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Abstract. Let A be a selfadjoint operator (or a selfadjoint relation) in a Hilbert space H , let
Z be a one-dimensional subspace of H

2 such that A∩Z = {0, 0} and define S = A∩Z∗ . Then S
is a closed, symmetric operator (or relation) with defect numbers (1, 1) and, conversely, each such
S and a selfadjoint extension A are related in this way. This allows us to interpret the selfadjoint
extensions of S in H as one-dimensional graph perturbations of A . If Z = span {ϕ, ψ} , then the
function Q(l) = l[ϕ,ϕ] + [(A − l)−1(lϕ − ψ), l̄ϕ − ψ] , generated by A and the pair {ϕ, ψ} , is a
Q -function of S = A∩Z∗ and A . It belongs to the class N of Nevanlinna functions and essentially
determines S and A . Calculation of the corresponding resolvent operators in the perturbation
formula leads to Krĕın’s description of (the resolvents of) the selfadjoint extensions of S . The
class N of Nevanlinna functions has subclasses N1 ⊃ N0 ⊃ N−1 ⊃ N−2 , each defined in terms of
function-theoretic properties. We characterize the Q -functions belonging to each of these classes
in terms of the pair {ϕ, ψ} . If Q(l) belongs to the subclass Nk , k = 1, 0,−1,−2 , then all but
one of the selfadjoint extensions of S have a Q -function in the same class, while the exceptional
extension has a Q -function in N \ N1 . In particular, if S is semi-bounded, the exceptional
selfadjoint extension is precisely the Friedrichs extension. We consider our perturbation formula
in the case where the Q -function Q(l) belongs to the subclass Nk , k = 1, 0,−1,−2 , or if it is an
exceptional function associated with this subclass. The resulting perturbation formulas are made
explicit for the case that A or its orthogonal operator part is the multiplication operator in a
Hilbert space L2(dρ) .

0. Introduction

Let S be a closed symmetric relation in a Hilbert space H , whose defect
numbers are (1, 1). Then S has canonical selfadjoint extensions, i.e., selfadjoint
extensions within the space H . In this paper we fix a canonical selfadjoint exten-
sion A of S . The other canonical selfadjoint extensions of S are now described
as one-dimensional graph perturbations of A . Our description of the graph per-
turbations is in terms of a one-dimensional subspace Z of H

2 , which connects S
and A by S = A ∩ Z∗ (here Z∗ denotes the adjoint of the subspace Z in the
graph sense), and which satisfies A ∩ Z = {0, 0} . Note that S is obtained from
A by a restriction on the graph of A . Special choices of the subspace Z provide
restrictions on the domain and restrictions on the range of A , respectively.
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The use of finite-dimensional subspaces to restrict a symmetric relation goes
back to [C2], [CD1], [CD2], and was continued in [DSS]. In these papers the un-
derlying idea was to broaden the classes of boundary value problems. In the
present context this method seems appropriate as it provides us with coordinates
to describe perturbations.

It is the purpose of this paper to give various forms of the perturbation formula
depending on the behaviour of the so-called Q -function Q(l) of A and S =
A ∩ Z∗ , and to relate them to known results in terms of operator models. The
Q -function belongs to the class N of Nevanlinna functions, i.e., it is holomorphic
on C \ R , satisfies Q(l)∗ = Q(l̄) and ImQ(l)/ Im l ≥ 0. Conversely, for each
Nevanlinna function Q(l) there exist a symmetric relation (which may be taken to
be completely nonselfadjoint and hence is an operator) and a canonical selfadjoint
extension, which generate Q(l) as the corresponding Q -function, cf. [HLS], [LT].
The Q -function Q(l) is an ingredient in Krĕın’s formula, which describes the
resolvent operators of the canonical selfadjoint extensions of S in terms of one-
dimensional range perturbations of the resolvent operator of A . Calculation of the
resolvent operators in terms of our perturbation formula gives Krĕın’s formula.

The class of Nevanlinna functions has subclasses N1 and N0 ⊂ N1 of func-
tions Q(l) in N with the property that

∫

∞

1

ImQ(iy)

y
dy <∞,

and that
sup
y>0

y ImQ(iy) <∞,

respectively. The theory of the class N1 goes back to Kac, cf. [Ka]; see also [HLS]
and [KK]. The class N0 in its turn has subclasses N−1 and N−2 ⊂ N−1 of
functions Q(l) in N0 with the property that

∫

∞

1

(

sup
y>0

y ImQ(iy) − y ImQ(iy)
)

dy <∞,

and
sup
y>0

y2
(

sup
y>0

y ImQ(iy) − y ImQ(iy)
)

<∞,

respectively, cf. [HS1].
If there is a canonical selfadjoint extension with a Q -function belonging to

N1 , N0 , N−1 , or N−2 , then, with the exception of one, all the other canonical
selfadjoint extensions have a Q -function belonging to N1 , N0 , N−1 , or N−2 ,
respectively. In each case the exceptional canonical selfadjoint extension has a
Q -function which belongs to N \ N1 .
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We will give some examples of exceptional extensions. The first example
occurs when S is a densely defined, semibounded operator: then all but one of
its canonical selfadjoint extensions have a Q -function in N1 and the exceptional
selfadjoint extension is the Friedrichs extension, cf. [HLS] and [C1], [CS], [K1],
[K2], [KY]. This case has also been considered from the point of view of rank
one perturbations: see [GS], [KS], and [S]. Related results concerning nonnegative
relations in a Krĕın space setting were obtained in [JL1] and [JL2]. Another
example occurs when S is a nondensely defined operator: then all but one of its
selfadjoint extensions are operators and the exceptional selfadjoint extension is a
proper relation. It coincides with the Friedrichs extension when S in addition is
semibounded, see [CS]. An exposition of these facts can be found in [HLS]. In this
paper a model space was constructed for a Nevanlinna function Q(l) belonging
to N1 in which all the canonical selfadjoint extensions, including the exceptional
one, were exhibited. The present graph perturbation formula covers this case.

Let A be a selfadjoint relation and let Z = span {ϕ, ψ} satisfy A∩Z = {0, 0} .
Without loss of generality we assume that S = A ∩ Z∗ is a closed symmetric
operator and that A is a selfadjoint relation whose multivalued part is at most
one-dimensional. We characterize when the Q -function Q(l) of A and S = A∩Z∗

belongs to the above subclasses of Nevanlinna functions by means of {ϕ, ψ} . The
Q -function Q(l) of A and S = A ∩ Z∗ belongs to N1 or N0 if and only if A
is an operator and ϕ ∈ dom |A|1/2 or ϕ ∈ dom A , respectively. In addition, the
Q -function Q(l) of A and S = A ∩ Z∗ belongs to N−1 or N−2 , if and only if
A is an operator, ϕ ∈ dom A , and Aϕ− ψ belongs to dom |A|1/2 or to dom A ,
respectively.

We will present the perturbation formula according to the behaviour of the
Q -function of A and S = A ∩ Z∗ , including a description of the exceptional
extension.

The first case is where A is an operator. If Q(l) belongs to N1 some refine-
ments of our perturbation formula can be given. In particular, if Q(l) belongs to
N0 the general graph perturbation can be reduced to a one-dimensional perturba-
tion of the range of A : A+τR , τ ∈ R , where R is the orthogonal projection onto
a one-dimensional subspace. The exceptional selfadjoint extension corresponds to
the parameter τ = ∞ ; it is the only canonical selfadjoint extension which is not
an operator and its domain is equal to the domain of S . See [D, Chapter 6] for
the case of a selfadjoint operator in a finite-dimensional Hilbert space. The Q -
function Q(l) belongs to N−1 or N−2 if and only if the range of R belongs to
dom |A|1/2 or dom A , respectively. The case when Q(l) belongs to N1 \ N0 is
similar to the case Q(l) ∈ N0 , but not so explicit. In this case a description in
terms of space triplets (see the last section of this paper) is more suitable. Further
details are given in [HKS], [HS2].

The second case is when A is a selfadjoint relation whose multivalued part is
one-dimensional. Then the Q -function Q(l) is an exceptional function correspond-



126 Seppo Hassi and Henk de Snoo

ing to the class N0 . We can obtain an appropriate version of the perturbation
result. Refinements in this case can be given depending on whether Q(l) is an
exceptional function corresponding to N−1 or N−2 , see also [HS1].

The results described above are specialized for the selfadjoint operator of mul-
tiplication by the independent variable in a Hilbert space L2(dρ) with ρ a nonde-
creasing function on R , to which is possibly orthogonally added a one-dimensional
multivalued part. We will give a description of all canonical selfadjoint extensions;
in the case where the Q -function belongs to N1 or to N0 the description reduces
by means of an explicit isometric isomorphism to the results in [HLS].

In Section 1 of this paper we will present some preliminary results concerning
Q -functions associated with symmetric and selfadjoint relations. In Section 2 we
then give the general perturbation formula and in Section 3 show the connection
with Krĕın’s formula. We will reformulate some facts concerning Q -functions of
A and S = A ∩ Z∗ in terms of Z in Section 4. In Sections 5 and 6 we study the
perturbation formula in the cases, where A is an operator or that A has a one-
dimensional multivalued part and S is an operator, respectively. Finally, Section 7
contains further refinements of the perturbation formula when A or its operator
part is a multiplication operator in some L2(dρ)-space, where ρ is a nondecreasing
function on R .

1. Preliminaries

In this section we will give a short introduction and present some notation
and terminology, concerning relations in Hilbert spaces and Q -functions.

Consider a Hilbert space H with inner product [ · , · ] . A linear relation S in
H is just a linear subspace of the orthogonal sum H ⊕ H of H with itself. For
instance, a linear operator is a linear relation when we identify the operator and its
graph. The relation is said to be closed if it is closed as a subspace of H⊕H . The
null space ker S is given by ker S =

{

f ∈ H : {f, 0} ∈ S
}

and the multivalued

part mul S is given by mul S =
{

g ∈ H : {0, g} ∈ S
}

. A linear relation S is
(the graph of) an operator if and only if mul S = {0} . Its domain and range are
given by dom S =

{

f : {f, g} ∈ S
}

and ran S =
{

g : {f, g} ∈ S
}

, respectively.

By S−1 we mean the linear relation S−1 =
{

{g, f} : {f, g} ∈ S
}

. Note that
dom S−1 = ran S . Clearly, ker S−1 = mul S . We define the linear relation S∞

by S∞ = {0}⊕mul S . When S is closed, the operator part Ss of S is defined by

Ss =
{

{f, g} ∈ S : g ⊥ mul S
}

.

In this sense a relation S = Ss ⊕ S∞ is a multivalued linear operator.

For each l ∈ C we define the linear relation S− l =
{

{f, g− lf} : {f, g} ∈ S
}

.
Clearly, ker (S − l)−1 = mul S . When S is closed, the resolvent set ρ(S) is the
set of all l ∈ C for which (S − l)−1 =

{

{g − lf, f} : {f, g} ∈ S
}

is (the graph of)
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a bounded linear operator defined on all of H . The resolvent set ρ(S) is open and
the resolvent operator (S − l)−1 , l ∈ ρ(S) , satisfies

(S − l)−1 − (S − λ)−1 = (l − λ)(S − l)−1(S − λ)−1, l, λ ∈ ρ(S),

which is the usual resolvent identity.
For any subset S in H

2 we define the adjoint S∗ by

S∗ =
{

{h, k} ∈ H
2 : 〈{h, k}, {f, g}〉 = 0, for all {f, g} ∈ S

}

,

where the form 〈{f, g}, {h, k}〉 is defined by [g, h] − [f, k] . Then S∗ is auto-
matically a closed linear relation and (S∗)∗ is the closure of the linear subspace
spanned by S . A linear relation S is called symmetric if S ⊂ S∗ and selfadjoint
if S = S∗ . For a closed symmetric relation S we have von Neumann’s formula,
which expresses S∗ as a direct sum:

(1.1) S∗ = S+̇Mµ̄(S∗)+̇Mµ(S∗), µ ∈ C \ R,

where Mλ(S∗) =
{

{f, g} ∈ S∗ : g = λf
}

, λ ∈ C ; note that ker (S∗ − λ) =
dom Mλ(S∗) . The symbol +̇ denotes the componentwise sum in H ⊕ H . The
defect numbers (m,n) of S are the dimensions of the defect subspaces ker (S∗−µ̄)
and of ker (S∗ − µ) , respectively, if µ ∈ C+ . In general, the symmetric relation
S has selfadjoint extensions if we extend the original Hilbert space. The operator
S has canonical selfadjoint extensions, i.e., selfadjoint extensions in the original
Hilbert space if and only if the defect numbers of S are equal. Finally we observe
that

(1.2) ker (S∗ − l) ∩ dom S = {0}, l ∈ C \ R.

To see this, let {χ(l), lχ(l)} ∈ S∗ be nontrivial and assume that χ(l) ∈ dom S .
Then there exists an element k such that {χ(l), k} ∈ S , so that

[k, χ(l)]− l̄[χ(l), χ(l)] = 〈{χ(l), k}, {χ(l), lχ(l)}〉 = 0,

which contradicts the fact that [k, χ(l)] is real.
For any closed symmetric linear relation S the relation S∞ is selfadjoint in

mul S and Ss is a closed symmetric operator in H ⊖ mul S with the same defect
numbers as S . A symmetric relation is called completely nonselfadjoint if it is not
the nontrivial orthogonal sum of a symmetric and a selfadjoint relation. By the
above reasoning a completely nonselfadjoint symmetric relation is automatically
an operator. A closed symmetric relation S is completely nonselfadjoint if and
only if

H = span {ker (S∗ − l) : l ∈ C \ R}.



