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Abstract. Estimates of Fourier transforms of measures with finite energy are considered. In
earlier papers spherical means of the Fourier transform have been considered. We shall here study
more general means. We shall also in particular study the case when the measure is given by a
radial function.

1. Introduction

Let M denote the class of all finite positive Borel measures µ in Rn with
compact support. The Fourier transform of µ ∈ M is defined by

µ̂(ξ) =

∫
e−iξ·x dµ(x)

and the α -energy of µ is given by

Iα(µ) =

∫∫
|x− y|−α dµ(x) dµ(y) = c

∫
|x|α−n|µ̂(x)|2 dx, 0 < α < n.

Let M0 denote the class of all µ ∈ M with diam(supp µ) ≤ 1. We also let θ
denote the area measure on Sn−1 and set

σ(µ)(r) =

∫

Sn−1

|µ̂(rξ)|2 dθ(ξ), r > 0,

for n ≥ 2.
We shall here study questions of the following type. For which values of β

does the estimate

(1) σ(µ)(r) ≤ Cr−βIα(µ), r > 1,
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hold for all µ ∈ M0 ? This problem has been studied by P. Mattila [2] and then
by P. Sjölin [3]. To formulate the results we set

β(α) = sup{β ; (1) holds for all µ ∈ M0}.

It is proved in the above papers that

β(α) ≥ α, 0 < α ≤ 1
2(n− 1),(2)

β(α) ≥ 1
2(n− 1), 1

2(n− 1) < α ≤ 1
2(n+ 1),(3)

and

β(α) ≥ α− 1, 1
2
(n+ 1) < α < n.(4)

Upper bounds for β(α) are also known. It is easy to see that always β(α) ≤ α
so it follows that β(α) = α for 0 < α ≤ 1

2
(n− 1). There are also known counter-

examples, which for n = 2 show that

β(α) ≤ 1
2 ,

1
2 < α ≤ 1,(5)

and

β(α) ≤ 1
2α, 1 < α < 2.(6)

For n = 2 we therefore have β(α) = α , 0 < α ≤ 1
2 , and β(α) = 1

2 , 1
2 < α ≤ 1.

Estimates of the above type have been used in [2] and J. Bourgain [1] to
study the Hausdorff dimension of distance sets. However, we shall not discuss this
application here.

We also remark that to prove the estimate (1) for µ ∈ M0 it is sufficient to
prove (1) in the special case µ = f ∈ C∞

0 (Rn) where f ≥ 0 and supp f ⊂ B ,
where B denotes the open unit ball in Rn . This can be seen by approximating a
general µ by smooth functions.

We shall here study some variants of the above problem. We shall first con-
sider the case of radial functions. We shall consider the estimate

(7) σ(f)(r) ≤ Cr−βIα(f), r > 1,

assuming that f is measurable and radial in Rn , f ≥ 0 and f(x) = 0 for |x| > 1.
We set

β1(α) = sup{β ; (7) holds for all f of the above type}.

We have determined β1(α) and have the following theorem.

Theorem 1. One has β1(α) = α , 0 < α ≤ n − 1 , and β1(α) = n − 1 ,

n− 1 < α < n .
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We shall then replace Sn−1 in the definition of σ(µ)(r) by more general
hypersurfaces. Let Qn−1 denote the open unit cube in Rn−1 and assume that
ϕ ∈ C∞(Qn−1) with ϕ real-valued. Set

S = {x ∈ Rn ; xn = ϕ(x′), x′ ∈ Qn−1},

where we have set x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1) . We make the
assumption that S has non-vanishing Gaussian curvature at every point. Also let
ψ ∈ C∞

0 (Rn) and assume that the orthogonal projection of (suppψ)∩S onto the
hyperplane xn = 0 has positive distance to ∂Qn−1 . Here we consider Qn−1 as a
subset of the hyperplane xn = 0. We let σ0 denote the area measure on S and
now set

(8) σ(µ)(r) =

∫

S

|µ̂(rξ)|2ψ(ξ) dσ0(ξ), r > 0.

With this definition of σ(µ)(r) we then define β2(α) by

β2(α) = sup{β ; (1) holds for all µ ∈ M0}.

Then the following theorem holds.

Theorem 2. In the inequalities (2) , (3) and (4) β(α) can be replaced by

β2(α) .

Theorem 2 shows that the above estimates for the unit sphere Sn−1 can be
generalized to hypersurfaces with non-vanishing Gaussian curvature. We shall also
consider a surface with vanishing Gaussian curvature and see that the situation
then is different.

