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Abstract. As the main result we prove that each non-constant Ap -harmonic morphism in
a domain maps p -finely open sets to p -finely open sets. We also show that any Ap -harmonic
morphism is fine-to-fine continuous in the p -fine topology. These results apply to quasiregular
mappings in the case p = n and to mappings of bounded length distortion for all 1 < p ≤ n .

1. Introduction

Harmonic morphisms are mappings preserving harmonic functions. Roughly
speaking, a harmonic morphism is any continuous mapping f : X → Y between
two spaces X and Y where harmonicity makes sense such that h ◦ f is harmonic
in f−1(Y ′) ⊂ X whenever h is harmonic in Y ′ ⊂ Y . Classical examples of
harmonic morphisms are given by analytic functions. In this paper, we consider
Ap -harmonic morphisms (Definition 1.1). This class of harmonic morphisms in-
cludes quasiregular mappings (p = n) and mappings of bounded length distortion
(1 < p ≤ n).

One of the important topological properties of Ap -harmonic morphisms is
the fact that any non-constant Ap -harmonic morphism f : G → Rn in a domain
G ⊂ Rn is an open mapping, i.e. f(G′) is open for any open subset G′ of G

([5, 2.3]). The main result (Theorem 2.3) of this article completes this property
by establishing that each non-constant Ap -harmonic morphism f : G → Rn in a
domain G ⊂ Rn maps p-finely open subsets of G to p-finely open sets in Rn (the
definition of the p-fine topology is given below). For quasiregular mappings and for
mappings of bounded length distortion, Theorem 2.3 extends to the boundary in
a natural way (Theorem 3.1 and Remark 3.2). We also prove that Ap -harmonic
morphisms are fine-to-fine continuous with respect to the p-fine topology and
obtain some further results for quasiregular mappings.

We begin with recalling some notation and definitions. Let n ≥ 2 be the
dimension of Rn and let p > 1. In what follows, we use two different capacities.
For an open set G ⊂ Rn and for any E ⊂ G we denote by capp(E, G) the
variational p-capacity of the condenser (E, G) . The Sobolev p-capacity of an
arbitrary set A ⊂ Rn is denoted by Cp(A) . We refer to [6] for the definitions and
properties of these capacities.
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Fine topology. Any set E ⊂ Rn is called p-thin at x ∈ Rn if

∫ 1

0

(

capp

(

E ∩ B(x, t), B(x, 2t)
)

capp

(

B(x, t), B(x, 2t)
)

)1/p−1
dt

t
< ∞.

The p-thinness is closely related to the p-fine topology. A point x ∈ U ⊂ Rn is a
p-fine interior point of U if ∁U is p-thin at x . It is not hard to see that p-finely
open sets form a topology. This topology is called the p-fine topology.

Among the fine topology we need some quasi topological notions. A set U ⊂
Rn is said to be p-quasi open if for every ε > 0 there is an open set G ⊂ Rn such
that U ∪G is open and Cp(G) < ε . A set E ⊂ Rn is called p-polar if Cp(E) = 0.

Ap -harmonic morphisms. We denote by Ap the set of all mappings
A : Rn × Rn → Rn satisfying the structural conditions (3.3)–(3.7) given in [6,
p. 56]. Suppose that A ∈ Ap and G ⊂ Rn is open. Then h: G → R is called
A -harmonic in G if h is a continuous weak solution of the quasilinear elliptic
equation

−div A (x,∇h) = 0

in G , i.e. h belongs to the Sobolev space W
1,p
loc (G) and

∫

G

A
(

x,∇h(x)
)

· ∇ϕ(x) dx = 0

for all test functions ϕ ∈ C∞
0 (G) .

Ap -harmonic morphisms were introduced in [5, p. 116] as follows:

Definition 1.1. Let G ⊂ Rn be open. Then f : G → Rn is called an
(A ∗, A )-harmonic morphism if f is continuous and there are A , A ∗ ∈ Ap such
that h ◦ f is A ∗ -harmonic in f−1(G′) whenever h is A -harmonic in an open set
G′ ⊂ Rn . Further, f : G → Rn is called an Ap -harmonic morphism if f is an
(A ∗, A )-harmonic morphism for some A , A ∗ ∈ Ap .

