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Abstract. Let w be a solution of the differential equation

w′′(z) + (1 + F (z))w(z) = 0,

where F is rational with a zero of order at least 2 at infinity. With suitable hypotheses on the zeros
of 1+F (z) we show that if w/w′ is meromorphic in C , then the Julia set of f(z) = z−w(z)/w′(z)
has zero measure. This together with a paper by W. Bergweiler and N. Terglane [4] shows that
Newton’s method for w converges almost everywhere to zeros of w or poles of F .

1. Introduction

We consider the differential equation

(1) w′′(z) +
(
1 + F (z)

)
w(z) = 0,

where F is rational with a zero at infinity of order at least 2. Let w be a solution
of (1). We assume that w/w′ is meromorphic in C . Then it makes sense to
consider Newton’s method for w , i.e. we iterate the function

(2) f(z) = z − w(z)

w′(z)
.

In [4] W. Bergweiler and N. Terglane considered differential equations of the type
(1) and gave conditions under which Newton’s method converges on an open dense
subset of the plane to zeros of w or poles of F .

Theorem A. Denote by z1, . . . , zN the zeros of 1+F (z) . Let w be a solution

of (1) such that w/w′ is meromorphic in C and define f by (2) . Suppose that

fn(zj) converges to a finite limit as n → ∞ for all j ∈ {1, . . . , N} . If f is

transcendental, then fn(z) converges to zeros of w or poles of F on an open

dense subset of the plane.
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Remark 1. Theorem A was stated in a more general form in [4]. There
differential equations of the type (1) were considered where 1+F (z) was replaced
by an arbitrary rational function R .

Theorem A leads to the question:
What measure has the set of non-convergence of Newton’s method for solu-

tions of the differential equation (1)?

We shall give an answer to this question in the context of the iteration theory
of meromorphic functions.

The following notation will be used in this paper:

1. D(z, r) = {w ∈ C ; |z−w| < r}, B(z, r) = {w ∈ C ; |z−w| > r}, D = D(0, 1),
2. O−(A) = {w ∈ C ; fn(w) ∈ A for some n ∈ N0 := N ∪ {0}} ,
3. tr(γ) denotes the trace of the path γ .

The paper is organized as follows. In §2 we state some results of iteration
theory and formulate the basic result, Theorem 1. In §3 we give a criterion for a
class of meromorphic functions to have a Julia set of zero measure. By means of
this criterion we prove Theorem 1 in §5 and §6 using the lemmas of §4. In §7 we
investigate the case where f in (2) is rational. Finally, in §8 we apply our results
to Bessel functions.

Acknowledgements. I would like to thank W. Bergweiler for many help-
ful discussions, valuable suggestions, and for reading the manuscript carefully. I
am also grateful to V. Dietrich, Professor G. Jank, Professor H. Niemeyer, and
N. Terglane for some helpful discussions. Finally, I am indebted to the referee for
a number of helpful suggestions.

2. Iteration theory

Let f be a rational or transcendental meromorphic function. The Fatou set
of f is defined by

F (f) = {z ∈ C ; (fn) is defined and normal in a neighbourhood of z}

and the complement J(f) = C\F (f) is called the Julia set of f . For an introduc-
tion into iteration theory we refer to the books [1], [5], [15] and the lecture notes
[10] for rational functions and to the survey article [2] for transcendental functions.

We call a point z0 periodic, if fn(z0) = z0 for some n ∈ N . If n is minimal
with this property, then m := (fn)′(z0) is called the multiplier of z0 . By means
of m we can classify the periodic points. The point z0 is called

1. attracting if |m| < 1 and superattracting if m = 0,
2. repelling if |m| > 1,
3. rationally indifferent if m = e2πiα with α ∈ Q and irrationally indifferent if
m = e2πiα with α ∈ R\Q .
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Let U be a component of F (f) . Then fn(U) is contained in some component Un

where we set U = U0 . If Un 6= Um for all n 6= m , we call U wandering, otherwise
we call U preperiodic. If U = Ul for some l , then we call U periodic.

The limiting behaviour of the iterates in periodic components is well under-
stood. In the case of rational functions such a component is an attractive basin,
a Leau domain, a Siegel disk, or a Herman ring. These periodic components do
occur in the case of transcendental functions too, but there exists a further possi-
bility, a Baker domain. For details see [1, §7] and [2, §4]. We mention that there is
a close connection between the periodic components (except Baker domains) and
the singularities of the inverse function, i.e. the critical and asymptotic values. See
[1, §9] and [2, §4].

We set J0(f) = J(f)\{∞} . The Fatou set is a completely invariant set, that
is z ∈ F (f) if and only if f(z) ∈ F (f) . If f is defined as in (2), then the zeros
of w are attracting fixed points of f . Thus they lie in the Fatou set and, as
F (f) is open, even a neighbourhood of these points lies in F (f) . Therefore a
point z ∈ J0(f) cannot converge to a zero of w because then fm(z) would be
in a neighbourhood U ⊂ F (f) of w for some m ∈ N0 . Because of the complete
invariance, z would be in F (f) too. Therefore J0(f) is part of the set of non-
convergence of Newton’s method.

We now formulate the main result.