128 Seppo Hassi and Henk de Snoo

This characterization goes back to M.G. Krĕın, cf. [LT, Proposition 1.1].
Let S be a closed symmetric relation in a Hilbert space H with defect numbers

(1, 1), and let A be a canonical selfadjoint extension of S . For some µ ∈ C\R we
choose a nontrivial element χ(µ) ∈ ker (S∗ − µ) and we define the vector function
χ(l) , l ∈ C \ R , by

(1.3) χ(l) =
(

I + (l − µ)(A− l)−1
)

χ(µ).

Then ker (S∗ − l) is spanned by χ(l) and furthermore

(1.4) S =
{

{f, g} ∈ A : [g − lf, χ(l̄)] = 0
}

,

as it is easily verified that the righthand side of (1.4) defines a closed symmetric
extension of S with defect numbers (1, 1). A function Q(l) is a Q -function of A
and S if it is a solution of:

(1.5)
Q(l) −Q(λ)∗

l − λ̄
= [χ(l), χ(λ)], l, λ ∈ C \ R.

Up to a real constant the function Q(l) is uniquely defined and

(1.6) Q(l) = Q(µ)∗ + (l − µ̄)
[(

I + (l − µ)(A− l)−1
)

χ(µ), χ(µ)
]

.

It is clear from the definition of the Q -function of S and A that we may always
take out selfadjoint parts of S . In particular, we may assume that S is completely
nonselfadjoint, see also [LT]. Conversely, a Q -function essentially determines a pair
(S,A) in a model space, where S is completely nonselfadjoint. These model spaces
can be constructed in various ways, see [LT] and, for instance, [HLS].

We denote the orthogonal projection onto H⊖ mul A by P and the spectral
family of the operator part As of A (in H ⊖ mul A) by E(t) . We recall [HLS,
Proposition 2.1]:

Proposition 1.1. Let S be a closed symmetric relation with defect numbers

(1, 1) and let A be a selfadjoint extension of S . Let Q(l) be the Q -function of S
and A with the representation (1.6) . Then Q(l) admits an integral representation

(1.7) Q(l) = α+ βl +

∫

R

( 1

t− l
−

t

t2 + 1

)

dσ(t),

where

(i) α = Q(i)∗ + i[χ(i), χ(i)] = ReQ(i) ,
(ii) β = [(I − P )χ(i), (I − P )χ(i)] (= limy→∞ ImQ(iy)/y ),
(iii) dσ(t)/(t2 + 1) = d

(

[E(t)Pχ(i), Pχ(i)]
)

,

and where the function σ(t) is nondecreasing on R and satisfies

(1.8)

∫

R

dσ(t)

t2 + 1
<∞.

The singular part S∞ is selfadjoint and we may reduce S to the Hilbert space
H ⊖ mul S . In that case the multivalued part of any selfadjoint extension of S is
at most one-dimensional as stated in the following proposition.
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Proposition 1.2. Let S be a closed symmetric relation with defect numbers

(1, 1) and let A be a selfadjoint extension of S . Then the multivalued part mul S
of S is given by

(1.9) mul S =
{

g ∈ mul A : [g, (I − P )χ(µ̄)] = 0
}

.

Hence

(1.10) dim (mul A⊖ mul S) ≤ 1.

In particular, if S is an operator then

mul A = span {(I − P )χ(µ̄)},

and mul A is at most one-dimensional.

Proof. The inclusion mul S ⊂ mul A and the identity

mul S =
{

g ∈ mul A : [g, χ(µ̄)] = 0
}

follow immediately from (1.4). For g ∈ mul A we may write

[g, χ(µ̄)] = [(I − P )g, χ(µ̄)] = [g, (I − P )χ(µ̄)],

so that (1.9) follows. Clearly, (I − P )χ(µ̄) ∈ mul A and (1.10) follows. Now
assume that S is an operator. If A is an operator then the identity mul A =
span {(I − P )χ(µ̄)} is trivially true. Next suppose that A is not an operator. As
S is an operator it follows from (1.9) that (I − P )χ(µ̄) 6= 0 and that mul A is
one-dimensional. This completes the proof.

The following result is a slight extension of [HLS, Proposition 2.2] where it
was assumed that S is completely nonselfadjoint. Moreover, we include some
information about the classes N−1 and N−2 .

Proposition 1.3. Let Q(l) be a Q -function belonging to S and A . Then

(i) limy→∞ ImQ(iy)/y = 0 if and only if χ(l) ∈ domA for some (and, hence,

for all) l ∈ C \ R .

Assume that S is a closed operator. Then

(ii) limy→∞ ImQ(iy)/y = 0 if and only if A is an operator.

(iii) Q(l) ∈ N1 if and only if A is an operator and χ(l) ∈ dom |A|1/2 for some

(and, hence, for all) l ∈ C \ R .

(iv) Q(l) ∈ N0 if and only if A is an operator and χ(l) ∈ dom A for some (and,

hence, for all) l ∈ C \ R .

(v) Q(l) ∈ N−1 if and only if A is an operator and χ(l) ∈ dom |A|3/2 for some

(and, hence, for all) l ∈ C \ R .

(vi) Q(l) ∈ N−2 if and only if A is an operator and χ(l) ∈ dom A2 for some

(and, hence, for all) l ∈ C \ R .
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As for the statements (i)–(iv), it suffices to discuss (ii). First assume that A
is an operator. Then P = I and hence β = 0 in (1.7). Conversely, assume that
β = 0. According to (i) χ(l) ∈ domA . From (1.1) it then follows that dom S∗ ⊂
(mul A)⊥ . However, by assumption, (dom S∗)⊥ = mul S∗∗ = mul S = {0} ,
which implies that S∗ is densely defined. Therefore, it follows that mul A = {0} ,
and A is an operator. The items (v) and (vi) follow from Proposition 1.1, in the
same way as (iii) and (iv), cf. [HLS, Proposition 2.1] and [HS1, Proposition 1.2].

The next result is similar to (iv) and (vi) of Proposition 1.3, but stated in
terms of the symmetric operator S . For this purpose, suppose that Q(l) belongs
to N0 . Let A be the corresponding selfadjoint operator extension of S . Then
χ(l) ∈ dom A and it follows from von Neumann’s formula (1.1) that dom S∗ ⊂
dom A , so that

dom S∗ = dom A.

Proposition 1.4. Assume that S is a closed operator.

(i) There is a Q -function Q(l) ∈ N0 of S if and only if S is not densely defined.

(ii) There is a Q -function Q(l) ∈ N−2 of S if and only if S is not densely

defined and mul S∗ ⊂ dom S∗ , or equivalently, if and only if dom S∗ =
dom S + mul S∗ .

Proof. We first prove (i). Assume that there is a Q -function Q(l) ∈ N0 .
Then the previous proposition shows that the corresponding selfadjoint extension
A is an operator and that χ(l) ∈ dom A . Hence it follows from (1.4) that

(1.11) dom S =
{

f ∈ dom A : [f, (A− µ)χ(µ)] = 0
}

, µ ∈ C \ R,

which implies that S is not densely defined. Conversely, assume that S is not
densely defined, in which case there is a nontrivial γ ∈ mul S∗ . We choose a
selfadjoint operator extension A of S . Then it follows from the definition that
(A−l)−1γ ∈ ker (S∗−l) , so that the defect subspaces of S are contained in dom A .
Hence the Q -function Q(l) of A belongs to N0 , by the previous proposition.

Next we prove (ii). Assume that there is a Q -function Q(l) ∈ N−2 . In partic-
ular Q(l) belongs to N0 , so that the corresponding selfadjoint extension A is an
operator and (1.11) holds, which implies that (A−µ)χ(µ) ∈ mul S∗ . Moreover, the
previous proposition shows that χ(l) ∈ dom A2 . Therefore (A− µ)χ(µ) ∈ dom A
and, by dimension arguments, we conclude that mul S∗ = span {(A − µ)χ(µ)} ⊂
dom A and that dom A = dom S + mul S∗ , which is the same as dom S∗ =
dom S + mul S∗ . Conversely, assume that dom S∗ = dom S + mul S∗ . Then S
is nondensely defined, since otherwise dom S∗ = dom S , which is impossible, see
(1.1) and (1.2). By (i) there is a selfadjoint operator extension A of S whose
Q -function Q(l) belongs to N0 , and hence χ(µ) ∈ dom A . Again, it follows from
(1.11) that mul S∗ = span {(A− µ)χ(µ)} , and consequently

(A− µ)χ(µ) ∈ dom S∗ = dom A,
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which implies χ(µ) ∈ dom A2 . Therefore Q(l) ∈ N−2 .
The equivalence of the last two statements in (ii) is obvious by the above

reasoning. This completes the proof.

A corresponding statement about the classes N1 or N−1 would involve the
theory of triplets of Hilbert spaces, see [HKS] and Section 7 of the present paper.

2. One-dimensional perturbations

In this section we consider a closed symmetric relation with defect numbers
(1, 1). Its canonical selfadjoint extensions are interpreted as perturbations of the
graph of one fixed canonical selfadjoint extension.

We associate with a selfadjoint relation A and a one-dimensional subspace Z
of H

2 the relation S = A ∩ Z∗ . Clearly, S is a closed symmetric relation and if
Z = span {ϕ, ψ} , then

(2.1) S =
{

{f, g} ∈ A : 〈{f, g}, {ϕ, ψ}〉 = 0
}

.

Moreover, the adjoint S∗ is given by the componentwise sum in H
2 :

(2.2) S∗ = A+̇Z.

To prove this identity we note that

S∗ = (A ∩ Z∗)∗ = span (A+̇spanZ) = span (A+̇Z) = A+̇Z,

where the second equality holds since A is selfadjoint, and hence closed, and the
last two equalities hold since Z is one-dimensional and hence closed.

Lemma 2.1. The closed symmetric relation S = A ∩ Z∗ is selfadjoint and

equal to A if and only if Z ⊂ A .

Proof. Suppose that S is selfadjoint, then S = A = S∗ and it follows from
(2.2) that Z ⊂ A . Conversely, let Z ⊂ A . Then (2.2) shows that S∗ = A , and
hence S = A . This completes the proof.

Since Z is one-dimensional, it is clear that Z is not contained in A if and
only if the componentwise sum A+̇Z is direct, i.e.,

(2.3) A ∩ Z = {0, 0}.

Unless otherwise stated, this condition will be assumed in the rest of this paper.
A more general version of the first part of the following lemma can be found in
[DSS, Lemma 5.1].
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Lemma 2.2. Let the selfadjoint relation A and the one-dimensional subspace

Z satisfy (2.3) . Then S = A ∩ Z∗ is a closed symmetric relation with defect

numbers (1, 1) . Conversely, if S is a closed symmetric relation with defect numbers

(1, 1) and A is a canonical selfadjoint extension of S , then there exists a one-

dimensional subspace Z , which satisfies (2.3) , such that S = A ∩ Z∗ .

Proof. Let Z = span {ϕ, ψ} . Choose l ∈ C \ R , then since A is selfadjoint,
there is an element {ϕ̃, ψ̃} ∈ A for which ψ̃−lϕ̃ = ψ−lϕ . Define χ̃ = ϕ̃−ϕ . Then
{χ̃, lχ̃} = {ϕ̃, ψ̃} − {ϕ, ψ} ∈ S∗ by (2.2). Moreover, χ̃ 6= 0 by (2.3). This shows
that ker (S∗ − l) ≥ 1. Now let {χ, lχ} ∈ S∗ . Then {χ, lχ} = {f, g} − c{ϕ, ψ} for
some {f, g} ∈ A and c ∈ C by (2.2). Hence, {χ, lχ}−c{χ̃, lχ̃} = {f, g}−c{ϕ̃, ψ̃} ∈
A , and since A has no eigenvalue at l ∈ C \ R , this shows that χ = cχ̃ . We
conclude that dim ker (S∗ − l) = 1, l ∈ C \ R , i.e., the symmetric relation has
defect numbers (1, 1).

Next we prove the converse. We have that S ⊂ A ⊂ S∗ and dimS∗/S = 2.
Therefore, since A is selfadjoint, we have that dimS∗/A = 1. Hence, we can
choose a one-dimensional subspace Z ⊂ S∗ such that S∗ = A+̇Z and A ∩ Z =
{0, 0} . Then clearly S = A ∩ Z∗ . This completes the proof.

Let A be a selfadjoint relation in a Hilbert space H . We call two pairs {ϕ, ψ}
and {ϕ̃, ψ̃} equivalent (with respect to A) if {ϕ− ϕ̃, ψ− ψ̃} ∈ A . Two subspaces
Z and Z̃ are called equivalent if they are spanned by equivalent pairs. If Z and
Z̃ are equivalent and if Z satisfies (2.3), then also Z̃ satisfies (2.3). In particular,
if Z = span {ϕ, ψ} and Z̃ = span {ϕ, Pψ} , where P is the orthogonal projection
onto H⊖mul A , then the subspaces Z and Z̃ are equivalent, as {ϕ, ψ}−{ϕ, Pψ} =
{0, (I − P )ψ} ∈ A . Observe that in the definition of S = A ∩ Z∗ we can always
replace Z by an equivalent subspace Z̃ .

Lemma 2.3. Let the selfadjoint relation A and the one-dimensional subspace

Z satisfy (2.3) . Then there is a one-dimensional symmetric subspace Z̃ which is

equivalent to Z .