2. Fine topological properties of Ap -harmonic morphisms

This section contains our results for Ap -harmonic morphisms. Throughout
this section, we consider an arbitrary 1 < p ≤ n . There is no need to consider the
case p > n , since then the p-fine topology coincides with the euclidean one. We
begin with showing that Ap -harmonic morphisms are fine-to-fine continuous with
respect to the p-fine topology:

Theorem 2.1. Let f : G → Rn be an Ap -harmonic morphism. Then f is

continuous if both G and Rn are equipped with the p-fine topology.
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Proof. The idea of the proof goes back to [1, p. 118]. We are free to assume
that G is a domain and f is non-constant. Let f be an (A ∗, A )-harmonic
morphism with A , A ∗ ∈ Ap . It is known (see [6, 12.17]) that the p-fine topology
can be characterized as the coarsest topology of Rn making all A -superharmonic
functions in Rn continuous. Since s ◦ f is A ∗ -superharmonic in G for each A -
superharmonic function s: Rn → R∪{+∞} ([5, 2.7]), it follows from [6, 12.3 and
12.17] that s ◦ f : G → R is p-finely continuous (with the euclidean topology in
R) for all A -superharmonic functions s: Rn → R . It is now a general fact of
the induced topology that f : G → Rn must be continuous if both G and Rn are
equipped with the p-fine topology.

Corollary 2.2. Let f : G → Rn be an Ap -harmonic morphism. Then

f−1(U) is p-quasi open for each p-quasi open set U ⊂ Rn .

Proof. Since G has a countable number of components, it suffices to prove
the assertion for a domain G . We are also free to assume that f is not constant.
Suppose that G is a domain and f is non-constant. Then by [8, 1.5], U can be
expressed in a form U = V ∪ E , where V is p-finely open and E is p-polar. By
Theorem 2.1 and [5, 2.8], f−1(U) is the union of a p-finely open set f−1(V ) and
a p-polar set f−1(E) . The claim follows from [8, 1.5].

Our main result is stated as follows:

Theorem 2.3. Let f : G → Rn be a non-constant Ap -harmonic morphism

in a domain G . Then f(Ω) is p-finely open for each p-finely open set Ω ⊂ G .

Proof. Let f be an (A ∗, A )-harmonic morphism with A , A ∗ ∈ Ap . It is
enough to prove the claim for any (1, p)-finely regular set (see [7, p. 110] for the
definition). This is so because (1, p)-finely regular sets are p-finely open and they
form a base for the p-fine topology ([7, 3.2 and 3.9]).

Suppose that Ω is (1, p)-finely regular and f(Ω) is not p-finely open. Then
there exists z ∈ Ω such that f(z) is not a p-fine interior point of f(Ω). We
construct a bounded open set W ,

W ⊃
(

f(Ω) ∩ B
(

f(z), 1
))

\ {f(z)},

such that f(z) is a regular boundary point of W . First notice that ∁f(Ω) must
be p-thick at f(z) by [6, 12.8]. Since each (1, p)-finely regular set is a Fσ -set
and f is continuous, we conclude that ∁f(Ω) is a Borel set. Hence there is ([6,
12.11]) a compact set K ⊂ ∁f(Ω)∪ {f(z)} such that K is p-thick at f(z) . Then
f(z) ∈ K ,

W = (∁K) ∩ B
(

f(z), 1
)

is open, and
(

f(Ω) ∩ B
(

f(z), 1
))

\ {f(z)} ⊂ W.
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Note that f(z) ∈ ∂W by the continuity of f . Moreover, since ∁W is p-thick at
f(z) , it follows from [6, 6.27] that f(z) is a regular boundary point of W .

Denote y = f(z) , U = f−1(W ) ∪ {z} . Since f−1({y}) is p-polar ([5, 2.8])
and Ω ∩ f−1

(

B(y, 1)
)

is a p-fine neighbourhood of z , we infer that
(

Ω ∩ f−1
(

B(y, 1) \ {y}
))

∪ {z}

is a p-fine neighbourhood of z (see [9, 2.6]). Accordingly, as

Ω ∩ f−1
(

B(y, 1) \ {y}
)

⊂ f−1(W ),

we conclude that U is a p-finely open p-fine neighbourhood of z . Let (gi)i∈N be
an increasing sequence of functions from C∞(Rn) such that gi(y) = 0, 0 ≤ gi ≤ 1
in W for all i ∈ N and limi→∞ gi = 1 in W \ {y} . For each i ∈ N , let hi be the
solution of the Dirichlet problem

{

−div A (x,∇hi) = 0 in W ,
hi = gi on ∂W

and let ui: U \ {z} → R be defined by ui = hi ◦ f . Then the functions ui are
A ∗ -harmonic in f−1(W ) by Definition 1.1. Since y is a regular boundary point
of W , we have limt→y, t∈W hi(t) = gi(y) . The continuity of f at z implies that

lim
x→z, x∈f−1(W )

(hi ◦ f)(x) = gi(y) = 0.