Theorem 1. Let w be a non-constant solution of (1) such that w/w′ is

meromorphic in C . Further, let f be as in (2) and suppose that f is transcen-

dental. Denote by z1, . . . , zN the zeros of 1+F (z) . If fn(zj) converges to a finite

limit for j ∈ {1, . . . , N} , then J0(f) has zero measure.

This together with Theorem A yields an answer to the above question.

Corollary 1. Under the same hypotheses as in Theorem 1 fn(z) converges

almost everywhere to zeros of w or to poles of F .

Proof. In the notation of §2 the open dense subset of Theorem A is the Fatou
set of f . Thus the conclusion follows from Theorem A and Theorem 1.

For the sake of completeness, we also consider the case that f in (2) is rational.

Theorem 2. Let F in (1) not be identically zero and w be a non-constant

solution of (1) such that w/w′ is rational. Then w has the form

w(z) = ce±iz+
∫

z
R(ξ) dξ,

where c 6= 0 is a constant and R is rational with R(z) = O(1/z2) as z → ∞ .

Further, let f be as in (2) . Then each pole of R of order at least 2 and the point

z = ∞ are rationally indifferent fixed points of f with multiplier 1 . If z0 is a

pole of order 1 and R(z) = a/(z − z0) +O(1) as z → z0 , then z0 is a fixed point
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of f with multiplier 1 − (1/a) . Denote by z1, . . . , zN the zeros of 1 + F (z) . If

fn(zj) converges to a limit in C , then J(f) has zero measure. Moreover, fn(z)
converges almost everywhere to zeros of w or poles of R or to the point z = ∞ .

Remark 2. We have excluded the case that (1) is the sine equation w′′+w =
0. Then w/w′ is rational if and only if w = ce±iz . But then f(z) = z± i which is
a linear transformation. The iterative behaviour of such functions is quite simple.

3. Criteria for Julia sets to have zero measure

Let sing(f−1) be the set of the finite singularities of the inverse function. We
assume that the iterates of each point z ∈ sing(f−1) are well defined. Then the
postsingular set is defined as the closure of

P =
∞⋃

n=0
fn

(
sing(f−1)

)
.

We say that a set E is thin at infinity, if there exist constants ε > 0 and
R > 0 such that

dens
(
E,D(z, r)

)
=

meas
(
E ∩D(z, r)

)

meas
(
D(z, r)

) < 1 − ε

for all z ∈ C and r ≥ R . We denote by dist( · , · ) the Euclidean distance in C .
Further, we decompose the set sing(f−1) into three disjoint sets SI , SF , and SJ ,
where SI denotes all points z ∈ sing(f−1) ∩ F (f) which will be attracted to a
rationally indifferent cycle, SF denotes

(
sing(f−1)\SI

)
∩F (f) , and SJ is the set

sing(f−1)∩J0(f) . Moreover, we set PF =
⋃∞

n=0 f
n(SF ) , PI =

⋃∞

n=0 f
n(SI), and

PJ =
⋃∞

n=0 f
n(SJ) .

Theorem 3. Let f be meromorphic. Suppose that the following conditions

are satisfied:

(i) dist
(
PF , J0(f)

)
> 0 .

(ii) SI is a finite set.

(iii) P ∩O−(∞) = ∅ . Further, PJ is a finite set.

Then, if J0(f) is thin at infinity, J0(f) has Lebesgue measure zero.

Remark 3. If there do not exist any Baker domains or wandering domains,
then, for all z ∈ SF , fn(z) will eventually end in a cycle of attractive basins
because Siegel disks and Herman rings do not exist by hypothesis (ii) and (iii). In
fact, it is well known that the boundary of these components of the Fatou set lies
in P ∩ J(f) which is, in our situation, a finite set.
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Remark 4. The case that sing(f−1) = SF and PF is a compact set is due
to C. McMullen [9] for entire f . G. Stallard [12] and [13] has generalized the
criterion to all meromorphic functions with sing(f−1) = SF such that (i) holds.

If f is rational, SI = ∅ , and (iii) holds, then f is called subhyperbolic. We
shall refer to the conditions (i), (ii), (iii) as subhyperbolic conditions.

Proof. We restrict ourselves to the set J̃(f) = J(f)\O−(∞) . These are the
points in J(f) where all iterates are defined. This is no loss of generality because
O−(∞) is a countable set, thus

(3) meas
(
J0(f)

)
= meas

(
J̃(f)

)
.

We put Q = PJ ∪ (PI\PI) = P ∩ J0(f) and show that

(4) lim sup
n→∞

dist
(
fn(z), Q

)
> 0

holds for all z ∈ J̃(f)\O−(Q) . As PJ is finite and PJ ⊂ J̃(f) , each point in PJ

is eventually periodic. Every irrationaly indifferent cycle in J0(f) must lie in the
derived set of P [1, Theorem 9.3.4] and so it follows from (i) and (ii) that every
irrationally indifferent cycle in J0(f) must lie in the derived set of PJ which we
know from (iii) to be empty. Therefore each point of PJ must end in a repelling
or rationally indifferent cycle. We note that, as SI is finite, PI\PI is the union of
finitely many rationally indifferent cycles.

Suppose that a point z ∈ J̃(f) satisfies

(5) lim
n→∞

dist
(
fn(z), Q

)
= 0.