Proof. Let Z = span {ϕ, ψ} . Since A ∩ Z = {0, 0} , there is an element
{h, k} ∈ A for which 〈{h, k}, {ϕ, ψ}〉 = 1. Then

{ϕ̃, ψ̃} = {ϕ, ψ} − 1

2
〈{ϕ, ψ}, {ϕ, ψ}〉{h, k},

spans a one-dimensional symmetric subspace which is equivalent to Z . This com-
pletes the proof.

The following theorem gives a description of all canonical selfadjoint exten-
sions of S = A ∩ Z∗ as perturbations (of the graph) of A , a fixed canonical
selfadjoint extension of S . Clearly, Z is symmetric if and only if S+̇Z is a selfad-
joint extension of S . Note that only in the case that the subspace Z is symmetric,
there is a value τ ∈ R ∪ {∞} for which 1/τ + [ψ, ϕ] = 0.
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Theorem 2.4. Let A be a selfadjoint relation and let Z be a one-dimensional

subspace for which (2.3) holds. The canonical selfadjoint extensions of S = A∩Z∗

are in one-to-one correspondence with τ ∈ R ∪ {∞} . These canonical selfadjoint

extensions A(τ) are given by A(0) = A and for τ 6= 0 and 1/τ + [ψ, ϕ] 6= 0 by

(2.4) A(τ) =
{

{f, g} −
〈{f, g}, {ϕ, ψ}〉

1/τ + [ψ, ϕ]
{ϕ, ψ} : {f, g} ∈ A

}

,

while for 1/τ + [ψ, ϕ] = 0 the canonical selfadjoint extension A(τ) is given by

(2.5) A(τ) = S+̇Z.

Proof. By definition the relation A is selfadjoint. The relation A(τ) in (2.4)
when τ 6= 0, 1/τ+[ψ, ϕ] 6= 0, and the relation A(τ) in (2.5) when 1/τ+[ψ, ϕ] = 0,
are clearly true symmetric extensions of S and therefore they are selfadjoint.
Observe that in this last case Z is symmetric.

Now we will show that each selfadjoint extension of S has the indicated form.
Let H be a canonical selfadjoint extension of S . The case H = A corresponds to
τ = 0.

Next assume that H 6= A . Assume that {h, k} is a fixed element in H ,
and write {h, k} = {f, g} + c{ϕ, ψ} , according to the decomposition (2.2) with
{f, g} ∈ A and c ∈ C . Assume that {h, k} does not belong to S . This implies
that c 6= 0, as otherwise {h, k} would belong to H and A at the same time, which
is impossible in the present case H 6= A . Since H is selfadjoint, it follows that
〈{h, k}, {h, k}〉 = 0, which leads to

(2.6)

0 = 〈{f, g}+ {ϕ, ψ}c, {f, g}+ {ϕ, ψ}c〉

= 〈{f, g}, {f, g}〉+ 〈{f, g}, {ϕ, ψ}〉c̄

+ 〈{ϕ, ψ}, {f, g}〉c+ 〈{ϕ, ψ}, {ϕ, ψ}〉|c|2.

Clearly, 〈{f, g}, {f, g}〉 = 0 since {f, g} ∈ A . Since c 6= 0, we rewrite (2.6) as

(2.7)
1

c
〈{f, g}, {ϕ, ψ}〉+

1

c̄
〈{ϕ, ψ}, {f, g}〉+ 〈{ϕ, ψ}, {ϕ, ψ}〉 = 0,

or equivalently

(2.8)
1

c
〈{f, g}, {ϕ, ψ}〉+ [ψ, ϕ] = −

1

c̄
〈{ϕ, ψ}, {f, g}〉+ [ϕ, ψ].

As the righthand side of (2.8) is the complex conjugate of the lefthand side, we
conclude that the lefthand side must be real, say −1/τ for some τ ∈ R ∪ {∞} ,
τ 6= 0:

(2.9)
1

c
〈{f, g}, {ϕ, ψ}〉 = −(1/τ + [ψ, ϕ]).
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First assume that 〈{f, g}, {ϕ, ψ}〉 = 0. According to (2.9) this assumption
is equivalent to 1/τ + [ψ, ϕ] = 0. It follows from (2.7) that Z is symmetric.
Our assumption means that {f, g} ∈ S and thus, {h, k} ∈ S+̇Z . Hence, as the
element {h, k} belongs at the same time to the canonical selfadjoint extensions H
and S+̇Z and as it does not belong to S , we conclude that H = S+̇Z . Therefore
the selfadjoint extension H is equal to A(τ) for 1/τ + [ψ, ϕ] = 0, where A(τ) is
of the form (2.5).

Now assume that 〈{f, g}, {ϕ, ψ}〉 6= 0. Solve the equation (2.9) for c :

c = −
〈{f, g}, {ϕ, ψ}〉

1/τ + [ψ, ϕ]
.

We observe that

{h, k} = {f, g}+ c{ϕ, ψ} = {f, g} −
〈{f, g}, {ϕ, ψ}〉

1/τ + [ψ, ϕ]
{ϕ, ψ}.

Hence, as the element {h, k} belongs at the same time to the canonical selfadjoint
extensions H and A(τ) and does not belong to S , we conclude that H = A(τ) ,
where A(τ) is of the form (2.4).

Thus we have shown that any canonical selfadjoint extension of S , different
from A , is of the form (2.4) or (2.5) for some τ ∈ R∪{∞} , τ 6= 0. This completes
the proof.

3. Q-functions and Krĕın’s formula

In this section we express the Q -function of S = A∩Z∗ and A , Z being a one-
dimensional subspace satisfying (2.3), in terms of Z = span {ϕ, ψ} . We calculate
the resolvent operators in Theorem 2.4 in terms of the resolvent operator for A .
In this way we obtain a new proof of Krĕın’s description of all canonical selfadjoint
extensions of a closed symmetric relation with defect numbers (1, 1), cf. [HLS].

In terms of {ϕ, ψ} we introduce the vector function χ(l) , l ∈ C \ R , by

(3.1) χ(l) = (A− l)−1(lϕ− ψ) + ϕ.

Using the resolvent identity, it can easily be checked that χ(l) satisfies (1.3).
Moreover, S = A ∩ Z∗ can also be written in the form (1.4), since

(3.2) 〈{f, g}, {ϕ, ψ}〉 = [g − lf, χ(l̄)] = 〈{f, g}, {χ(l̄), l̄χ(l̄)}〉.

In particular, ker (S∗ − l) is spanned by χ(l) . We define the function Q(l) by

(3.3) Q(l) = [χ(l), l̄ϕ− ψ] + [ϕ, ψ],
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or equivalently

(3.4) Q(l) = l[ϕ, ϕ] + [(A− l)−1(lϕ− ψ), l̄ϕ− ψ].

Note that if the condition (2.3) is not satisfied, so that {ϕ, ψ} ∈ A , then (3.1)
shows that χ(l) = 0. Moreover (3.3) shows that Q(l) = [ϕ, ψ] , a real constant,
since {ϕ, ψ} ∈ A .

Suppose we replace {ϕ, ψ} in (3.1) by the equivalent pair of the form {ϕ̃, ψ̃} =
{ϕ, ψ} + {h, k} , with {h, k} ∈ A . Since (A− l)−1(k − lh) = h , the function χ(l)
remains the same. Note also the converse: if for {ϕ, ψ}, {ϕ̃, ψ̃} ∈ H

2

(A− l)−1(lϕ̃− ψ̃) + ϕ̃ = (A− l)−1(lϕ− ψ) + ϕ,

then (A− l)−1
(

l(ϕ̃− ϕ) − (ψ̃ − ψ)
)

= ϕ− ϕ̃ , so that {ϕ̃− ϕ, ψ̃ − ψ} ∈ A .
However, the definition of the function Q(l) in (3.3) depends on the choice of

the pair {ϕ, ψ} . When {ϕ, ψ} is replaced by {ϕ, ψ} + {h, k} , {h, k} ∈ A , then
the function in (3.3) is now given by

(3.5) Q(l) + 2 Re[h, ψ] + [h, k],

which differs from the original function Q(l) in (3.3) by a real constant. Of course,
when {ϕ, ψ} is replaced by {ϕ, Pψ} , it follows from (3.5) that we obtain precisely
the same function.

The element χ(l) spans ker (S∗ − l) . Clearly,

(3.6) {χ(l), lχ(l)} =
{

(A− l)−1(lϕ− ψ),
(

I + l(A− l)−1
)

(lϕ− ψ)
}

+ {ϕ, ψ}.

This decomposition corresponds to the direct sum (2.2). In particular, for each
l ∈ C \ R the subspace span {χ(l), lχ(l)} is equivalent to Z = span {ϕ, ψ} . Note
that for each l ∈ C \ R the subspace span {χ(l), lχ(l)} is nonsymmetric:

Im[lχ(l), χ(l)] = (Im l)[χ(l), χ(l)].

This remark provides a nonsymmetric version of Lemma 2.3. Moreover, with the
pair {χ(l̄), l̄χ(l̄)} the definition (2.1) takes the form (1.4).

In case A is a selfadjoint operator and ϕ ∈ dom A , the formulas (3.1) and
(3.4) for χ(l) and Q(l) reduce to

(3.7) χ(l) = (A− l)−1(Aϕ− ψ),

and

(3.8) Q(l) = [ψ, ϕ] + [ϕ, ψ]− [Aϕ, ϕ] + [(A− l)−1(Aϕ− ψ), (Aϕ− ψ)].

In fact, then the pair {ϕ, ψ} is equivalent to the pair {0, ψ − Aϕ} , as

{ϕ, ψ} = {0, ψ − Aϕ} + {ϕ,Aϕ}.

Moreover, the symmetric relation S = A ∩ Z∗ is an operator, and the identity
(2.1) reduces to

(3.9) S =
{

{f, g} ∈ A : [f, Aϕ− ψ] = 0
}

.

Proposition 3.1. The function Q(l) satisfies the equation (1.5) . Hence Q(l)
is a Q -function of A and S = A ∩ Z∗ .
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Proof. Write out the inner product

[χ(l), χ(λ)] = [(A− l)−1(lϕ− ψ) + ϕ, (A− λ)−1(λϕ− ψ) + ϕ].

This gives the following terms

[(A− l)−1(lϕ− ψ), (A− λ)−1(λϕ− ψ)] + [(A− l)−1(lϕ− ψ), ϕ]

+ [ϕ, (A− λ)−1(λϕ− ψ)] + [ϕ, ϕ].

Application of the resolvent identity to the first term leads to the following de-
composition:

(l − λ̄)[χ(l), χ(λ)] = [(A− l)−1(lϕ− ψ), λϕ− ψ]

− [(lϕ− ψ), (A− λ)−1(λϕ− ψ)] + (l − λ̄)[(A− l)−1(lϕ− ψ), ϕ]

+ (l − λ̄)[ϕ, (A− λ)−1(λϕ− ψ)] + (l − λ̄)[ϕ, ϕ].

Combining the first and third term, and the second and the fourth term on the
righthand side, it is easily seen, by means of (3.4), that the righthand side is equal
to Q(l) −Q(λ)∗ . This completes the proof.

We will now calculate the resolvent operators of the selfadjoint extensions
in (2.4) and (2.5). It turns out that we obtain a formula due to Krĕın describ-
ing abstractly all selfadjoint extensions of a symmetric operator. The connection
between Krĕın’s formula and von Neumann’s formula was made explicit in [HLS].

Theorem 3.2. The resolvents of the canonical selfadjoint extensions A(τ)

of S = A ∩ Z∗ in (2.4) and (2.5) are given by
(

A(0) − l
)−1

= (A− l)−1 and for

τ ∈ R ∪ {∞} , τ 6= 0 , by

(3.10)
(

A(τ) − l
)−1

= (A− l)−1 − χ(l)
1

Q(l) + 1/τ
[ · , χ(l̄)].

Proof. Assume that τ 6= 0 and let h ∈ H . Define k =
(

A(τ)− l
)−1

h , so that
{k, h + lk} ∈ A(τ) . According to Theorem 2.4 the element {k, h + lk} has the
decomposition

(3.11) {k, h+ lk} = {f, g} − c{ϕ, ψ}.

If 1/τ + [ψ, ϕ] 6= 0 the element {f, g} in (3.11) belongs to A , and c ∈ C satisfies

(3.12) c(1/τ + [ψ, ϕ]) = 〈{f, g}, {ϕ, ψ}〉.

If 1/τ + [ψ, ϕ] = 0 the element {f, g} in (3.11) belongs to S ⊂ A , and c ∈ C is
uniquely determined by {k, h+ lk} because of (2.3). Note that in this case (3.12)
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is automatically satisfied as the righthand side of (3.12) is now 0. It follows from
(3.11) that

{f, g} = {k, h+ lk} + c{ϕ, ψ} ∈ A,

so that

{g − lf, f} = {h, k} + c{ψ − lϕ, ϕ} ∈ (A− l)−1,

or equivalently

(A− l)−1h = k + c
(

ϕ+ (A− l)−1(lϕ− ψ)
)

.

Due to the definition (3.1) and the definition k = (A(τ) − l)−1h , this gives

(3.13)
(

A(τ) − l
)−1

h = (A− l)−1h− cχ(l).

It also follows from (3.11) that h = g − lf + c(lϕ− ψ) , which yields

(3.14) [h, χ(l̄)] = [g − lf, χ(l̄)] + c[lϕ− ψ, χ(l̄)].