Let Q denote the unit cube in Rn and now set

σ(µ)(r) =

∫

∂Q

|µ̂(rξ)|2 dσ0(ξ), r > 0,

where σ0 denotes the area measure on ∂Q . Also set

β3(α) = sup{β ; (1) holds for all µ ∈ M0}.

In this case we have the following result.

Theorem 3. One has β3(α) = 0 , 0 < α ≤ 1 , and β3(α) = α−1 , 1 < α < n .
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2. Proofs

Proof of Theorem 1. Assume that f ∈ C∞
0 (Rn) and that f is radial, f ≥ 0

and supp f ⊂ B . Then f̂ is radial and we have

f̂(r) = cnr
1−n/2

∫ ∞

0

f(s)Jn/2−1(rs)s
n/2 ds, r > 0,

where Jk denotes the Bessel function of order k . Here we write f(s) = f(x) if
s = |x| in the usual way.

Now assume that 0 < α ≤ n− 1. Also choose β so that

(9) 2 − n < β < 2 − n+ α.

It follows that β < 1, that is β/2 < 1/2, and also β/2 > 1 − n/2, that is
n/2− 1 > −β/2. Using asymptotic estimates for Bessel functions (see E.M. Stein
and G. Weiss [5, p. 158]) we then conclude that

(10) |Jn/2−1(t)| ≤ C t−β/2, t > 0.

Invoking this estimate we obtain

|f̂(r)| ≤ Cr1−n/2

∫ 1

0

(rs)−β/2sn/2f(s) ds

= C r1−n/2−β/2

∫ 1

0

sn/2−β/2f(s) ds

= C r1−n/2−β/2

∫

Rn

|x|−β/2−n/2+1f(x) dx

= C r1−n/2−β/2

∫

Rn

|ξ|−n/2+β/2−1f̂(ξ) dξ.

Here we used the fact that the inequality 1− n/2 < β/2 < 1− n/2 + α/2 implies
that 1−n/2−β/2 < 0 and 1−n/2−β/2 > −α/2 ≥ −(n−1)/2 > −n . It follows
that

|f̂(r)| ≤ C r1−n/2−β/2‖f‖1

∫

|ξ|≤1

|ξ|−n/2+β/2−1 dξ

+ C r1−n/2−β/2

∫

|ξ|≥1

|ξ|−n/2+β/2−1|f̂(ξ)| dξ

and hence

σ(f)(r) ≤ C r2−n−βIα(f) + C r2−n−β

(∫

|ξ|≥1

|ξ|β/2−α/2−1|ξ|α/2−n/2|f̂(ξ)| dξ

)2

.
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The last integral is majorized by

(∫

|ξ|≥1

|ξ|β−α−2 dξ

)1/2(∫
|ξ|α−n|f̂(ξ)|2 dξ

)1/2

= C Iα(f)1/2,

since β − α− 2 < −n .
We conclude that

σ(f)(r) ≤ C r2−n−βIα(f)

for all β satisfying (9), and choosing β close to 2−n+α we see that β1(α) ≥ α .
On the other hand a well-known counter-example shows that β1(α) ≤ α (see [3,
p. 324]). One therefore concludes that β1(α) = α for 0 < α ≤ n− 1.

We then assume that n − 1 < α < n . Choosing β = 1 we see that the
inequality (10) still holds and we can argue as above. Observing that β−α− 2 =
−α− 1 < −n implies that

∫

|ξ|≥1

|ξ|β−α−2 dξ <∞,

we conclude that

σ(f)(r) ≤ C r1−nIα(f).

It follows that β1(α) ≥ n− 1.
To prove that β1(α) ≤ n − 1 we shall use a counter-example. Assume that

(7) holds for all f satisfying the conditions after the statement of (7). Then we
also have

(11) σ(f)(r) ≤ C r−βIα(|f |), r > 1,

if f is radial, measurable, complex-valued and f(r) = 0 for r > 1.
We choose

f(s) = fR(s) = e−iRsϕ(s), s > 0,

where R is large and ϕ ∈ C∞
0 (R) , suppϕ ⊂

(
1
2
, 1

)
, ϕ ≥ 0 and ϕ

(
3
4

)
= 1. It is

then clear that

(12) Iα(|fR|) ≤ C.

According to [5, p. 158], we have

Jn/2−1(t) = c1
eit

t1/2
+ c2

e−it

t1/2
+ O(t−3/2), t→ ∞,
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and hence

f̂(R) = cR1−n/2

∫ 1

0

[
c1

eiRs

(Rs)1/2
+ c2

e−iRs

(Rs)1/2
+ O

(
(Rs)−3/2

)]
sn/2f(s) ds

= cc1R
1/2−n/2

∫ 1

0

eiRssn/2−1/2f(s) ds

+ cc2R
1/2−n/2

∫ 1

0

e−iRssn/2−1/2f(s) ds+ O(R−1/2−n/2)

= cc1R
1/2−n/2

∫ 1

0

sn/2−1/2ϕ(s) ds

+ cc2R
1/2−n/2

∫ 1

0

e−i2Rssn/2−1/2ϕ(s) ds+ O(R−1/2−n/2).