Let Q be the set {a1, . . . , aN} . Clearly, Q ⊂ J̃(f) ⊂ C\O−(∞) and so we can
choose disks D

(
aj , r(z)

)
which are disjoint and do not contain poles of f . Without

loss of generality fn(z) lies in
⋃N

j=1D
(
aj, r(z)

)
for all n ∈ N . As f is continuous

in
⋃N

j=1D
(
aj , r(z)

)
, there must be a subsequence, say fnk(z) , such that fnk(z) ∈

D
(
ai, r(z)

)
and ai lies in a cycle {b1, . . . , bM} with f(bj) = bj+1 (modM) . We

choose disks D
(
bj, α(z)

)
such that f

(
D(bj , α(z))

)
⊂ D

(
bj+1, r(z)

)
(modM) .

Then for all n, nk ≥ n0 , fn(z) ∈ ⋃N
j=1D

(
aj , α(z)

)
and therefore fnk+l(z) ∈

⋃M
j=1D

(
bj , α(z)

)
for all l ∈ N . Thus fn(z) converges to a repelling or rationally

indifferent cycle in Q . In the case that the cycle is repelling it is easy to see
that z belongs to O−(Q) . If the cycle is rationally indifferent the same is true
for z ∈ J0(f) [10, Corollary 7.4]. Thus z ∈ O−(Q) . Therefore (4) holds for
z /∈ O−(Q) .

Now let z ∈ J̃(f)\O−(Q) . We choose a sequence fnk(z) such that

(6) dist
(
fnk(z), Q

)
≥ α(z) > 0
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for all k ∈ N . From (i) we have a constant δ > 0 such that

(7) dist
(
PF , J0(f)

)
≥ δ.

Let u be in SI . It is well known that u will be attracted to a rationally indifferent
cycle which lies in Q . As SI is finite only finitely many points of PI do not belong
to

⋃N
j=1D

(
aj, α(z)

)
and so there exists a positive constant ε(z) ≤ min{δ, α(z)}

such that

(8) dist
(
fnk(z), P

)
≥ ε(z).

for all k ∈ N and z ∈ J̃(f)\O−(Q) . The Lebesgue density theorem [14, Proposi-
tion 1, p. 12] states that almost every point x of a measurable set E must be a
point of density, i.e.

lim
r→0+

meas
(
E ∩D(x, r)

)

meas
(
D(x, r)

) = 1.

As O−(Q) is countable we have only to prove that the points of J0(f) which
satisfy (8) are not points of density of J0(f) . Then J0(f) has zero measure. This
is the assertion.

If we analyse the proof by G. Stallard [12], we can carry over the proof in the
case of entire functions after some minor modifications using (8), condition (i), and
the fact that PJ is compact. We refer for details to the paper from G. Stallard
[12]. Therefore the proof is done in the case of entire functions.

Similarly, if f has at least one pole, then we can carry over the proof by
G. Stallard [13] to prove that there is no point of density in J̃(f)\O−(Q) . Thus
J̃(f) has zero measure and so it follows from (3) that J0(f) has zero measure.
This proves the theorem.

Remark 5. The proof shows that a transcendental meromorphic function
has a Julia set of zero measure if lim supn→∞ dist

(
fn(z), P

)
> 0 holds for almost

every z ∈ J̃(f) , P ∩ J0(f) is compact, and J0(f) is thin at infinity. These
conditions are more general than those given in the statement of Theorem 3.

Corollary 2. Let f be rational of degree d ≥ 2 . Further, suppose that J∩P
is finite. If J(f) 6= C , then J(f) has zero measure.

Proof. By hypothesis, condition (iii) of Theorem 3 is satisfied. As f has at
most 2d − 2 critical points and no asymptotic values the set sing(f−1) is finite.
In particular, (ii) of Theorem 3 is satisfied. Further, f has no wandering domains
by Sullivan’s no wandering domain theorem for rational function [16]. As f has
no Baker domains, each point in SF must be attracted to an attracting cycle
(Remark 3). Thus (i) is satisfied. By conjugation with a Möbius transformation
we may assume that ∞ /∈ J(f) . This implies that J(f) is thin at infinity. The
conclusion follows from Theorem 3.
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4. An estimate for the width of the immediate attractive basin

Let z0 be a superattracting fixed point of f and A∗(z0) its immediate at-
tractive basin.

Lemma 1. If A∗(z0) does not contain a zero or a pole of 1 + F (z) , then

A∗(z0) is simply connected and f : A∗(z0) → A∗(z0) is conjugate to z3: D → D .

Proof. As

(9) f ′(z) =
w(z)w′′(z)

w′(z)2

we see that the critical points of f are the simple zeros of w and the zeros of w′′

which are not zeros of w and w′ . The simple zeros of w are the superattracting
fixed points of f and from (1) we see that the zeros of w′′ which are not zeros of
w are the zeros of 1 + F (z) . Therefore, by the hypotheses, there are no critical
points in the immediate attractive basin other than z0 .

Moreover, we have w(z0) = w′′(z0) = 0 by (1). Thus w′(z0) 6= 0, because
w is not identically zero. From (9) we have f ′(z0) = 0. Another differentiation
yields f ′′(z0) = 0. Further, we see by differentation of (1) that w′′′(z0) 6= 0
as the function 1 + F (z) has neither a zero nor a pole at z0 . Thus f ′′′(z0) =
2w′′′(z0)/w

′(z0) 6= 0.