Due to the definition (3.3), the inner product in the second term on the righthand
side of (3.14) is equal to

[lϕ− ψ, χ(l̄)] = Q(l) − [ψ, ϕ],

recall that (1.5) implies that Q(l)∗ = Q(l̄) . Therefore it follows from (3.2) that

(3.15) [h, χ(l̄)] = 〈{f, g}, {ϕ, ψ}〉+ c(Q(l) − [ψ, ϕ]).

First consider the case 1/τ + [ψ, ϕ] 6= 0. Substitution of 〈{f, g}, {ϕ, ψ}〉 from
(3.12) into (3.15) gives

(3.16) [h, χ(l̄)] = c(Q(l) + 1/τ).

Next consider the case 1/τ + [ψ, ϕ] = 0. The first term on the righthand side of
(3.15) is zero as {f, g} ∈ S . Hence (3.15) reduces to (3.16). Thus, in both cases
1/τ + [ψ, ϕ] 6= 0 and 1/τ + [ψ, ϕ] = 0, we can solve the equation (3.16) for c and
substitute the result in (3.13). This gives the desired result. Hence, in each case
the resolvent of A(τ) is given by (3.10). This completes the proof.

We recall the following proposition concerning Q -functions, which are nor-
malized as indicated, cf. [HLS, Proposition 3.2].
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Proposition 3.3. Let Q(l) be the Q -function of S and A , normalized by

ReQ(µ) = 0 . For each τ ∈ R ∪ {∞} the Q -function Qτ (l) of the canonical

selfadjoint extension A(τ) and S , normalized by ReQτ (µ) = 0 , is given by

(3.17) Qτ (l) =
Q(l) − τ

(

ImQ(µ)
)2

τQ(l) + 1
, τ ∈ R ∪ {∞}.

We emphasize that a Q -function of S and A is determined up to a real
constant; the only condition on a Q -function is that it satisfies (1.5).

With any Nevanlinna function Q(l) and a parameter τ ∈ R ∪ {∞} we may
associate the function Qτ (l) , defined by the linear fractional transform (3.17),
see [HLS]. In [HLS] and [HS1] the following facts were proved using a function-
theoretic method. If Q(l) belongs to N1 , N0 , N−1 or N−2 , then for all but one
τ ∈ R∪{∞} , the function Qτ (l) belongs to N1 , N0 , N−1 or N−2 , respectively,
whereas for the exceptional value of τ , given by 1/τ + γ = 0, the exceptional
function Qτ (l) does not belong to N1 . Moreover, the exceptional function was
characterized in a function-theoretic manner.

4. Characterization of subclasses of Q-functions

Let A be a selfadjoint relation and let Z = span {ϕ, ψ} be a one-dimensional
subspace which satisfies (2.3). Associated with S and its selfadjoint extension
A is a Q -function Q(l) given by (3.3), see Proposition 3.1. In this section we
will give necessary and sufficient conditions in terms of Z for Q(l) to belong to
the subclasses N1 , N0 , N−1 , or N−2 . If Q(l) belongs to N1 we can evaluate
limy→∞Q(iy) and if Q(l) belongs to N0 , N−1 , or N−2 we can evaluate the
corresponding moments in terms of A and Z .

In the following we assume that S = A∩Z∗ and A are restricted to the Hilbert
space H⊖mul S . According to Proposition 1.2 we may restrict ourselves, without
loss of generality, to the situation that S = A∩Z∗ is a closed symmetric operator
with defect numbers (1, 1) and where A is an operator or A is a multivalued
operator whose multivalued part mul A is one-dimensional. In this case mul A =
span {(I − P )ϕ} , cf. Proposition 1.2. Here P denotes the orthogonal projection
onto H ⊖ mul A .

Proposition 4.1. Let A be a selfadjoint relation in a Hilbert space H and

let Z = span {ϕ, ψ} be a one-dimensional subspace which satisfies (2.3) . Assume

that S = A ∩ Z∗ is an operator, so that mul A is at most one-dimensional.

(i) If mul A = {0} , then S is not densely defined if and only if ϕ ∈ dom A . In

this case mul S∗ = span {Aϕ− ψ} .

(ii) If mul A is one-dimensional, then S is not densely defined and dom S =
dom A and mul S∗ = span {(I − P )ϕ} .
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Proof. Suppose that mul A = {0} , i.e., that A is an operator. We first
assume that S is not densely defined. Then there exists a nontrivial element
{0, g} ∈ mul S∗ and it follows that {0, g} = {h,Ah}+c{ϕ, ψ} for some h ∈ dom A
and c ∈ C . Clearly, c 6= 0 and thus ϕ ∈ dom A follows. Suppose conversely that
ϕ ∈ dom A . Then the definition (2.1) of S can be written as

S =
{

{f, g} ∈ A : [f, Aϕ− ψ] = 0
}

.

Note that Aϕ − ψ 6= 0, due to (2.3). This shows that S is not densely defined
and that mul S∗ has the indicated form.

To prove the second statement note that, if mul A is one-dimensional then
A is not an operator, so that A and thus S are not densely defined. Moreover,
(I − P )ϕ 6= 0. Now let {f, g} ∈ A and denote c = 〈{f, g}, {ϕ, ψ}〉/[(I − P )ϕ, ϕ] .
Then with g̃ = g − c(I − P )ϕ we have {f, g̃} ∈ A and it is easy to check that
〈{f, g̃}, {ϕ, ψ}〉 = 0, i.e., {f, g̃} ∈ S . This shows that dom A ⊂ dom S and
completes the proof.

Proposition 4.2. Assume that the conditions of Proposition 4.1 hold.

(i) If ϕ ∈ dom S , then S+̇Z is a selfadjoint extension of S which is not an

operator.

(ii) Conversely, if S+̇Z is not an operator, then ϕ ∈ dom S .

Proof. If ϕ ∈ dom S , then {ϕ, ψ′} ∈ S for some ψ′ ∈ H . Since
〈{ϕ, ψ′}, {ϕ, ψ}〉 = 0, it follows that [ϕ, ψ] = [ψ′, ϕ] ∈ R . Hence, Z is sym-
metric and S+̇Z is selfadjoint. Moreover {0, ψ′ − ψ} ∈ S+̇Z and ψ′ 6= ψ on
account of (2.3). The converse statement is obvious.

Let Q(l) be the Q -function of S = A ∩ Z∗ and A as defined by (3.3). From
the general theory of Nevanlinna functions we know that

lim
y→∞

ReQ(iy)

y
= 0, lim

y→∞

ImQ(iy)

y
≥ 0.

It follows from (3.1) that (I − P )χ(l) = (I − P )ϕ . Hence, the last limit can
be expressed in terms of Z : if we apply (ii) of Proposition 1.1, we obtain

(4.1) lim
y→∞

ImQ(iy)

y
= [(I − P )ϕ, (I − P )ϕ].

We state Proposition 1.3 in terms of the subspace Z .

Proposition 4.3. Let Q(l) be the Q -function of S = A ∩ Z∗ and A . Then

(i) limy→∞ ImQ(iy)/y = 0 if and only if ϕ ∈ domA .

Assume that S is an operator. Then

(ii) limy→∞ ImQ(iy)/y = 0 if and only if A is an operator.
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(iii) Q(l) ∈ N1 if and only if A is an operator and ϕ ∈ dom |A|1/2 .

(iv) Q(l) ∈ N0 if and only if A is an operator and ϕ ∈ dom A .

(v) Q(l) ∈ N−1 if and only if A is an operator, ϕ ∈ dom A , and Aϕ − ψ ∈
dom |A|1/2 .

(vi) Q(l) ∈ N−2 if and only if A is an operator, ϕ ∈ dom A , and Aϕ−ψ ∈ dom A .

Proof. The first statement follows immediately from (4.1). Note that the
first element on the righthand side of (3.1) belongs to dom A and that dom A =
dom |A| ⊂ dom |A|1/2 . Therefore, ϕ belongs to dom |A|1/2 or to dom A if and
only if χ(l) belongs to dom |A|1/2 or to dom A , respectively. If A is an operator
and ϕ ∈ dom A , it follows from (3.7) that χ(l) belongs to dom |A|3/2 or dom |A|2 ,
if and only if Aϕ − ψ belongs to dom |A|1/2 or dom |A| = dom A , respectively.
Now apply Proposition 1.3. The proof is completed.

Note that if {ϕ̃, ψ̃} is equivalent to {ϕ, ψ} , then ϕ̃ ∈ dom |A|1/2 if and only
if ϕ ∈ dom |A|1/2 , and ϕ̃ ∈ dom A if and only if ϕ ∈ dom A , in which case
Aϕ− ψ = Aϕ̃− ψ̃ spans mul S∗ , see Proposition 4.1.

A function Q(l) in N belongs to N1 if and only if the integral representation
(1.7) of Q(l) reduces to

(4.2) Q(l) = γ +

∫

R

1

t− l
dσ(t),

where γ ∈ R and
∫

R
dσ(t)/(|t|+ 1) <∞ , cf. [Ka] and [KK]. It follows from this

representation that

(4.3) γ = lim
y→∞

Q(iy).

In particular, the function Q(l) belongs to N0 if and only if the function σ(t)
satisfies

∫

R
dσ(t) < ∞ . Moreover, the function Q(l) belongs to N−1 or N−2 if

and only
∫

R
(|t|+ 1) dσ(t) <∞ or

∫

R
(|t|2 + 1) dσ(t) <∞ , respectively, see [HS1].

Hence, in these cases the moments

(4.4) mk(σ) =

∫

R

tk dσ(t),

associated with the spectral measure of the function Q(l) , are well-defined for
k = 0, k = 0, 1, or k = 0, 1, 2, respectively. If Q(l) is the Q -function of S = A∩Z∗

and A , we will express the limit γ and the moments m0(σ) , m1(σ) , and m2(σ) ,
respectively, in terms of the operator A and the subspace Z , cf. [A], [K3], [KL].
For this we need the polar decomposition of A = U |A| . Here the operators
U (= U∗ = U−1 ) and |A| are given in terms of the spectral decomposition
A =

∫

R
t dE(t) of A as follows

(4.5) |A| =

∫

R

|t| dE(t), U =

∫

R

t

|t|
dE(t).
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The functions σ(t) in (1.7) and E(t) are related by (iii) of Proposition 1.1.
Hence if Q(l) belongs to N0 , it follows from (3.7) that

(4.6) dσ(t) = d
(

[E(t)(Aϕ− ψ), Aϕ− ψ]
)

.

Proposition 4.4. Let Q(l) be the Q -function of S = A ∩ Z∗ and A . If

Q(l) ∈ N1 , then

(4.7) γ = lim
y→∞

Q(iy) = [ψ, ϕ] + [ϕ, ψ] − [U |A|1/2ϕ, |A|1/2ϕ].

Moreover, if Q(l) belongs to N0 , then γ = [ψ, ϕ] + [ϕ, ψ]− [Aϕ, ϕ] and Q(l) has

the operator representation

(4.8) Q(l) = γ + [(A− l)−1ψ̃, ψ̃],

where ψ̃ = Aϕ− ψ .

(i) If Q(l) ∈ N0 , then

m0(σ) = lim
y→∞

−iy(Q(iy) − γ) = [ψ̃, ψ̃].

(ii) If Q(l) ∈ N−1 , then

m1(σ) = lim
y→∞

−(iy)2
(

Q(iy) − γ +
m0(σ)

iy

)

= [U |A|1/2ψ̃, |A|1/2ψ̃].

(iii) If Q(l) ∈ N−2 , then m1(σ) = [Aψ̃, ψ̃] and

m2(σ) = lim
y→∞

−(iy)3
(

Q(iy) − γ +
m0(σ)

iy
+
m1(σ)

(iy)2

)

= [Aψ̃, Aψ̃].

Proof. Observe that Q(l) in (3.4) can be written as

(4.9)
Q(l) = l[ϕ, ϕ] + [(A− l)−1ψ, ψ]

− l[(A− l)−1ψ, ϕ]− l[(A− l)−1ϕ, ψ] + l2[(A− l)−1ϕ, ϕ].

Consider the behaviour of this function for l = iy , y → ∞ . The second term
[(A− l)−1ψ, ψ] does not give a contribution to the limit. The terms

−l[(A− l)−1ψ, ϕ] and − l[(A− l)−1ϕ, ψ]

give contributions [ψ, ϕ] and [ϕ, ψ] , respectively. The two remaining terms l[ϕ, ϕ]
and l2[(A− l)−1ϕ), ϕ] are combined to

(4.10) l[(I + l(A− l)−1)ϕ, ϕ] = l[A(A− l)−1ϕ, ϕ] =

∫

R

lt

t− l
d([E(t)ϕ, ϕ]),
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where we have used

(4.11) l(A− l)−1 = −I +A(A− l)−1.

The assumption ϕ ∈ dom |A|1/2 is equivalent to
∫

R
|t| d([E(t)ϕ, ϕ]) < ∞ . Note

that
∣

∣

∣

iyt

t− iy

∣

∣

∣
=

y|t|
√

t2 + y2
≤ |t|.

Application of the dominated convergence theorem to (4.10) with l = iy , y → ∞ ,
gives the limit −

∫

R
t d([E(t)ϕ, ϕ]) . Next observe that

[U |A|1/2ϕ, |A|1/2ϕ] =

∫

R

t

|t|
|t|1/2 d

(

[E(t)ϕ, |A|1/2ϕ]
)

=

∫

R

t d
(

[E(t)ϕ, ϕ]
)

,

which proves (4.7).
Clearly, if Q(l) ∈ N0 , then γ in (4.7) is given by γ = [ψ, ϕ] + [ϕ, ψ] −

[Aϕ, ϕ] . Comparing this with the operator representation (3.8) we obtain (4.8).
The identity (4.11) and the representation (4.8) imply that

(4.12) −l(Q(l) − γ) = [ψ̃, ψ̃] − [A(A− l)−1ψ̃, ψ̃].