We conclude that
|f̂(R)| ≥ c0R

1/2−n/2

where c0 > 0 and R is large. According to (11) we have

σ(fR)(R) ≤ C R−βIα(|fR|)

and invoking the above estimates we obtain

R1−n ≤ C R−β.

It follows that β ≤ n − 1 and hence β1(α) ≤ n − 1. We have proved that
β1(α) = n− 1 for n− 1 < α < n and hence the proof of Theorem 1 is complete.

Proof of Theorem 2. We let f ∈ C∞
0 (Rn) , f ≥ 0, supp f ⊂ B and now set

dθ = ψdσ0 . According to E.M. Stein [4, p. 348], we then have

(13) |θ̂(ξ)| ≤ C|ξ|(1−n)/2.

To prove (2) with β(α) replaced by β2(α) we observe that

σ(f)(r) =

∫

S

f̂(rξ) f̂(rξ)ψ(ξ) dσ0(ξ)

=

∫

S

(∫

Rn

e−irξ·xf(x) dx

)(∫

Rn

e−irξ·yf(y) dy

)
ψ(ξ) dσ0(ξ)

=

∫

Rn

∫

Rn

(∫

S

e−irξ·(x−y) ψ(ξ) dσ0(ξ)

)
f(x)f(y) dx dy

=

∫∫
θ̂
(
r(x− y)

)
f(x)f(y) dx dy.
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Assuming 0 < α ≤ 1
2(n− 1) and invoking (13) we then obtain

σ(f)(r) ≤ C

∫∫
(r|x− y|)−αf(x)f(y) dx dy ≤ Cr−αIα(f)

and (2) follows.
The inequality (3) for β2(α) then follows trivially and it remains to prove (4)

for β2(α) . We choose f as above and assume (n+ 1)/2 < α < n and r > 1. We
also choose ϕ0 ∈ C∞

0 (Rn) so that ϕ0(x) = 1 for |x| ≤ 2. One then has

σ(f)(r) =

∫∫
θ̂
(
r(x− y)

)
f(x)f(y) dx dy

=

∫∫
θ̂
(
r(x− y)

)
ϕ0(x− y)f(x)f(y) dx dy

=

∫∫
Kr(x− y)f(x)f(y) dx dy =

∫
Kr ∗ f(x)f(x) dx,

where we have set Kr(x) = θ̂(rx)ϕ0(x) . It follows that

σ(f)(r) = c

∫
K̂r(ξ)f̂(ξ) f̂(ξ)dξ

and we claim that

(14) |K̂r(ξ)| ≤ C
r1−α

|ξ|n−α
.

If (14) holds then

σ(f)(r) ≤ Cr1−α

∫
|ξ|α−n|f̂(ξ)|2 dξ = Cr−(α−1)Iα(f)

and we conclude that β2(α) ≥ α − 1. To complete the proof of the theorem it
therefore remains to prove (14). We have

K̂r(ξ) =

∫

Rn

e−iξ·x θ̂(rx)ϕ0(x) dx =

∫

Rn

e−iξ·x

(∫

S

e−rx·y dθ(y)

)
ϕ0(x) dx

=

∫

S

(∫

Rn

e−ix·(ξ+ry)ϕ0(x) dx

)
dθ(y) =

∫

S

ϕ̂0(ξ + ry)ψ(y) dσ0(y)

=

∫

Qn−1

ϕ̂0

(
ξ′ + ry′, ξn + rϕ(y′)

)
F (y′) dy′,

where F denotes a bounded function on Qn−1 .
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Letting N denote a large integer and performing a change of variable we then
obtain

(15)

|K̂r(ξ)| ≤ C

∫

Qn−1

1

1 + |ξ′ + ry′|N
dy′

= C

∫

rQn−1

1

1 + |ξ′ + x′|N
dx′r1−n ≤ Cr1−n.

To prove (14) we then consider two cases. If |ξ| ≤ Ar , then

r1−n ≤ C
r1−α

|ξ|n−α

and (14) follows from (15). On the other hand, if |ξ| > Ar (and A is large enough)
then |ξ + ry| ≥ c|ξ| for y ∈ S ∩ suppψ , and since

K̂r(ξ) =

∫

S

ϕ̂0(ξ + ry) dθ(y)

we directly obtain

|K̂r(ξ)| ≤ C|ξ|−N .