It follows from a theorem of Böttcher [15, p. 60] that f is locally conjugate
to z 7→ z3 . This means that there exists a function ψ defined in a neighbourhood
of z0 which satisfies the Böttcher functional equation, i.e.

(10) ψ ◦ f = (ψ)3.

It now follows by [15, Theorem 4, §3] that ψ maps A∗(z0) conformally to D .
In particular, A∗(z0) is simply connected.

Remark 6. Theorem 4 in [15] is stated for rational functions but holds for
transcendental functions too.

We set φ = ψ−1 where ψ is the function in (10).

Lemma 2. Let σ ∈ {−1, 1} . Either the angular limit ζ = φ(σ) exists and ζ
is a repelling fixed point of f or the angular limit is infinity.

Proof. The conclusion follows directly from a theorem by C. Pommerenke [11,
Theorem 1].

Lemma 3. Let ζ ∈ C be a repelling fixed point of f . Then ζ is the angular

limit φ(σ) for σ ∈ {−1, 1} for only finitely many immediate attractive basins.
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Proof. In the paper cited above [11, Theorem 3], C. Pommerenke has shown
that the number of immediate attractive basins for which ζ is the angular limit
φ(σ) for σ ∈ {−1, 1} is limited by 2 log 3/log |f ′(ζ)| .

The repelling fixed points of f are all poles of w . We see from (1) that
w has only finitely many poles and hence f only finitely many repelling fixed
points. We shall see that if f is a transcendental function given by (2), then there
exist infinitely many superattracting fixed points. It follows from Lemma 2 and
Lemma 3 that, for all but finitely many values of z0 , the basin A∗(z0) contains
two paths which tend to infinity. The first one is the image curve of (0, 1), say
γ1 , the second is the image of (−1, 0), say γ2 .

Lemma 4. Let R > 0 . Moreover, suppose that

|f(z) − z| > c

holds for all z ∈ A∗(z0) ∩ B(z0, R) where c is a positive constant. Then, for all

w ∈ tr(γi) ∩ B(z0, R) , i = 1, 2 , there exists δ ≥ c/8 such that the disk D(w, δ)
lies in A∗(z0) .

For the proof we need the following lemma which may be found in [5, p. 13].

Lemma 5. Let D be a simply connected hyperbolic domain in C , and for

z ∈ D , let δ(z) denote the Euclidean distance of z from ∂D . Then

1

2

|dz|
δ(z)

≤ dρD(z) ≤ 2
|dz|
δ(z)

.

Proof of Lemma 4. We denote hyperbolic distance in D by [ · , · ]D . First, we
estimate the hyperbolic distance between a point x ∈ (0, 1) and its image under
z 7→ z3 :

(11) [x, x3]D =

∫ x

x3

2dt

1 − t2
≤ log 3.

As the hyperbolic metric is invariant under rotations, (11) is also true for x ∈
(−1, 0). We have, via φ , the same estimate for [w, f(w)]A∗(z0) if w ∈ tr(γi) ,
i = 1, 2.

Let w 6= z0 be an arbitrary point in A∗(z0) and γ a path which connects w
and f(w) in A∗(z0) . Let γ be parametrized by arc length. We set δ := δ(w) .
Then for a point γ(s) we have:

δ
(
γ(s)

)
≤ dist

(
γ(s), w

)
+ δ(w) ≤ s+ δ.

Denote the length of γ by L . Then by Lemma 5 we have:
∫

γ

dρA∗(z0)(z) ≥
1

2

∫

γ

1

δ(z)
|dz| ≥ 1

2

∫ L

0

1

δ + s
ds =

1

2
log

(
1 +

L

δ

)
.

If w ∈ tr(γi) ∩ B(z0, R) , then L ≥ |f(w) − w| ≥ c and
∫

γ
dρA∗(z0)(z) ≤ log 3 so

that
δ ≥ 1

8c.
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5. Proof of Theorem 1: f fulfills the subhyperbolic conditions

In this paragraph we shall use the notation of Theorem 3. It has been proved
in [3] that if f has the form (2) and w is a solution of (1), then f has no
wandering domains. Further, it has been shown in [3] and [4] that, if f is as
before, then f has no asymptotic values and any cycle of Baker domains contains
a point z ∈ sing(f−1) , i.e. a critical value. As seen in the proof of Lemma 1, these
singularities of f−1 are the superattracting fixed points of f and the images of
the zeros of 1 + F (z) . Suppose that there exists a cycle of Baker domains. Then
there is one component of this cycle where the iterates tend to infinity. Let z
be a critical value which lies in the cycle. Of course, z is the image of a zero of
1+F (z) , say zj . Then fn(zj) → z0 for some z0 ∈ C by hypothesis. On the other
hand, there exists a subsequence, say fnk(zj) , which converges to infinity. This
yields a contradiction. Thus there are no Baker domains. Because of Remark 3
all points in SF will be attracted to attracting cycles, if conditions (ii) and (iii)
hold.

We shall verify the conditions (i), (ii), and (iii) of Theorem 3 in this section.