The statement in (i) follows from (4.12) and the integral representation (4.2). If
Q(l) ∈ N−1 , then ψ̃ ∈ dom |A|1/2 and

[A(A− l)−1ψ̃, ψ̃] = [(A− l)−1U |A|1/2ψ̃, |A|1/2ψ̃].

Hence (4.12), (i), and (4.11) give
(4.13)

−l2
(

Q(l) − γ +
m0(σ)

l

)

= [U |A|1/2ψ̃, |A|1/2ψ̃] − [A(A− l)−1U |A|1/2ψ̃, |A|1/2ψ̃].

The statement in (ii) follows from (4.13) and the integral representation (4.2). If
Q(l) ∈ N−2 , then ψ̃ ∈ dom A by Proposition 4.3, and

[A(A− l)−1U |A|1/2ψ̃, |A|1/2ψ̃] = [(A− l)−1Aψ̃, Aψ̃],

and m1(σ) = [Aψ̃, ψ̃] . Hence (4.13), (ii), and (4.11) give

(4.14) −l3
(

Q(l) − γ +
m0(σ)

l
+
m1(σ)

l2

)

= −l[(A− l)−1Aψ̃, Aψ̃].

The statement in (iii) follows from (4.14) and the integral representation (4.2).
This completes the proof.



One-dimensional graph perturbations of selfadjoint relations 143

5. The operator case

Let A be a selfadjoint operator in the Hilbert space H and let Z = span {ϕ, ψ}
be a one-dimensional subspace which satisfies (2.3). We will now consider Theo-
rem 2.4 in greater detail.

First we present a suitable formulation of the definition of S and its ad-
joint S∗ .

Lemma 5.1. The closed symmetric operator S = A ∩ Z∗ is given by

(5.1) S = {{f, Af} : f ∈ dom A, [Af, ϕ]− [f, ψ] = 0}.

Its adjoint S∗ is given by

(5.2) S∗ =
{

{h,A(h+ cϕ) − cψ} : h+ cϕ ∈ dom A, c ∈ C
}

.

Proof. Since A is an operator, (5.1) is just a restatement of (2.1). Similarly,
consider an arbitrary element of (2.2), i.e., an element of the form

(5.3) {f, g} − c{ϕ, ψ}, {f, g} ∈ A, c ∈ C.

With h = f−cϕ , it follows that f = h+cϕ ∈ dom A and that g−cψ = Af−cψ =
A(h+ cϕ) − cψ , so that the element (5.3) is equal to

(5.4) {h,A(h+ cϕ) − cψ}, h+ cϕ ∈ dom A, c ∈ C,

and belongs to the righthand side of (5.2).
Conversely, consider an arbitrary element in the righthand side of (5.2), i.e.,

an element of the form (5.4). With f = h + cϕ ∈ dom A , c ∈ C , it follows that
the element (5.4) is equal to (5.3) and belongs to (2.2). This completes the proof.

The form (5.2) in which the adjoint S∗ is written is now used for the de-
scription of all canonical selfadjoint extensions of S . We recall from Proposi-
tion 4.1 that S is not densely defined if and only if ϕ ∈ dom A , in which case
mul S∗ = span {Aϕ− ψ} .

Theorem 5.2. The canonical selfadjoint extensions A(τ) , τ ∈ R ∪ {∞} , of

S = A ∩ Z∗ are given by A(0) = A and for τ 6= 0 , 1/τ + [ψ, ϕ] 6= 0 , by

(5.5)

A(τ) =

{

{h,A(h+ cϕ) − cψ} : h+ cϕ ∈ dom A, c ∈ C,

c =
[A(h+ cϕ), ϕ] − [h+ cϕ, ψ]

1/τ + [ψ, ϕ]

}

,
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while for 1/τ + [ψ, ϕ] = 0 the canonical selfadjoint extension A(τ) is given by

(5.6)
A(τ) =

{

{h,A(h+ cϕ) − cψ} :h+ cϕ ∈ dom A, c ∈ C,

[A(h+ cϕ), ϕ] − [h+ cϕ, ψ] = 0
}

.

Proof. Consider an arbitrary element in A(τ) as given by (2.4) for τ 6= 0,
1/τ + [ψ, ϕ] 6= 0, or by (2.5) for 1/τ + [ψ, ϕ] = 0. That is, consider an element of
the form

(5.7) {f, Af} − c{ϕ, ψ}.

If 1/τ + [ψ, ϕ] 6= 0, assume that c ∈ C satisfies

(5.8) c(1/τ + [ψ, ϕ]) = [Af, ϕ]− [f, ψ].

If 1/τ + [ψ, ϕ] = 0, then assume that {f, Af} ∈ S and note that (5.8) is still
satisfied, cf. (5.1). Define h = f − cϕ , then f = h + cϕ ∈ dom A and g − cψ =
A(h+ cϕ) − cψ . Therefore (5.7) is equal to

(5.9) {h,A(h+ cϕ) − cψ},

while, in addition, c ∈ C must satisfy

(5.10) c(1/τ + [ψ, ϕ]) = [A(h+ cϕ), ϕ] − [h+ cϕ, ψ].

Hence A(τ) is contained in the righthand side of (5.5) or of (5.6), respectively.
Conversely, consider an arbitrary element in the righthand side of (5.5) with

τ 6= 0, 1/τ + [ψ, ϕ] 6= 0, or of (5.6) with 1/τ + [ψ, ϕ] = 0. That is, consider
an element of the form (5.9) where c satisfies (5.10). Define f = h + cϕ , then
f ∈ dom A and the element (5.9) has the form (5.7), while c satisfies (5.8). Note
that if 1/τ + [ψ, ϕ] = 0, then it follows from (5.8) that {f, Af} ∈ S , cf. (5.1).
Therefore, the righthand side of (5.5) or of (5.6) is contained in A(τ) as given by
(2.4) or by (2.5), respectively. This completes the proof.

In general it is impossible to solve the constant c in terms of A from the
equation (5.5). However, since ϕ ∈ dom S∗ , the condition h+cϕ ∈ dom A implies
that h ∈ dom S∗ . This observation leads to an interpretation of (5.5) in terms
of triplet spaces, see [HS2]. If the Q -function Q(l) of A and S is an exceptional
function corresponding to the class N1 , then it follows from Proposition 3.3 that
all canonical selfadjoint extensions A(τ) , τ 6= 0, have Q -functions belonging to
N1 , cf. [HLS]. It is in the case where the Q -function Q(l) belongs to N1 (or
equivalently ϕ ∈ dom |A|1/2 ), that the perturbation formula in Theorem 5.2 can
be simplified. For then the limit γ = limy→∞Q(iy) exists as a real number, cf.
Proposition 4.4, and in the description of all canonical selfadjoint extensions A(τ) ,
τ ∈ R ∪ {∞} , of S = A ∩ Z∗ , there exists precisely one exceptional value of the
parameter τ , given by 1/τ + γ = 0, for which the Q -function corresponding to
A(τ) and S = A∩Z∗ belongs to N \N1 . In the case that Q(l) belongs to N1 , it
is also possible to explicitly “solve” c ∈ C in terms of A from (5.5). Moreover, we
will characterize the canonical selfadjoint extension A(τ) , 1/τ + γ = 0, in terms
of a “boundary condition”.
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Proposition 5.3. Assume that the Q -function Q(l) of S = A ∩ Z∗ and A
belongs to N1 . Then dom S∗ ⊂ dom |A|1/2 . All canonical selfadjoint extensions

A(τ) of S = A ∩ Z∗ are given by A(0) = A and for τ 6= 0 , 1/τ + γ 6= 0 , by

(5.11)

A(τ) =

{

{h,A(h+ cϕ) − cψ} :h+ cϕ ∈ dom A, c ∈ C,

c =
[U |A|1/2h, |A|1/2ϕ] − [h, ψ]

1/τ + γ

}

,

while for 1/τ+γ = 0 the exceptional canonical selfadjoint extension A(τ) is given

by

(5.12)
A(τ) =

{

{h,A(h+ cϕ) − cψ} : h+ cϕ ∈ dom A, c ∈ C,

[U |A|1/2h, |A|1/2ϕ] − [h, ψ] = 0
}

.

Proof. Since ϕ ∈ dom |A|1/2 , it follows from h + cϕ ∈ dom A , that h ∈
dom |A|1/2 , as dom A ⊂ dom |A|1/2 . Hence it follows from (5.2) that dom S∗ ⊂
dom |A|1/2 .

Consider an arbitrary element in A(τ) in the righthand side of (5.5) with
τ 6= 0, 1/τ + [ψ, ϕ] 6= 0, or in the righthand side of (5.6) with 1/τ + [ψ, ϕ] = 0.
That is, consider an element of the form

(5.13) {h,A(h+ cϕ) − cψ},

where h + cϕ ∈ dom A and c ∈ C satisfies (5.10). As ϕ ∈ dom |A|1/2 implies
that h ∈ dom |A|1/2 , the equation (5.10) may be written as

(5.14) c(1/τ+[ψ, ϕ]) = c[U |A|1/2ϕ, |A|1/2ϕ]−c[ϕ, ψ]+[U |A|1/2h, |A|1/2ϕ]−[h, ψ].

By Proposition 4.4 this leads to

(5.15) c(1/τ + γ) = [U |A|1/2h, |A|1/2ϕ] − [h, ψ].

Thus we have shown that A(τ) as given by (5.5) or (5.6), is contained in the
righthand side of (5.11) or of (5.12), respectively.

Conversely, consider an arbitrary element in the righthand side of (5.11) with
τ 6= 0, 1/τ + γ 6= 0, or of (5.12) with 1/τ + γ 6= 0. That is, consider an element
of the form (5.13), where c ∈ C satisfies (5.15). Insert the expression for γ
from Proposition 4.4 in (5.15). This shows that c ∈ C then satisfies (5.14). As
h+ cϕ ∈ dom A , the identity (5.14) is equivalent to (5.10). Hence this shows that
the righthand side of (5.11) or (5.12) is contained in A(τ) as given by (5.5) or by
(5.6), respectively. This completes the proof.
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Another way to express the exceptional selfadjoint extension A(τ) , 1/τ+γ =
0, is via

A(τ) = {{h, k} ∈ S∗ : [U |A|1/2h, |A|1/2ϕ] − [h, ψ] = 0},

i.e., with a “boundary condition” of the form [U |A|1/2h, |A|1/2ϕ]−[h, ψ] = 0. This
is similar to S =

{

{h, k} ∈ A : [U |A|1/2h, |A|1/2ϕ] − [h, ψ] = 0
}

.

Next we will consider the case that the Q -function Q(l) of S = A ∩ Z∗ and
A belongs to the class N0 (or equivalently that ϕ ∈ dom A). In this case S is
given by (3.9): S =

{

{f, Af} : f ∈ dom A, [f, Aϕ− ψ] = 0
}

. Note that S is a
nondensely defined operator, due to the domain restriction. It follows from (5.2)
that dom S∗ ⊂ dom A . Furthermore, as ϕ ∈ dom A implies that ϕ ∈ dom |A|1/2 ,
the following result is obtained as a special case of Proposition 5.3.

Proposition 5.4. Assume that the Q -function Q(l) of S = A ∩ Z∗ and

A belongs to N0 . Then dom S∗ = dom A . All canonical selfadjoint extensions

A(τ) of S = A ∩ Z∗ are given by A(0) = A and for τ 6= 0 , 1/τ + γ 6= 0 , by

(5.16) A(τ) =
{{

h,Ah+
[h,Aϕ− ψ]

1/τ + γ
(Aϕ− ψ)

}

: h ∈ dom A
}

,

while for 1/τ+γ = 0 the exceptional canonical selfadjoint extension A(τ) is given

by

(5.17) A(τ) =
{

{h,Ah+ c(Aϕ− ψ)} : h ∈ dom A, c ∈ C, [h,Aϕ− ψ] = 0
}

.

We explicitly state what happens when Z is spanned by an element of the
form {0, ψ} , ψ 6= 0. Clearly, Z is symmetric and S =

{

{f, g} ∈ A : [f, ψ] = 0
}

.
The identities (3.7) of χ(l) and (3.8) of Q(l) reduce to

χ(l) = −(A − l)−1ψ, Q(l) = [(A− l)−1ψ, ψ] (∈ N0),

so that γ = 0 and τ = ∞ is the exceptional value. Recall that the Q -function
Q(l) changes if the pair {ϕ, ψ} is replaced by an equivalent pair, while the function
χ(l) stays the same. For τ ∈ R the canonical selfadjoint extensions A(τ) of
S are densely defined operators and when ‖ψ‖ = 1, they are one-dimensional
perturbations of A of the form A(τ) = A+ τR , where R denotes the orthogonal
projection onto mul S∗ = span {ψ} , see Proposition 4.1. For τ = ∞ we obtain

A(∞) = S+̇Z = S+̇
(

{0} ⊕ span {ψ}
)

,

which is the unique selfadjoint extension of S which is not an operator. For fi-
nite dimensional Hilbert spaces the connection between the one-dimensional range
perturbations and Krĕın’s formula is derived in [D, Chapter 6].

From the explicit expression for the canonical selfadjoint extensions A(τ) in
(5.5) and (5.6) the following result is immediately clear.
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Corollary 5.5. Assume that the Q -function Q(l) of S = A ∩ Z∗ and A
belongs to N \ N0 . Let τ ∈ R ∪ {∞} and τ 6= 0 . Then dom A(τ) ∩ dom A =
dom S .