Hence we can extend the functions ui to U by setting

ui(z) = 0 = p-fine-lim
x→z, x∈f−1(W )

ui(x).

According to Harnack’s convergence theorem [6, 6.14], (hi)i∈N increases to an
A -harmonic function h in W . In fact h ≡ 1. To see this, let y′ 6= y be a regular
boundary point of W . Then

lim inf
x→y′

h(x) ≥ lim
i→∞

gi(y
′) = 1.

Hence the inequality h ≥ 1 in W follows from the comparison principle [6, 7.37]
together with the Kellogg property [6, 9.11]. The inequality h ≤ 1 in W is trivial.
Consequently, the sequence (ui)i∈N increases to 1 in U \{z} . Let u = limi→∞ ui ,
i.e. u(z) = 0 and u = 1 in U \ {z} . We will finish the proof by using some results
of the fine potential theory of [9]. First, observe that functions ui: U \ {z} → R

are finely A ∗ -superharmonic ([9, 6.2]). By [9, 5.10], the extensions ui: U → R are
finely A ∗ -superharmonic as well. Hence also u must be finely A -superharmonic
in U by [9, 5.16]. This contradicts [9, 5.5], since

u(z) = 0 < 1 = p-fine-lim inf
x→z

u(x).
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3. Fine topological properties of quasiregular mappings

In this section we analyse more closely the fine behaviour of quasiregular
mappings.

Let G ⊂ Rn be open. A continuous mapping f : G → Rn is called quasiregu-

lar, abbreviated QR, if the coordinate functions of f belong to the Sobolev space
W

1,n
loc (G) and

max
|h|=1

|f ′(x)h|n ≤ KJf (x)

for a.e. x ∈ G and for some K ≤ 1. Here f ′(x) is the Jacobi matrix at x and
Jf (x) is the determinant of f ′(x) . A quasiregular mapping f : G → Rn is called
a mapping of bounded length distortion, abbreviated BLD, if there is L ≥ 1 such
that

1

L
≤ min

|h|=1
|f ′(x)h| ≤ max

|h|=1
|f ′(x)h| ≤ L

for a.e. x ∈ G (see [11, pp. 424–425]).

QR and BLD maps are examples of Ap -harmonic morphism. In fact, each QR
map is an An -harmonic morphism. Moreover, every BLD map is an Ap -harmonic
morphism for any 1 < p ≤ n . For these results, see [2], [11] and [6]. Consequently,
Theorems 2.1 and 2.3 have their counterparts for QR and BLD mappings. What
is more, we obtain the following boundary versions of Theorem 2.3:

Theorem 3.1. Let f : G → Rn be a BLD map. Let ∁G be p-thin at z ∈ ∂G .

Then f has a p-fine limit α ∈ Rn at z such that ∁f(G) is p-thin at α .

Proof. The existence of a finite p-fine limit α at z was proved in [4, 5.5
and 5.6]. Accordingly α ∈ f(G). Moreover, since f(G) is open, we are free to
assume that α ∈ ∂f(G) . Suppose that ∁f(G) is not p-thin at α . Then α is a
regular boundary point of f(G) ∩ B(α, 1). Denote

W = f(G) ∩ B(α, 1), U = f−1(W ) ∪ {z}, y = α.

Since f has a p-fine limit α at z , there is a p-fine neighbourhood V of z such
that V \ {z} ⊂ G and f(V \ {z}) ⊂ B(α, 1). Because f−1(W ) is an open set
containing V \ {z} , the set U is a p-finely open p-fine neighbourhood of z . We
may now proceed as in the proof of Theorem 2.3. Although f does not necessarily
have a euclidean limit at z (see [4, 5.6]), we have (using the same notation as
in 2.3)

p-fine-lim
x→z, x∈f−1(W )

ui(x) = 0

since f has a p-fine limit α at z . This leads to a contradiction exactly the same
way as in the proof of Theorem 2.3.
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Remark 3.2. Let f : G → Rn be a bounded non-constant QR map in a
domain G ⊂ Rn . Let ∁G be n -thin at z ∈ ∂G . Then f has an n -fine limit
α ∈ Rn at z such that ∁f(G) is n -thin at α . This follows from [4, 5.13] by
similar arguments as in Theorem 3.1.