Let zj be a zero of 1 + F (z) . By the hypotheses of Theorem 1 we have that
fn(zj) → z0 as n → ∞ where z0 ∈ C depends on j . It is easy to see that
z0 is a fixed point of f . If zj ∈ J0(f) , then z0 ∈ J0(f) . Recently, R. Pérez-
Marco has proved the conjecture that fn(z) cannot converge to an irrationally
indifferent fixed point z0 , unless z lies in the backward orbit of z0 . We have seen
in the proof of Theorem 3 that the same is true if the fixed point is repelling or
rationally indifferent and zj ∈ J0(f) . Thus the forward orbit of each zj is finite.
Of course, the superattracting fixed points are in F (f) . As there are only finitely
many zeros of 1 + F (z) , condition (iii) is satisfied.

It is clear that (ii) holds because SI is a subset of the images of the zeros of
1 + F (z) .

The forward orbits of the finitely many zeros of 1+F (z) which converge to an
attracting fixed point have positive distance from the Julia set because attracting
fixed points are in F (f) which is open. Further, there exist only finitely many
immediate attractive basins which contain a pole of F . Again, we have positive
distance of the attracting fixed points from the Julia set.

Let z0 be a superattracting fixed point for which there is no pole or zero of
1 + F (z) in the immediate attractive basin. Lemma 1 yields a function φ: D →
A∗(z0) with φ(0) = z0 and

φ(z3) = f
(
φ(z)

)
.

We differentiate this equation three times and set z = 0:

(
φ′(0)

)2
=

6

f ′′′(z0)
.
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Moreover, we differentiate f three times and obtain

f ′′′(z0) = 2
w′′′(z0)

w′(z0)
.

From (1) we obtain
w′′′(z0) = −

(
1 + F (z0)

)
w′(z0).

For large |z0| we have

|f ′′′(z0)| = 2|1 + F (z0)| ≈ 2.

Thus |f ′′′(z0)| ≤ 3 for large |z0| and

|φ′(0)| ≥
√

6

3
=

√
2.

We apply Koebe’s one quarter-Theorem [6, p. 31] to

h(t) =
φ(t) − φ(0)

φ′(0)

and obtain
φ(D) ⊃ D

(
z0,

1
4 |φ′(0)|

)
⊃ D

(
z0,

1
4

√
2

)
= D̂.

D̂ is a disk with D̂ ⊂ A∗(z0) . Thus dist
(
z0, J0(f)

)
≥ 1

4

√
2. There are at most

finitely many superattracting fixed points which do not satisfy the conditions used
in the preceding paragraph and the forward orbits of the finitely many zeros of
1 + F (z) which converge to attracting fixed points. As all attracting fixed points
belong to F (f) which is open, it follows that condition (i) is satisfied. Thus all
three of the subhyperbolic conditions are satisfied.

6. Proof of Theorem 1: The Julia set is thin at infinity

We use some results from the theory of differential equations which can be
found in [8]. For r ≥ 0, α > 0, and ϕ ∈ R we define S(r, α, ϕ) := {z ∈ C ; |z| > r ,
| arg(z) − ϕ| < α} . Then S(0, π, 0) and S(0, π, π) are so-called normal sectors.
Let R > 0 be sufficiently large such that D(0, R) contains all poles of F . Then
in S(R, π, 0) and in S(R, π, π) there exist fundamental matrices of (1),

W̃ (z) =

(
w̃1(z) w̃2(z)
w̃′

1(z) w̃′
2(z)

)
, Ŵ (z) =

(
ŵ1(z) ŵ2(z)
ŵ′

1(z) ŵ′
2(z)

)
,

respectively, which converge uniformly in each closed subsector to the formal fun-
damental matrix

H(z) =

(
1 + a/z + · · · i+ b/z + · · ·
i+ ia/z + · · · 1 − ib/z + · · ·

) (
eiz 0
0 e−iz

)
.
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Therefore, in S(R, π− ε, 0) for some ε > 0 we have

(12) w̃1(z) =
(
1 +

a

z
+O

( 1

z2

))
eiz, w̃′

1(z) = i
(
1 +

a

z
+O

( 1

z2

))
eiz

and

(13) w̃2(z) =
(
i+

b

z
+O

( 1

z2

))
e−iz , w̃′

2(z) =
(
1 − i

b

z
+O

( 1

z2

))
e−iz

for z → ∞ . Analogously, we obtain a representation for ŵ1 , ŵ′
1 , ŵ2 , and ŵ′

2 in
S(R, π − ε, π) for w(z) = cπŵ1 + dπŵ2 .

Let z ∈ S(R, π− ε, 0) and w be a solution of (1) defined in z . Then w(z) =
c0w̃1(z) + d0w̃2(z) . We obtain with (12) and (13):

(14)

w(z)

w′(z)
=
c0w̃1(z) + d0w̃2(z)

c0w̃′
1(z) + d0w̃′

2(z)

=
c0e

iz
(
1 + (a/z) +O(1/z2)

)
+ d0e

−iz
(
i+ (b/z) +O(1/z2)

)

ic0eiz
(
1 + (a/z) +O(1/z2)

)
+ d0e−iz

(
1 − i(b/z) +O(1/z2)

)

= i
c0e

iz + id0e
−iz

−c0eiz + id0e−iz

(
1 +O(1/z)

)

for all z = x+ iy ∈ S(R, π− ε, 0) with |y| > c where c is some positive constant.
Analogously, we obtain a similar equation to (14) in S(R, π− ε, π) .