The next corollary shows a completely different behaviour of the domains of
the canonical selfadjoint extensions when Q(l) belongs to N0 .

Corollary 5.6. Assume that the Q -function Q(l) of S = A ∩ Z∗ and A
belongs to N0 . Let τ ∈ R ∪ {∞} , then

dom A(τ) = dom A if 1/τ + γ 6= 0 and dom A(τ) = dom S if 1/τ + γ = 0.

It follows from Corollary 5.6 that A(τ) , 1/τ + γ = 0, is the only selfadjoint
extension of S , which is not an operator. In fact then we have that

A(τ) = S+̇
(

{0} ⊕ span {Aϕ− ψ}
)

,

or, equivalently,
A(τ) =

{

{h, k} ∈ S∗ : [h,Aϕ− ψ] = 0
}

,

which is similar to

S =
{

{h, k} ∈ A : [h,Aϕ− ψ] = 0
}

.

Corollaries 5.5 and 5.6 show the different behaviours in the cases Q(l) ∈ N\N0

and Q(l) ∈ N0 . If Q(l) ∈ N1 \ N0 the application of space triplets gives a
description which is similar to Corollary 5.6. This is already apparent in the
operator models for the cases Q(l) ∈ N1 \ N0 and Q(l) ∈ N0 , see [HLS] and
Section 7 of the present paper. For further details we refer to [HKS] and [HS2].

If the Q -function Q(l) of S = A ∩ Z∗ and A belongs to N0 , then the
Q -function Qτ (l) of A(τ) and S , 1/τ + γ 6= 0, also belongs to N0 , while
for 1/τ + γ = 0 the Q -function H(l) of A(τ) in (5.17) has the property that
limy→∞ ImH(iy)/y > 0. Likewise, if Q(l) belongs to N−1 or N−2 , then Qτ (l) ,
1/τ + γ 6= 0, belongs to the same subclass, while for 1/τ + γ = 0 the function
H(l) satisfies

H(l) −
(

lim
y→∞

ImH(iy)

y

)

l ∈ N1 or N0,

respectively, cf. [HS1]. We relate the moments for Qτ (l) , 1/τ + γ 6= 0, to the

moments for Q(l) . We use the notation q =
(

ImQ(µ)
)2

.

Proposition 5.7. Let the Q -function Q(l) of S = A ∩ Z∗ and A belong

to N0 . Then for 1/τ + γ 6= 0 the moments m0(στ ) are given by

(5.18) m0(στ ) =
(τ2q + 1)m0(σ)

(τγ + 1)2
.
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If Q(l) ∈ N−1 , then the moments m1(στ ) , 1/τ + γ 6= 0 , are given by

(5.19) m1(στ ) =
(τ2q + 1)

[

(τγ + 1)m1(σ) + τm0(σ)2
]

(τγ + 1)3
.

Furthermore, if Q(l) ∈ N−2 , then the moments m2(στ ) , 1/τ + γ 6= 0 , are given

by

(5.20)

m2(στ ) =
(τ2q + 1)

[

(τγ + 1)2m2(σ) + 2(τγ + 1)τm1(σ)m0(σ) + τ2m0(σ)3
]

(τγ + 1)4
.

Proof. Assume that Q(l) ∈ N0 . It follows from (3.17) that for τγ + 1 6= 0
the limit γτ = limy→∞Qτ (iy) exists as a real number and is given by

γτ =
γ − τq

τγ + 1
.

Then a simple calculation shows that

−iy
(

Qτ (iy) − γτ

)

=
−iy

(

Q(iy) − γ
)

(τ2q + 1)

(τγ + 1)
(

τQ(iy) + 1
) .

Taking limits and using (i) of Proposition 4.4 gives (5.18). Next assume that
Q(l) ∈ N−1 and use the identity:

− (iy)2
(

Qτ (iy) − γτ +
m0(στ )

iy

)

=

(

−(iy)2[Q(iy) − γ +m0(σ)/iy](τγ + 1) − (iy)[Q(iy)− γ]τm0(σ)
)

(τ2q + 1)

(τγ + 1)2
(

τQ(iy) + 1
) .

Hence, taking limits and using (i) and (ii) of Proposition 4.4 gives (5.19). Now
assume that Q(l) ∈ N−2 . A straightforward calculation shows that

−(iy)3
(

Qτ (iy) − γτ +
m0(στ )

iy
+
m1(στ )

(iy)2

)

= −
(iy)3[Q(iy) − γ +m0(σ)/iy +m1(σ)/(iy)2](τ2q + 1)(τγ + 1)2

(τγ + 1)3
(

τQ(iy) + 1
)

−
(iy)2[Q(iy) − γ +m0(σ)/iy](τ2q + 1)(τγ + 1)τm0(σ)

(τγ + 1)3
(

τQ(iy) + 1
)

−
(iy)[Q(iy)− γ](τ2q + 1)[(τγ + 1)τm1(σ) + τ2m0(σ)2]

(τγ + 1)3
(

τQ(iy) + 1
) .

Again by taking limits and using (i), (ii), and (iii) of Proposition 4.4 yields (5.20).
This completes the proof.
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6. The multivalued case

Let A be a selfadjoint relation in the Hilbert space H and let Z = span {ϕ, ψ}
be a one-dimensional subspace which satisfies (2.3). We may assume, without loss
of generality, that mul A is one-dimensional and that S is a closed symmetric
operator. For this case we will consider Theorem 2.4 in greater detail.

Let A = As ⊕A∞ be a selfadjoint relation whose multivalued part mul A is
one-dimensional, so that

H = (H ⊖ mul A) ⊕ mul A.

Recall that dom A = dom As is dense in H ⊖ mul A . Choose a unit vector in
mul A and identify H = (H ⊖ mul A) ⊕ mul A with H = (H ⊖ mul A) ⊕C in the
obvious way. We use vector notation for the elements in this last Hilbert space.
Hence we may write

(6.1) A =

{{(

h
0

)

,

(

Ash
u

)}

: h ∈ dom As, u ∈ C

}

.

Now let Z = span {ϕ, ψ} be any one-dimensional subspace in H
2 ; it is equivalent

to the subspace span {ϕ, Pψ} . Hence, without loss of generality, we may assume
that

(6.2) Z = span

{(

ϕ0

δ

)

,

(

ψ0

0

)}

,

with elements ϕ0, ψ0 ∈ H ⊖ mul A and δ ∈ C .

If A is a selfadjoint relation whose multivalued part is one-dimensional, then
S = A∩Z∗ is a closed symmetric relation and mul S is at most one-dimensional.
We now consider a suitable formulation of the definition of S and its adjoint S∗ .

Lemma 6.1. Let A be a selfadjoint relation as in (6.1) and let Z be a one-

dimensional subspace as in (6.2) . Then the closed symmetric relation S = A∩Z∗

is given by

(6.3) S =

{{(

f
0

)

,

(

Asf
u

)}

: f ∈ dom As, uδ̄ = [f, ψ0] − [Asf, ϕ0], u ∈ C

}

.

Its adjoint S∗ is given by

(6.4)

S∗ =

{{(

h
−cδ

)

,

(

As(h+ cϕ0) − cψ0

v

)}

: h+ cϕ0 ∈ dom As, c, v ∈ C

}

.
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Proof. The identity (6.3) follows from the definition S = A ∩ Z∗ and the
special form (6.1) and (6.2) of A and Z , respectively. In order to prove (6.4), let

{(

h
−cδ

)

,

(

k
v

)}

, h, k ∈ H ⊖ mul A, c, v ∈ C,

be an element of S∗ . Then for all f ∈ dom As we have
〈{(

h
−cδ

)

,

(

k
v

)}

,

{(

f
0

)

,

(

Asf
u

)}〉

= 0,

with uδ̄ = [f, ψ0] − [Asf, ϕ0] . This is equivalent to

[k + cψ0, f ]− [h+ cϕ0, Asf ] = 0, f ∈ dom As.

Hence h+ cϕ0 ∈ dom As and As(h+ cϕ0) = k+ cψ0 . Therefore, S∗ is contained
in the righthand side of (6.4).

Conversely, assume that h+cϕ0 ∈ dom As . Then for every f ∈ dom As with
uδ̄ = [f, ψ0] − [Asf, ϕ0] we have

〈{(

h
−cδ

)

,

(

As(h+ cϕ0) − cψ0

v

)}

,

{(

f
0

)

,

(

Asf
u

)}〉

= [As(h+ cϕ0), f ] − [h+ cϕ0, Asf ] = 0.

Hence the righthand side of (6.4) is contained in S∗ . This completes the proof.

Note that

(6.5)

[(

ψ0

0

)

,

(

ϕ0

δ

)]

= [ψ0, ϕ0].

From (6.1) and (6.2) it follows that Z ⊂ A if and only if δ = 0 and {ϕ0, ψ0} ∈ As .
Hence the condition (2.3) is equivalent to

(6.6) δ 6= 0 or {ϕ0, ψ0} /∈ As.

Clearly, if δ = 0 and {ϕ0, ψ0} /∈ As it follows from (6.3) that mul S is one-
dimensional, and reduction to H ⊖ mul S gives us the situation considered in the
previous section. (Note that this case occurs if ϕ ∈ dom A .) On the other hand,
it follows from (6.3) that if δ 6= 0 then S is an operator. Therefore we will assume
in the rest of this section that

(6.7) δ 6= 0,

which is equivalent to (2.3) and S being an operator. In a similar manner as
before, the form (6.4) in which the adjoint S∗ is written is now used for the
description of all canonical selfadjoint extensions of S .
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Theorem 6.2. Let A be a selfadjoint relation given by (6.1) , let the one-

dimensional subspace Z be given by (6.2) and assume (6.7) . Then the Q -function

Q(l) of S = A ∩ Z∗ and A satisfies

(6.8) lim
y→∞

ImQ(iy)

y
= |δ|2.

The canonical selfadjoint extensions A(τ) , τ ∈ R∪{∞} , of S = A∩Z∗ are given

by A(0) = A and for τ 6= 0 by

(6.9)

A(τ) =

{{(

h
−cδ

)

,

(

As(h+ cϕ0) − cψ0

u

)}

: h+ cϕ0 ∈ dom As,

c, u ∈ C, uδ̄ = c(1/τ + [ψ0, ϕ0]) − [As(h+ cϕ0), ϕ0] + [h+ cϕ0, ψ0]

}

.

Proof. It follows from (4.1) that Q(l) satisfies (6.8). In order to prove (6.9)
we apply Theorem 2.4. Consider an arbitrary element in A(τ) as given by (2.4)
for τ 6= 0, 1/τ + [ψ0, ϕ0] 6= 0, or by (2.5) for 1/τ + [ψ0, ϕ0] = 0, cf. (6.5). That
is, consider an element of the form

(6.10)

{(

f
0

)

,

(

Asf
u

)}

− c

{(

ϕ0

δ

)

,

(

ψ0

0

)}

.

If 1/τ + [ψ0, ϕ0] 6= 0, assume that c ∈ C satisfies

(6.11)
c(1/τ + [ψ0, ϕ0]) =

〈{(

f
0

)

,

(

Asf
u

)}

,

{(

ϕ0

δ

)

,

(

ψ0

0

)}〉

= [Asf, ϕ0] − [f, ψ0] + uδ̄.

If 1/τ + [ψ0, ϕ0] = 0, then assume that

(

f
0

)

∈ dom S.

Note that then (6.11) is still satisfied due to (6.3). Define h = f − cϕ0 , then
h + cϕ0 = f ∈ dom As and Asf − cψ0 = As(h + cϕ0) − cψ0 . Therefore the
element (6.10) has the form

(6.12)

{(

h
−cδ

)

,

(

As(h+ cϕ0) − cψ0

u

)}

,

where c must satisfy

(6.13) c(1/τ + [ψ0, ϕ0]) = [As(h+ cϕ0), ϕ0] − [h+ cϕ0, ψ0] + uδ̄.
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Hence A(τ) is contained in the righthand side of (6.9).
Conversely, consider an arbitrary element in the righthand side of (6.9) with

τ 6= 0. That is, consider an element of the form (6.12) where c ∈ C satisfies (6.13).
Define f = h+ cϕ0 , then f ∈ dom As and the element (6.12) has the form (6.10).
Moreover (6.11) is satisfied. Note that if 1/τ + [ψ0, ϕ0] = 0, then it follows from
(6.11) and (6.3), that

{(

f
0

)

,

(

Asf
u

)}

∈ S.

Therefore, the righthand side of (6.9) is contained in the righthand side of (2.4)
or of (2.5), respectively. This completes the proof.

Note that in Theorem 6.2 the relation A(0) = A is the only canonical selfad-
joint extension of S = A ∩ Z∗ , which is not an operator. All the other extensions
A(τ) , τ ∈ R ∪ {∞} , τ 6= 0, are (densely defined) selfadjoint operators, which
can also be immediately seen from (6.9). Moreover, it can be seen from (6.3)
that dom A = dom S , cf. Proposition 4.1; comparing (6.4) and (6.9) we see that
dom S∗ = dom A(τ) for all τ 6= 0, cf. Proposition 5.4. The Q -function Q(l) of
S and A is an exceptional function corresponding to the class N0 ; all selfadjoint
extensions A(τ) , τ 6= 0, in (6.9) have a Q -function in N0 . Recall that if we nor-
malize Q(l) and Qτ (l) by ReQ(µ) = 0 and ReQτ (µ) = 0 for some µ ∈ C \ R ,
then the functions Q(l) and Qτ (l) are related by (3.17).