Remark 3.3 (a) Let f : G → Rn be a quasisimilarity (see [2] or [10] for the
definition). Then, for each x ∈ G , there is B(x, rx) such that the restriction
f|B(x,rx) is a BLD map ([10, 2.1]). This implies that f is a p-finely open mapping
for any 1 < p ≤ n . Clearly f is also continuous if both G and Rn are equipped
with the p-fine topology and 1 < p ≤ n .

(b) Let f : G → C be a conformal analytic mapping. Then f is a p-finely
open mapping and fine-to-fine continuous with respect to the p-fine topology for
any 1 < p ≤ 2. This is so because conformal mappings are quasisimilarities (see
[2, 3.7]).

Quasi topological properties of quasiregular mappings. We finish
this article by considering the n -quasi topological counterpart of Theorem 2.3 for
QR maps. Our arguments are based on the following capacity inequality (see [6,
14.77]): Let f : G → Rn be a non-constant QR map in a domain G ⊂ Rn . Then

(3.4) capn

(

f(E), f(D)
)

≤ KI(f) capn(E, D)

for any open set D ⊂ G and for any E ⊂ D . Here KI(f) ≥ 1 is the inner dilation
of f .

Theorem 3.5. Let f : G → Rn be quasiregular. Then f(U) is n -quasi open

for each n -quasi open set U ⊂ G .

Proof. Since G has a countable number of components, we are free to assume
that f is a non-constant quasiregular mapping in a domain G . Let x ∈ U and
choose R > 0, m ∈ N such that B(x, 2R) ⊂ G and

f
(

B(x, 2R)
)

⊂ B
(

f(x), 2mR
)

.

Take r < R to be so small that

f
(

B(x, r)
)

⊂ B
(

f(x), R
)

.

We want to show that f
(

U ∩ B(x, 1
2
r)

)

is n -quasi open. To do this, we consider

an open set O ⊂ B(x, r) such that O∪
(

U ∩B(x, 1
2r)

)

is open. Since U ∩B(x, 1
2r)

is n -quasi open, we are free to assume Cn(O) as small as we want. By [6, 2.38]
and (3.4),

capn

(

f(O),B
(

f(x), 2mR
))

≤ capn

(

f(O), f
(

B(x, 2R)
))

≤ KI(f) capn

(

O, B(x, 2R)
)

≤ KI(f)4n(1 + R−n)Cn(O).
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Therefore, since f(O) ⊂ f
(

B(x, r)
)

⊂ B
(

f(x), mR
)

, we may apply [6, 2.38] once
more and write

Cn(f(O)) ≤ (1 + cmnRn) capn

(

f(O), B
(

f(x), 2mR
))

≤ KI(f)(1 + cmnRn)4n(1 + R−n)Cn(O).

Let ε > 0. Since the constants in the previous inequality do not depend on O , we
have Cn

(

f(O)
)

< ε if Cn(O) is small enough. This shows that f
(

U ∩ B(x, 1
2r)

)

is n -quasi open, because the set

f(O) ∪ f
(

U ∩ B(x, 1
2
r)

)

= f
(

O ∪
(

U ∩ B(x, 1
2
r)

))

is open in accordance with the fact that f : G → Rn is an open mapping. To finish
the proof, choose for each x ∈ U a radius rx > 0 such that f

(

U ∩ B(x, 1
2rx)

)

is
n -quasi open. Since the covering {B(x, 1

2rx) : x ∈ U} of U contains a countable
subcovering {B(xi,

1
2rxi

) : i ∈ N} of U , we have

f(U) =
⋃

i∈N

f
(

U ∩ B(xi,
1
2rxi

)
)

.

Thus f(U) is n -quasi open as a countable union of n -quasi open sets.

Remark 3.6. Assume that f : G → Rn is quasiregular and U ⊂ G is n -
polar. Then a slight modification of the proof of Theorem 3.5 reveals that f(U)
is n -polar. In fact, proceeding as in the proof of Theorem 3.5, it is sufficient to
prove that f

(

U ∩ B(x, 1
2r)

)

is n -polar. Let ε > 0 and let O be an open set
with U ∩ B(x, 1

2
r) ⊂ O ⊂ B(x, r) . By the estimates in the proof of Theorem 3.5,

Cn

(

f(O)
)

< ε if Cn(O) is small enough. Hence f
(

U ∩ B(x, 1
2r)

)

is n -polar and
the claim follows.
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