Here we have used the fact that ϕ̂0 ∈ S . Therefore (14) follows also in this case.
The proof of Theorem 2 is complete.

Proof of Theorem 3. We may assume that

σ(µ)(r) =

∫

|ξ2| ≤ 1
...

|ξn| ≤ 1

|µ̂(r, rξ2, . . . , rξn)|2dξ′

where ξ′ = (ξ2, . . . , ξn) .
It is obvious that β3(α) ≥ 0, 0 < α ≤ 1, and the fact that β3(α) ≥ α − 1,

1 < α < n , follows from the argument in the second part of the proof of Theorem 2.
In fact, in this part of the proof we never used the assumption about non-vanishing
Gaussian curvature. It therefore remains to prove that

β3(α) ≤ 0, 0 < α ≤ 1,(16)

and

β3(α) ≤ α− 1, 1 < α < n.(17)
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To prove this we shall use a counter-example. We first observe that if (1)
holds for all µ ∈ M0 then also

(18) σ(µ)(r) ≤ Cr−βIα(|µ|), r > 1,

for all complex Borel measures µ with diam(suppµ) < 1.
We choose ϕ ∈ C∞

0 (R) such that suppϕ ⊂ (−1
4
, 1

4
) , ϕ ≥ 0 and ϕ̂(0) > 0.

Also choose ψ ∈ C∞
0 (Rn−1) such that suppψ ⊂ B(0; 1

2) , ψ ≥ 0 and ψ̂(0) > 0.
We set

f(x) = f(x1, x
′) = eiRx1ϕ(x1)R

n−1ψ(Rx′),

where x′ = (x2, . . . , xn) and R is large. Also set g = |f | so that g(x1, x
′) =

ϕ(x1)R
n−1ψ(Rx′) .

We assume that (1) holds and by use of (18) it then follows that

(19) σ(f)(r) ≤ Cr−βIα(g).

We have
f̂(ξ1, ξ

′) = ϕ̂(ξ1 −R)ψ̂(ξ′/R)

and hence

(20) σ(f)(R) ≥ c > 0.

One also has
ĝ(ξ1, ξ

′) = ϕ̂(ξ1) ψ̂ (ξ′/R)

and we shall estimate

Iα(g) = c

∫

Rn

|ξ|α−n|ĝ(ξ)|2 dξ.

We set D1 = {ξ = (ξ1, ξ
′) ∈ Rn ; |ξ1| ≤ Rε, |ξ′| ≤ R1+ε} and D2 = Rn \D1 ,

where ε denotes a small positive number, and write

Iα(g) = c

∫∫

D1

|ξ|α−n|ϕ̂(ξ1)|
2|ψ̂(ξ′/R)|2 dξ1 dξ

′

+ c

∫∫

D2

|ξ|α−n|ϕ̂(ξ1)|
2|ψ̂(ξ′/R)|2 dξ1 dξ

′ = A1 +A2.

Since ϕ̂ and ψ̂ ∈ S it is easy to prove that

∫ ∞

Rε

|ϕ̂(t)|2 dt ≤ CR−N and

∫

|ξ′|>R1+ε

|ψ̂(ξ′/R)|2 dξ′ ≤ CR−N ,
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where N denotes a large positive integer, and hence A2 ≤ CR−N .
We also have

A1 ≤ C

∫

|ξ1|≤Rε

|ξ′|≤Rε

|ξ|α−n dξ + CRε

∫ R1+ε

Rε

tα−2 dt = A11 +A12.

It is clear that A11 ≤ CRεα and to estimate A12 we first consider the case
0 < α < 1. Then A12 ≤ CRε and hence

(21) Iα(g) ≤ CRε.

Combining (19), (20) and (21) we then obtain

c ≤ CR−β+ε

and it follows that β ≤ ε . We conclude that β3(α) ≤ 0 for 0 < α < 1.
We then have to consider the case 1 ≤ α < n . For α = 1 one obtains

A12 ≤ CRε logR . Hence Iα(g) ≤ CRε for every ε > 0 and we can argue as above
to obtain β3(1) ≤ 0.

In the case 1 < α < n we get A12 ≤ CRε+α−1 and (19) yields

c ≤ CR−β+ε+α−1.

In this case we conclude that β ≤ α− 1 and hence β3(α) ≤ α− 1. Hence we
have proved (16) and (17) and the proof of the theorem is complete.
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[3] Sjölin, P.: Estimates of spherical averages of Fourier transforms and dimensions of sets.
- Mathematika 40, 1993, 322–330.

[4] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. - Princeton Univ. Press, 1993.

[5] Stein, E.M., and G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces. -
Princeton Univ. Press, 1971.

Received 23 November 1995