We can use this model to interpret some results concerning N−1 and N−2

functions, cf. [HS1]. Now the operator part As plays an important role in the
descriptions. Moreover, we will present some transformation formulas for the
corresponding moments in terms of the exceptional extension.

Using the special form (6.1) and (6.2) of A and Z , respectively, and rear-
ranging terms in (3.3), we obtain

(6.14) Q(l) − |δ|2l = l[ϕ0, ϕ0] + [(As − l)−1(lϕ0 − ψ0), l̄ϕ0 − ψ0].

In the Hilbert space (H ⊖ mul A)2 we introduce the, at most one-dimensional,
subspace Z0 by

(6.15) Z0 = span {ϕ0, ψ0}.

We define the symmetric operator S0 in the Hilbert space H ⊖ mul A by S0 =
As ∩ Z

∗
0 , i.e.,

(6.16) S0 =
{

{f, Asf} : f ∈ dom As, [Asf, ϕ0] − [f, ψ0] = 0
}

.

Note that
S0 = S ∩ (H ⊖ mul A)2.
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If Z0 ⊂ As , then we have the degenerate case where S0 = As , and it follows from
(6.14) that

(6.17) Q(l) = |δ|2l + [ϕ0, ψ0].

Now we assume that Z0 = span {ϕ0, ψ0} is one-dimensional and that

(6.18) As ∩ span {ϕ0, ψ0} = {0, 0}.

Then S0 is a closed symmetric operator in H⊖mul A with defect numbers (1, 1).
By comparing the righthand side of (6.14) with (3.4), we obtain the following
result.

Lemma 6.3. The function Q(l) − |δ|2l is the Q -function of S0 and As .

It belongs to N1 or to N0 if and only if ϕ0 ∈ dom |As|
1/2 or ϕ0 ∈ dom As ,

respectively.

The following result is obtained from [HS1, Propositions 3.2 and 4.2].

Corollary 6.4. The Q -function Q(l) of S = A∩Z∗ and A is an exceptional

function corresponding to N−1 or N−2 , if and only if ϕ0 ∈ dom |As|
1/2 or ϕ0 ∈

dom As , respectively. In these cases the Q -functions of the selfadjoint extensions

A(τ) , τ 6= 0 , in (6.9) belong to N−1 or N−2 , respectively.

The expression for A(τ) , τ 6= 0, in (6.9) can be simplified in each of these
cases, cf. Propositions 5.3 and 5.4. We will not pursue this, but instead, we
will express the corresponding moments in terms of Q(l) . We observe that if
Q(l) − |δ|2l ∈ N1 , then there exists a real limit

(6.19) η = lim
y→∞

(

Q(iy) − |δ|2iy
)

,

and that if Q(l) − |δ|2l ∈ N0 , then

(6.20)

m0 = sup
y>0

y Im(Q(iy) − |δ|2iy) = lim
y→∞

−iy
(

Q(iy) − |δ|2iy − η
)

=

∫

R

d̺(t) <∞,

and is positive, since we have assumed that Q(l) − |δ|2l does not reduce to a real
constant. Denote the spectral function of Qτ (l) (cf. the integral representation

(4.2)) by στ (t) . Again we use the notation q =
(

ImQ(µ)
)2

.
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Proposition 6.5. Let τ ∈ R∪{∞} , τ 6= 0 . The moments m0(στ ) are given

by

(6.21) m0(στ ) =
τ2q + 1

τ2|δ|2
.

If Q(l) − |δ|2l belongs to N1 , then the moments m1(στ ) are given by

(6.22) m1(στ ) = −
(τ2q + 1)(τη + 1)

τ3|δ|4
.

Moreover, if Q(l) − |δ|2l belongs to N0 , then the moments m2(στ ) are given by

(6.23) m2(στ ) =
(τ2q + 1)[(τη + 1)2 + τ2|δ|2m0]

τ4|δ|6
.

Proof. Clearly, limy→∞Qτ (iy) = 1/τ and hence

iy(Qτ (iy) − 1/τ) = −
τ2q + 1

1/iy
(

τ2Q(iy) + τ
) .

Taking limits and using (6.8) and (i) of Proposition 4.4 gives (6.21). Now assume
that Q(l) − |δ|2l belongs to N−1 and use the identity:

(iy)2
(

Qτ (iy) −
1

τ
+
τ2q + 1

iyτ2|δ|2

)

= iy

(

(τ2q + 1)
(

τ(Q(iy)− |δ|2iy) + 1
)

τ2|δ|2
(

τQ(iy) + 1
)

)

.

Hence, taking limits and using (6.8), (6.19), and (ii) of Proposition 4.4 gives (6.22).
Now assume that Q(l) − |δ|2l belongs to N0 and use the identity:

(iy)3
(

Q(iy) −
1

τ
+
τ2q + 1

iyτ2|δ|2
−

(τ2q + 1)(τη + 1)

(iy)2τ3|δ|4

)

= iy

(

(τ2q + 1)iy
(

Q(iy) − |δ|2iy − η
)

τ2|δ|2
(

τQ(iy) + 1
)

τ3|δ|4

)

− iy

(

(τ2q + 1)(τη + 1)
(

τ
(

Q(iy) − |δ|2iy
)

+ 1
)

(

τQ(iy) + 1
)

τ3|δ|4

)

.

Again by taking limits and using (6.8), (6.19), (6.20), and (iii) of Proposition 4.4
yields (6.23). This completes the proof.
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Finally, we will consider the linear fractional transform of H(l) = Q(l)−|δ|2l .
It is the Q -function of S0 and As . Assume that it is normalized by ReH(µ) = 0.
Then for each τ ∈ R ∪ {∞} the Nevanlinna function Hτ (l) is defined by

(6.24) Hτ (l) =
H(l) − τ

(

ImH(µ)
)2

τH(l) + 1
, τ ∈ R ∪ {∞}.

It is the Q -function of S0 and the canonical selfadjoint extension A0(τ) of S0 in
H ⊖ mul A , defined by

(6.25)

A0(τ) =
{

{h,As(h+ cϕ0) − cψ0} : h+ cϕ0 ∈ dom As, c ∈ C,

c =
[As(h+ cϕ0), ϕ0] − [h+ cϕ0, ψ0]

1/τ + [ψ0, ϕ0]

}

,

while for 1/τ + [ψ0, ϕ0] = 0 the canonical selfadjoint extension A0(τ) is given by

(6.26)
A0(τ) =

{

{h,As(h+ cϕ0) − cψ0} : h+ cϕ0 ∈ dom As, c ∈ C,

[As(h+ cϕ0), ϕ0] − [h+ cϕ0, ψ0] = 0
}

.

Note that A(τ) and A0(τ) are related by

A0(τ) =
{

{Pf, g} : {f, g} ∈ A(τ), g ∈ H ⊖ mul A
}

,

and that

A(τ) ∩ (H ⊖ mul A)2 = S0, τ 6= 0.

7. Multiplication operators

In this section we consider a real-valued nondecreasing function ρ on R and
associate with this function the Hilbert space L2(dρ) . Multiplication by the inde-
pendent variable:

Mρ =
{

{f, g} ∈
(

L2(dρ)
)2

: g = tf
}

,

is a densely defined selfadjoint operator, cf. [AG]. We will consider either this
selfadjoint operator Mρ in the Hilbert space L2(dρ) , or the selfadjoint relation

Mρ ⊕ ({0} ⊕ C),

in the Hilbert space L2(dρ)⊕C . In each of these cases we will consider a symmetric
restriction with defect numbers (1, 1) and describe its selfadjoint extensions.
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The operator case. Let H = L2(dρ) and A = Mρ . Let Z = span {ϕ, ψ} be
a one-dimensional subspace of H

2 which satisfies (2.3). Define the function ω by
ω(t) = tϕ(t)−ψ(t) . The function ω does not vanish on R because of (2.3). Note
that the function ω remains the same if the pair {ϕ, ψ} is replaced by an equivalent
pair. Moreover, pairs producing the same ω are equivalent. The function ω does
not necessarily belong to L2(dρ) . In fact, we have

(7.1)

ϕ ∈ dom |A|1/2 if and only if ϕω̄ ∈ L1(dρ)

if and only if

∫

R

|ω(t)|2

|t| + 1
dρ(t) <∞,

and

(7.2) ϕ ∈ dom A if and only if

∫

R

|ω(t)|2 dρ(t) <∞.

Clearly, the conditions ϕ ∈ dom A and Aϕ − ψ ∈ dom |A|1/2 are equivalent to
√

|t| + 1ω(t) ∈ L2(dρ) and the conditions ϕ ∈ dom A and Aϕ− ψ ∈ dom A are
equivalent to (|t| + 1)ω(t) ∈ L2(dρ) .

For each f ∈ dom A the function fω̄ is in L1(dρ) and we denote the integral
∫

R
fω dρ by [f, ω] , abusing the notation for the inner product in L2(dρ) . Observe

that for each f ∈ dom A

(7.3) 〈{f, Af}, {ϕ, ψ}〉 = [f, ω].

Let h ∈ L2(dρ) and c ∈ C , then clearly

(7.4) th+ cω ∈ L2(dρ) if and only if h+ cϕ ∈ dom A.

Hence, in this case (h+ cϕ)ω belongs to L1(dρ) and the integral
∫

R
(h+ cϕ)ω dρ

is thus denoted by [h+ cϕ, ω] .

We now express S = A∩Z∗ , S∗ and the corresponding null spaces of S∗ − l
in terms of the function ω . The following lemma is a restatement of (5.1), (5.2)
and (3.1).

Lemma 7.1. The symmetric operator S is given by

(7.5) S =
{

{f, tf} : f ∈ dom Mρ, [f, ω] = 0
}

.

The adjoint relation S∗ is given by

(7.6) S∗ =
{

{h, th+ cω} : c ∈ C, h, th+ cω ∈ L2(dρ)
}

.

In particular, S is not densely defined if and only if ω ∈ L2(dρ) , in which case

mul S∗ = span {ω} . The null space ker (S∗ − l) is spanned by

(7.7) χ(l) =
ω

t− l
, l ∈ C \ R.

We describe all canonical selfadjoint extensions of S by means of Theorem 5.2,
applied to the case that H = L2(dρ) and A = Mρ . Our description is in terms of
restrictions of the adjoint S∗ in (7.6).
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Proposition 7.2. All canonical selfadjoint extensions A(τ) of S = A ∩ Z∗

are given by A(0) = A and for τ 6= 0 and 1/τ + [ψ, ϕ] 6= 0 , by

(7.8) A(τ) =

{

{h, th+ cω} : c ∈ C, h, th+ cω ∈ L2(dρ), c =
[h+ cϕ, ω]

1/τ + [ψ, ϕ]

}

.

If 1/τ + [ψ, ϕ] = 0 , then A(τ) is given by

(7.9) A(τ) =
{

{h, th+ cω} : c ∈ C, h, th+ cω ∈ L2(dρ), [h+ cϕ, ω] = 0
}

.

We now assume that Q(l) ∈ N1 and formulate the counterpart of Proposi-
tion 5.3 for the multiplication operator on L2(dρ) . Recall from Proposition 4.4
that the exceptional value τ corresponding to Q(l) is given by 1/τ + γ = 0. For
h ∈ L2(dρ) for which hω̄ ∈ L1(dρ) , we denote the integral

∫

R
hω dρ by [h, ω] ,

abusing the notation for the inner product in L2(dρ) . The case Q(l) ∈ N0 gives
the same formal results.

Proposition 7.3. Assume that Q(l) belongs to N1 . Then all canonical

selfadjoint extensions A(τ) of S = A ∩ Z∗ are given by A(0) = A and for τ 6= 0
and 1/τ + γ 6= 0 , by

(7.10)

A(τ) =
{

{h, th+
1

1/τ + γ
[h, ω]ω} :

h ∈ L2(dρ), hω̄ ∈ L1(dρ), th+
1

1/τ + γ
[h, ω]ω ∈ L2(dρ)

}

.

These extensions are all operators. If 1/τ + γ = 0 , then the exceptional canonical

selfadjoint extension A(τ) is given by

(7.11)
A(τ) =

{

{h, th+ c ω} :

h ∈ L2(dρ), hω̄ ∈ L1(dρ), [h, ω] = 0, th+ c ω ∈ L2(dρ)
}

.

The extension A(τ) , 1/τ + γ = 0 , is not an operator if and only if ω ∈ L2(dρ) , in

which case mul S∗ = span {ω} .

The Q -function Q(l) of S and A in (3.3) has an integral representation in
terms of the measure dρ . It is given by

(7.12) Q(l) = [ψ, ϕ] + [ϕ, ψ] +

∫

R

( |ω(t)|2

t− l
− t|ϕ(t)|2

)

dρ(t).

Observe that the function t|ϕ|2 acts as a regularizing factor, which ensures the
integrability of the integrand in (7.12). To see (7.12), observe that it follows from
the definition of ω that

|ω|2

t− l
− t|ϕ|2 = l|ϕ|2 − ϕψ − ψϕ+

(lϕ− ψ)(lϕ− ψ)

t− l
.
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Since ϕ and ψ belong to L2(dρ) and (t − l)−1 is bounded for t ∈ R it is clear
that the righthand side belongs to L1(dρ) . Hence the integral in (7.12) is well-
defined and the identity in (7.12) for Q(l) follows from rewriting (3.4). We can
characterize the Q -function Q(l) in terms of the function ω(t) as follows:

(i) Q(l) belongs to N1 if and only if ω(t)/
√

|t| + 1 belongs to L2(dρ) ,
(ii) Q(l) belongs to N0 if and only if ω(t) belongs to L2(dρ) ,
(iii) Q(l) belongs to N−1 if and only if

√

|t| + 1ω(t) belongs to L2(dρ) ,
(iv) Q(l) belongs to N−2 if and only if (|t| + 1)ω(t) belongs to L2(dρ) .