We shall use a theorem from E. Hille [7, p. 181]. We denote by D0 all
z ∈ B(0, R) such that the ray z + r , 0 ≤ r <∞ , lies in B(0, R) .

Theorem B. Let w(z) 6≡ 0 be a solution of (1) which is defined in D0 . Then

there exists a solution w0 of the sine equation

u′′(z) + u(z) = 0

such that for all z = x+ iy ∈ D0

(15) |w(x+ iy) − w0(x+ iy)| ≤M(y)

{
exp

[∫ ∞

x

|F (s+ iy)| ds
]
− 1

}

where M(y) = maxs |w0(s+ iy)| .

Remark 7. An analogous result can be obtained for a solution w of (1)
defined in Dπ which denotes the set of all z ∈ B(0, R) such that the ray z+reiπ =
z− r , 0 ≤ r <∞ , lies in B(0, R) . We denote the approximating function by wπ .
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Solutions of the sine equation have the form u(z) = αeiz + βe−iz . Suppose
that w0 in Theorem B has the form w0(z) = αeiz . Then, by (15), d0 is zero. We
see from Theorem B and from (14) that w/w′ → −i as z → ∞ in S(R, π− ε, 0).
As S(R, π − ε, 0) ∩ S(R, π − ε, π) = S(R, 1

2
π − ε, 1

2
π) ∪ S(R, 1

2
π − ε,−1

2
π) we

have dπ = 0 and wπ = α̃eiz . Again, w/w′ → −i as z → ∞ in S(R, π − ε, π) .
If we combine the asymptotics in S(R, π − ε, 0) and S(R, π − ε, π) , we obtain
w/w′ → −i as z → ∞ which is of course only possible, if w/w′ is rational. Thus
f in (2) is rational. Analogously, f is rational if w0 has the form w0(z) = βe−iz .
As we only have to consider transcendental functions we may assume that w0 is
of the form

(16) w0(z) = α cos(z + β),

α, β ∈ C . Then the constants c0, cπ, d0 , and dπ are not zero.
To apply Theorem 3 we still have to show that the Julia set is thin at infinity.

We proceed in two steps. In the first step we show that the superattracting fixed
points are close to the real axis and that we can find rectangles which contain the
fixed point and which are invariant under iteration. In the second step we extend
the rectangles of step one to quasi-strips. By a quasi-strip we mean a set Q such
that the following two conditions are satisfied:

1. For arbitrary points z, w ∈ Q we have

(17) |Re(z − w)| < c1

where c1 > 0 does not depend on z, w .
2. For each y ∈ R there exists x ∈ R such that D(x + iy, δ) ⊂ Q for some δ

which is independent of x, y .

If we restrict ourselves to the half-strip S := {z ∈ C ; Re(z) > x0 > R + 1,
| Im(z)| < y0} , then by Theorem B and (16) our solution w of (1) is of the form

(18) w(z) = α cos(z + β) + o(1)

for z → ∞ . This shows that the zeros of w are close to the zeros of cos(z + β) ,
i.e. close to zk = 1

2π + kπ − β . For large k > 0 the imaginary part of zk is
nearly zero. We construct a rectangle in the following manner. The left side is
1
2π − 1

4π + kπ − β + it , −y0 ≤ t ≤ y0 , the right side is 1
2π + 1

4π + kπ − β + it ,
−y0 ≤ t ≤ y0 , the top side is part of Im(z) = y0 , and the bottom side is part of
Im(z) = −y0 .

We now enlarge S to S̃ := {z ∈ C ; Re(z) > x0 − 1, | Im(z)| < y0 + 1} and

write (18) as w(z) = α cos(z + β) + h(z) for z ∈ S̃ where h(z) = w(z) − w0(z)

is holomorphic in S̃ because S̃ does not contain poles of F . Of course, (18)

remains valid for z ∈ S̃ by Theorem B, i.e. h(z) = o(1) as z → ∞ . Then by
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Cauchy’s inequalities we see that, for z ∈ S , h′(z) = o(1) as z → ∞ and so
w′(z) = −α sin(z + β) + o(1). On the right side of the rectangle we have

w(z)

w′(z)
=
w0(zk + 1

4π + it) + o(1)

w′
0(zk + 1

4
π + it) + o(1)

=
w0(zk + 1

4π + it)

w′
0(zk + 1

4
π + it)

(
1 + o(1)

)

= −cos(zk + 1
4π + it)

sin(zk + 1
4
π + it)

(
1 + o(1)

)

= − cot
(

1
2
π + 1

4
π + it

)(
1 + o(1)

)

=

(
1
2

1
1
2 + sinh2(t)

+ i
sinh(t) cosh(t)

1
2 + sinh2(t)

)(
1 + o(1)

)

and hence

Re
( w
w′

)
> 1

2

1
1
2 + sinh2(t)

(
1 − |o(1)| − 2| sinh(t)| | cosh(t)| |o(1)|

)
> 0

for large k . Analogously, on the left side of the rectangle we have Re(w/w′) < 0
for large k . On the top side we have w/w′ ≈ i and on the bottom side w/w′ ≈ −i
for large y0 . This is easily seen by decomposing the cotangent into real und
imaginary parts. Further, the computation shows that |w(z)/w′(z)| > c0 for all
z on the boundary of the rectangle where c0 is a positive constant independent
of k . By the minimum principle and (18) we obtain a fixed point in the interior of
the rectangle for large k . As f has only finitely many non-superattracting fixed
points this fixed point is superattracting for large k (see (23) below). Moreover, by
the above estimates, the rectangle is invariant under iteration of f(z) = z−w/w′ .
Thus step one is done. Note that the rectangle is part of the immediate attractive
basin of the superattracting fixed point.

