presented in
[3, p. 76–77] we conclude that there exists a constant a 6= 1 and a nonconstant
holomorphic function b: U → C such that

η(t)(z) = az + b(t)

for each (t, z) ∈ U × C .
Let us first consider the case when D is the whole complex plane C . Then

(12) holds by analytic continuation for each (t, z) ∈ U×C , and we see that Πk(f)
is uncountable. Theorem 2 of [3] implies that f is conjugate to the exponential
function ez .

In the remaining case D is a half plane, and by conjugation we may assume
that D is the upper half plane H . Even in this case it suffices to prove that f is
the restriction of an entire function.

Since φj(H) = H for each j , φj(0) is real and φ′j > 0 for each j . Thus by
continuity b(0) = limj→∞ φj(0) is real and

a =
d

dz
η(0) = ψ′ = lim

j→∞

φ′j

is real and positive.
Since b is holomorphic and nonconstant and since b(0) is real, there is t0 ∈ U

such that Im b(t0) < 0. Then (12) defines a holomorphic extension of f to the
domain η(t0)(H) . In particular, f has a holomorphic extension to the real axis,
because Im b(t0) < 0.

There are two cases to consider, according as a < 1 or a > 1.
The case a > 1 is easy. In fact, iteration of (12) yields

f ◦ η(t0)
◦n = Pt0

◦n ◦ f

in a subdomain of H , and this equation defines a holomorphic extension of f to
the domain η(t0)

◦n(H) for each n ≥ 1. Thus f is the restriction of an entire
function, and by Theorem 2 of [3] f is conjugate to the exponential function ez .

If a < 1, there exist t1 , t2 ∈ U such that b(t1) and b(t2) are different real
numbers. Then η(t1) and η(t2) are contracting polymorphisms of f which do
not commute, and f has a holomorphic extension to the boundary of H . By
Theorem 2 f must be the restriction of a linear polynomial. Hence f is the
restriction of an entire function. This completes the proof of Theorem 1.



Polymorphisms and linearization of nonlinear polynomials 121

For a given domain D it may be of interest to determine the semigroup
Pol (D) of all holomorphic polynomials mapping D one-to-one onto itself. If D
is a strip, a disk or a half plane, it is known that Pol (D) = Aff(D) . In these
simple cases Pol (D) does not contain any nonlinear polynomials. On the other
hand, if D is a Siegel disk of a nonlinear polynomial, then Pol (D) contains a
non-discrete subset of nonlinear polynomials, all of which are irrational rotations
of the Siegel disk. We do not know any examples of a situation where Pol (D)
would contain two nonlinear polynomials which are not permutable. However, by
using Theorem 1 we can prove the following general result.

Theorem 3. For each k ≥ 2 the set {P ∈ Pol (D) | degP = k} is a discrete

subset of the Lie group of conformal automorphisms of D .

In particular, it follows from Theorem 3 that the number of nonlinear poly-
nomials in the group of conformal automorphisms of D is at most countable. A
proof will appear in a different article.
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