In these cases (7.12) can be rewritten as

(7.13) Q(l) = γ +

∫

R

|ω(t)|2

t− l
dρ(t).

In Proposition 1.4 we have given necessary and sufficient conditions for the
existence of a Q -function in N0 or N−2 , in terms of the symmetric operator S .
In the present case of a multiplication operator on L2(dρ) we obtain

(a) the function Q(l) belongs to N0 if and only if dom S is not dense in L2(dρ) ,
(b) the function Q(l) belongs to N−2 if and only if dom A = dom S+span {ω} .

It is now possible to obtain similar results for the classes N1 and N−1 . For this
purpose, we define the Hilbert space L2

+(dρ) ⊂ L2(dρ) as follows

L2
+(dρ) = L2

(

(|t| + 1)dρ
)

.

Then dom A ⊂ L2
+(dρ) and dom A is dense in this Hilbert space. In addition we

define the Hilbert space L2
+(S) as the closure of dom S in the space L2

+(dρ) .

Proposition 7.4. We have

(i) the function Q(l) belongs to N1 if and only if dom S is not dense in L2
+(dρ) ,

(ii) the function Q(l) belongs to N−1 if and only if L2
+(dρ) = L2

+(S)+span {ω} .

Proof. We prove (i) by showing that dom S is not dense in L2
+(dρ) if and

only if ω/
√

|t| + 1 ∈ L2(dρ) . If ω/
√

|t| + 1 ∈ L2(dρ) , then h ∈ dom S means
that

0 =

∫

R

h(t)ω(t) dρ(t) =

∫

R

h(t)
ω(t)

|t| + 1
(|t| + 1) dρ(t).

Since ω/(|t| + 1) ∈ L2
+(dρ) we conclude that dom S is not dense in L2

+(dρ) .
For the converse statement we assume that there exists a nontrivial g0 ∈

L2
+(dρ) , such that for all h ∈ dom S

∫

R

h(t)g0(t)(|t| + 1) dρ(t) = 0.
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Since dom A is dense in L2
+(dρ) there exists an element f0 ∈ dom A for which

c0 =

∫

R

f0(t)g0(t)(|t| + 1) dρ(t) 6= 0.

Clearly f0 does not belong to dom S . We define c1 and ω0(t) by

c1 =

∫

R

f0(t)ω(t)dρ(t), ω0(t) = ω(t)/(|t|+ 1).

It follows that for every f ∈ dom A

(7.14)

∫

R

f(t)
(

c1g0(t) − c0ω0(t)
)

(|t| + 1) dρ(t) = 0,

as this is clear for f = f0 and for f ∈ dom S , and dom A is the span of f0
and dom S . Let ∆ be a compact subinterval of R . Let f be any function in
L2

∆(dρ) and extend f to all of R by setting it equal to zero outside ∆. Then
f ∈ dom A and, hence, it follows from (7.14) that

∫

∆

f(t)
(

c1g0(t) − c0ω0(t)
)

(|t| + 1) dρ(t) = 0.

Therefore we conclude that c1g0(t) − c0ω0(t) = 0 in ∆ almost everywhere with
respect to the measure (|t|+1)dρ(t) . Note that here ω0(t) =

(

tϕ(t)−ψ(t)
)

/(|t|+1),

restricted to ∆, belongs to L2
∆

(

(|t|+1)dρ
)

. Since ∆ is arbitrary we conclude that

c1g0(t)−c0ω0(t) = 0 almost everywhere with respect to (|t|+1)dρ(t) . Now c0 6= 0
forces ω0 ∈ L2

+(dρ) , which is equivalent to ω/
√

|t| + 1 ∈ L2(dρ) .

We prove (ii) by showing that L2
+(dρ) = L2

+(S) + span {ω} if and only if
√

|t| + 1ω ∈ L2(dρ) . If
√

|t| + 1ω ∈ L2(dρ) , then ω ∈ L2
+(dρ) and certainly

ω/(|t| + 1) ∈ L2
+(dρ) . Moreover, in the sense of L2

+(dρ) we have the orthogonal
decomposition

dom A = dom S [+] span
{ ω

|t| + 1

}

.

This implies that

L2
+(dρ) = L2

+(S) [+] span
{ ω

|t| + 1

}

.

Now ω ∈ L2
+(dρ) and ω /∈ L2

+(S) , imply L2
+(dρ) = L2

+(S) + span {ω} . The
converse statement is obvious. This completes the proof.
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We make some comments about the usual Riesz–Herglotz integral represen-
tation. For simplicity we assume that ω does not vanish on a set of positive
dρ -measure, and we associate with the measure dρ and the function ω a measure
dσ by dσ = |ω|2 dρ . Since the function χ(i) belongs to L2(dρ) (cf. Lemma 7.1),
it follows that the measure dσ satisfies the integrability condition

(7.15)

∫

R

dσ(t)

t2 + 1
<∞.

In terms of the measure dσ , the function Q(l) in (7.12) has the integral represen-
tation

Q(l) = α+

∫

R

( 1

t− l
−

t

t2 + 1

)

dσ(t),

where α ∈ R is given by

α =

∫

R

t

t2 + 1

(

|ψ(t)|2 − |ϕ(t)|2
)

dρ(t)

+

∫

R

1

t2 + 1
ϕ(t)ψ(t)dρ(t) +

∫

R

1

t2 + 1
ψ(t)ϕ(t)dρ(t).

It follows from (7.12) that the function Q(l) belongs to N1 , N0 , N−1 , N−2 if
and only if

∫

R

dσ(t)

|t| + 1
<∞,

∫

R

dσ(t) <∞,

∫

R

(|t| + 1) dσ(t) <∞, or

∫

R

(t2 + 1) dσ(t) <∞,

respectively, cf. [HS1]. In [HLS] an operator model was constructed involving
the Hilbert space L2(dσ) and multiplication by the independent variable Mσ

in that space. Let ι be the mapping that assigns to each function f on R a
function of the form f/ω . Note that ιω = 1 . Then ι provides an isometric
isomorphism between L2(dρ) and L2(dσ) ; in addition the selfadjoint operators
Mρ and Mσ are isometrically isomorphic under ι . The symmetric operator S
in L2(dρ) given by (7.5) is isometrically isomorphic to the symmetric operator
{

{f, g} ∈ Mσ : [f, 1] = 0
}

. If ω(t) = 1, then the two measures coincide: dσ = dρ
and ι is the identity mapping. If we start with a measure dρ which satisfies

∫

R

dρ(t)

t2 + 1
<∞,

then we can choose ϕ and ψ in L2(dρ) such that ω = 1 . Take any ψ ∈ L2(dρ) ,
which behaves like −1 + O(t) near 0. Then the function ϕ defined by ϕ(t) =
(ψ(t)+1)/t belongs to L2(dρ) . As we mentioned before any other pair giving the
same ω = 1 is equivalent to this choice.
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The above descriptions are all stated in terms of the function ω(t) , which does
not necessarily belong to the Hilbert space L2(dρ) . However, if for instance Q(l)
belongs to N1 , then ω(t) belongs to the Hilbert space L2

−(dρ) , where L2
−(dρ)

is the L2 space with measure dρ(t)/(|t| + 1), which contains the original Hilbert
space L2(dρ) as a proper dense subset. Its dual is the Hilbert space L2

+(dρ) , which
is contained in the original Hilbert space L2(dρ) . The inner product of the Hilbert
space L2(dρ) can be extended to serve as a duality between these spaces. The
results in the present section act as models for the interpretation of the previous
results by means of specific triplets of Hilbert spaces. In general, this program is
carried out for the case that Q(l) belongs to N1 in [HKS] and for the case that
Q(l) satisfies less restrictive conditions in [HS2].

The multivalued case. Let H = L2(dρ)⊕C and define A = Mρ ⊕ ({0}⊕C) .
Let Z ⊂ H

2 be defined by

Z = span

{(

ϕ0

δ

)

,

(

ψ0

0

)}

,

with elements ϕ0, ψ0 ∈ L2(dρ) and δ ∈ C . We assume that (6.7) is satisfied,
which is equivalent to (2.3) and S being an operator. Define the function ω0 by
ω0(t) = tϕ0(t) − ψ0(t) . The following lemma is just a translation of (6.3), (6.4)
and (3.1).

Lemma 7.5. The closed symmetric operator S = A ∩ Z∗ is given by

(7.16) S =

{{(

f
0

)

,

(

tf
u

)}

: f ∈ dom Mρ, uδ̄ + [f, ω0] = 0

}

.

Its adjoint S∗ is given by

(7.17) S∗ =

{{(

h
−cδ

)

,

(

th+ cω0

v

)}

: th+ cω0 ∈ L2(dρ), c, v ∈ C

}

.

The null space ker (S∗ − l) is spanned by

(7.18) χ(l) =

(

ω0/(t− l)
δ

)

, l ∈ C \ R.

As before, the form (7.17) is now used for the description of all canonical
selfadjoint extensions of S , cf. Theorem 6.2.

Proposition 7.6. The canonical selfadjoint extensions A(τ) , τ ∈ R ∪ {∞} ,

of S = A ∩ Z∗ are given by A(0) = A and for τ 6= 0 by

(7.19)

A(τ) =

{{(

h
−cδ

)

,

(

th+ cω0

u

)}

: th+ cω0 ∈ L2(dρ), c, u ∈ C,

uδ̄ = c(1/τ + [ψ0, ϕ0]) − [h+ cϕ0, ω0]

}

.
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We give an integral representation of the Q -function Q(l) in terms of the
measure dρ and the constant δ in (6.2). It follows from (6.8) and (6.14) that the
Q -function Q(l) in (3.3) of S = A ∩ Z∗ and A is given by

(7.20) Q(l) = [ψ0, ϕ0] + [ϕ0, ψ0] + |δ|2l +

∫

R

( |ω0(t)|
2

t− l
− t|ϕ0(t)|

2
)

dρ(t).

The function H(l) = Q(l) − |δ|2l can be further characterized in terms of the
function ω0 by means of (6.14):

(i) H(l) belongs to N1 if and only if ω0(t)/
√

|t| + 1 belongs to L2(dρ) ,
(ii) H(l) belongs to N0 if and only if ω0(t) belongs to L2(dρ)

If H(l) ∈ N1 , then

(7.21) H(l) = γ0 +

∫

R

|ω0(t)|
2

t− l
dρ(t),

where γ0 = [ψ0, ϕ0] + [ϕ0, ψ0] − [tϕ0, ϕ0] . In this case the conditions in (7.19) of
Proposition 7.6:

th+ cω0 ∈ L2(dρ), uδ̄ = c(1/τ + [ψ0, ϕ0]) − [h+ cϕ0, ω0],

are equivalent to

hω̄0 ∈ L1(dρ), uδ̄ = c(1/τ + γ0) − [h, ω0].

Note that it follows from (7.17) that
(

0

1

)

spans mul S∗ . Moreover, we see directly

from (7.17) that ω0 ∈ L2(dρ) if and only if
(

0

1

)

∈ dom S∗ . Hence, we have proved
H(l) ∈ N0 if and only if mul S∗ ⊂ dom S∗ . We have mentioned in Corollary 6.4,
that H(l) ∈ N0 if and only if Qτ (l) ∈ N−2 for τ 6= 0, cf. Proposition 1.4. Similar
comments are valid when H(l) ∈ N1 , in which case again space triplets are needed.

Also in this case it is possible to reduce the integral representation to the usual
Riesz–Herglotz representation. Assume for simplicity that ω0 does not vanish on
a set of positive dρ -measure. Then we associate with the measure dρ and the
function ω0 the measure dσ0 , dσ0 = |ω0|

2 dρ . The measure dσ0 satisfies the
integrability condition

∫

R

dσ0(t)

t2 + 1
<∞,

cf. (7.18), and the Q -function Q(l) in (7.20) has the integral representation

(7.22) Q(l) = α+ βl +

∫

R

( 1

t− l
−

t

t2 + 1

)

dσ(t),
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where β = |δ|2 and α ∈ R is given by

α =

∫

R

t

t2 + 1

(

|ψ0(t)|
2 − |ϕ0(t)|

2
)

dρ(t)

+

∫

R

1

t2 + 1
ϕ0(t)ψ0(t) dρ(t) +

∫

R

1

t2 + 1
ψ0(t)ϕ0(t) dρ(t).

Again, an isometric isomorphism between the various spaces and operators can be
made explicit.
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[KY] Krĕın, M.G., and V.A. Yavryan: Spectral shift functions that arise in perturbations of
a positive operator. - J. Operator Theory 6, 1981, 155–191 (Russian).

[LT] Langer, H., and B. Textorius: On generalized resolvents and Q -functions of symmetric
linear relations (subspaces) in Hilbert space. - Pacific J. Math. 72, 1977, 135–165.

[S] Simon, B.: Spectral analysis of rank one perturbations and applications. - In: Proceedings
on Mathematical Quantum Theory II: Schrödinger operators. Edited by J. Feldman,
R. Froese, and L.M. Rosen. CRM Proceedings and Lecture Notes, Vol. 8, Amer.
Math. Soc., Providence, R.I., 1995.

Received 5 October 1995