For the second step let D = {Im(z) > c}∩S(0, 1
2π, 0), where c is the constant

from (14). If z ∈ D , we can write the equation (14) as follows

(19)
w(z)

w′(z)
= i

(
1 +O(1/z2)

)1 − (ic0/d0)e
2iz

(
1 +O(1/z)

)

1 + (ic0/d0)e2iz
(
1 +O(1/z)

)

as z → ∞ . We derive from (19) that, if c is sufficiently large, then

(20)

∣∣∣∣Re

(
w(z)

w′(z)

)∣∣∣∣ ≤ c1

(
1

|z|2 + e−2y

)

where c1 is a positive constant independent of z = x+ iy . Moreover, we see from
(19) that given 1

2 > ε > 0, if c is sufficiently large then, for f as in (2),

(21) |f(z) − (z − i)| < ε
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holds for all z ∈ D . Now choose a point u0 ∈ D . By (21) and Rouché’s theorem we
obtain a unique u1 ∈ D(u0 + i, 2ε) such that f(u1) = u0 . Further, u1 is the only
preimage of u0 in D . If we repeat this procedure, we obtain a sequence (uj) ⊂ D
with f(uj) = uj−1 , j ≥ 1. The equation (19) shows that uj = uj−1 + i+ o(1) for
j → ∞ . Thus we can deduce from (20) that

∞∑

j=1

|Re(uj − uj−1)| =
∞∑

j=1

∣∣∣∣Re

(
w(uj)

w′(uj)

)∣∣∣∣ ≤ c2 <∞

where c2 is a positive constant independent of u0 .
Now take a rectangle from the first step with y0 > c+ 1 + 2ε and containing

a superattracting fixed point z0 . Then we can find a point u1 in the rectangle
such that f(u1) = u0 lies in the rectangle and Im(u0) > c . We connect u0, u1 by
a straight line γ . This curve lies in D and we may construct

Γ1 =
∞⋃

j=1

f−j(γ).

Γ1 is a curve which lies entirely in the immediate attracting basin A∗(z0) . Further,

(22) |Re(u− u0)| < c3

holds for all u ∈ tr(Γ1) where c3 > 0 is a constant independent of u0 . Analogously,
we obtain a curve Γ2 in the lower half plane. We can connect Γ1 and Γ2 in A∗(z0)
to give a curve Γ(k) which divides the complex plane into two parts.

Let A∗(z0) be the immediate attractive basin in which tr(Γ(k)) lies. By the
comment preceding Lemma 4 we have two curves γ1 and γ2 which tend between
Γ(k−1) and Γ(k+1) to infinity. We show that one curve has its tail in the upper
half plane and the other in the lower half plane. Suppose not, then without loss
of generality both curves tend in the upper half plane to infinity. Then φ−1 ◦ Γ2

must tend to a point v0 6= ±1 in ∂D [5, Theorem 2.2]. We choose a small disk
D(v0, ε) such that ±1 /∈ D(v0, ε) . Then there exists n ∈ N such that z3n

/∈
D(v0, ε) for all z ∈ D(v0, ε) ∩ D . On the other hand, for all l ∈ N , there exists

z ∈ tr(φ−1 ◦Γ2)∩D(v0, ε) such that z3j

lies in tr(φ−1 ◦Γ2)∩D(v0, ε) , 0 ≤ j ≤ l .
This follows from the construction of Γ2 . This yields a contradiction. We may
assume because of (14) that |f(z)− z| > 0.9 holds for all z with | Im(z)| > c . As
the horizontal width of the rectangle is bigger than 1, it follows from Lemma 2
that the immediate attractive basin A∗(z0) has a horizontal width of at least
0.225. Moreover, A∗(z0) lies between Γ(k−1) and Γ(k+1) for which (22) holds.
Therefore (17) does hold for A∗(z0) . Thus A∗(z0) is a quasi-strip. This is step
two. We can carry out a similar procedure in the left half plane. Thus, if |k| is
sufficiently large, zk belongs to a quasi-strip which is contained in the Fatou set.
As |zk+1 − zk| is equal to π , it is easy to see that J0(f) is thin at infinity. This
together with §5 proves Theorem 1.



Newton’s method for solutions of differential equations 201

Remark 8. We are now able to give an elementary proof of the non-existence
of Baker domains. Suppose that there exists a cycle of Baker domains of period p .
Let U be an unbounded component where fnp(z) tends to infinity for all z ∈ U .
In the notation of the above proof, U must lie between two curves Γ(k) and Γ(k′) .
Thus, if Im(z) is large, then fp(z) = z − ip + o(1) for z ∈ U and if − Im(z) is
large then f(z) = z + ip+ o(1). Therefore a point z ∈ U cannot tend to infinity
under fp . This is a contradiction.

7. Proof of Theorem 2

Let w be a solution of (1) and f be defined by (2). We see from (1), (2), and
(9) that f satisfies the Riccati differential equation

(23) f ′(z) +
(
1 + F (z)

)(
f(z) − z

)2
= 0

where F (z) = (cd/z
d) + · · · for |z| > R with cd 6= 0 for some d ≥ 2. As f is

rational, for large |z| , f has the form

(24) f(z) = azm
(
1 +O(1/z)

)

for some integer m . From (23) we derive

(25)
f ′(z)

(
f(z) − z

)2 = −1 − F (z).

If we combine (24) and (25), we see that the only possible integer is m = 1 and
the only possible constant a = 1. Thus f(z) = z + c + g(z) for some constant
c and g(z) = O(1/z) as z → ∞ . Therefore, by (25), we have c = ±i . In fact,
we see from (25) that even g(z) = O(1/z2) as z → ∞ because F (z) = O(1/z2)

as z → ∞ . Thus f(z) = z ± i + R̃(z) or w(z)/w′(z) = −
(
±i + R̃(z)

)
, where

R̃(z) = O(1/z2) as z → ∞ . We have

(26)
w′(z)

w(z)
=

−1

±i+ R̃(z)
= ±i+R(z)

where R is rational and R(z) = O(1/z2) as z → ∞ . Therefore w has the form

(27) w(z) = ce±iz+
∫

z
R(ξ)dξ ,

where c 6= 0 is a constant. Conversely, each function of the form (27) satisfies a
differential equation of the type (1).
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The point ∞ is a fixed point. It follows from (26) that

d

dz

(
1

f(1/z)

)∣∣∣∣
z=0

=
1 +

(
R′(1/z)/

(
±i+R(1/z)

)2)
(
1 −

(
z/(±i+R(1/z))

)2)

∣∣∣∣∣
z=0

= 1.

Thus ∞ is a rationally indifferent fixed point. Because

f ′(z) =
R′(z) +

(
±i+R(z)

)2

(
±i+R(z)

)2

every pole of R which has order at least 2 is also a rationally indifferent fixed
point with multiplier 1. Further, if z0 is a simple pole, then f ′(z0) equals 1−1/a
where a is the first non-vanishing coefficient of the Laurent series of R at z0 . We
see as in §5 that, if fn(zj) converges to a limit in C for each zero zj of 1 +F (z) ,
then J(f)∩P is finite. As z = ∞ is a rationally indifferent fixed point the Fatou
set is non-empty. Of course, f has degree at least two and so, by Corollary 2, J(f)
has zero measure. It remains to prove that under the condition of the convergence
of the zeros of 1 + F (z) , fn(z) converges for all z ∈ F (f) to zeros of w or poles
of R or to the point z = ∞ . As seen in the proof of Corollary 2, fn(z) lies in
a cycle of attractive basins or in a cycle of Leau domains for sufficiently large n .
It is well known that each of these cycles must attract a point of sing(f−1) . This
point is a superattracting fixed point or the image of a zero of 1 + F (z) . Because
of the convergence of the zeros of 1 + F (z) we only have cycles of period one for
attractive basins. Such attractive basins result from the zeros of w or the simple
poles of R which are attracting fixed points of f . Then we have convergence to
zeros of w or poles of R . Further, as the limit of a zero of 1 + F (z) is a fixed
point, the boundary of each Leau domain must contain a rationally indifferent
fixed point, i.e. a pole of R of order at least two or the point z = ∞ . This proves
Theorem 2.

8. Bessel functions

We consider the Bessel differential equation

(28) u′′(z) +
1

z
u′(z) +

(
1 − ν2

z2

)
u(z) = 0.

With w(z) =
√
zu(z) we can transform the equation to

(29) w′′(z) +
(
1 − ν2 − 1

4

z2

)
w(z) = 0
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which has the form (1). The Bessel functions of first kind Jν defined by

Jν(z) =
(z

2

)ν
∞∑

n=0

(−1)n

n!Γ(n+ 1 + ν)

(z
2

)2n

are solutions of (28). Then

(30) J̃ν(z) =
√
zJν(z)

solves (29). Is is easy to see that J̃ν/J̃
′
ν is meromorphic in C . The only pole of

F (z) = (−ν2 + 1
4
)/z2 is 0.

Corollary 3. Let w = J̃ν be as in (30) and f be as in (2) . If fn
(√
ν2 − 1

4

)

converges to a finite limit, then J0(f) has zero measure. Moreover, if fn
(√
ν2 − 1

4

)

converges to a finite limit, fn(z) converges to zeros of Jν or to the origin almost

everywhere.

Remark 9. For our consideration we may choose an arbitrary branch of
logarithm to define

√
z .

Proof. The function f is transcendental. It is easy to see that f is an

odd function. Therefore fn
(√

ν2 − 1
4

)
converges if and only if fn

(
−

√
ν2 − 1

4

)

converges. The result follows from Theorem 1 and Corollary 1.

Figure 1: Newton’s method for J̃−5/2 . We see the quasi-strips outside a small strip around
the imaginary axis.
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