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Abstract. Let f be a univalent function in the unit disc D , which admits a quasiconformal
extension to the whole plane with a complex dilatation µ , |µ| ≤ κ < 1 . The following main
estimate is established:

∣∣∣∣
f ′′(z)

f ′(z)

∣∣∣∣ ≤ C(1 − |z|)−κ

∫ ∞

1−|z|

ω(z, t)

t2−κ
dt, |z| < 1,

where

ω(z, t) =

(
1

πt2

∫

|ζ−z|≤t

|µ(ζ)|2
)1/2

is the square mean value of µ .
The main estimate is sharp and implies many new and old results, concerning the boundary

behaviour of asymptotically conformal mappings. Among these are a new condition for the rec-
tifiability of the image f(T) in terms of the Littlewood–Paley quadratic function of µ , and an
alternative proof of Astala–Zinsmeister’s result on the embedding log f ′ ∈ BMOA.

Introduction

Let Φ be a quasiconformal mapping of the plane with the complex dilatation
µ(z) = Φz̄/Φz . If µ vanishes in a neighborhood of some closed subset E of the
plane then Φ is analytic on E . If µ tends to zero when z → E , then one expects
some close-to-analytic behaviour of Φ on E . Anyway, the restriction Φ|E ought
to be more or less smooth.

Two settings of such a problem are well known.
In the first, one considers a univalent function f in the unit disc D admit-

ting a quasiconformal extension to the whole plane, with f(∞) = ∞ , such that
its complex dilatation µ(z) → 0 as |z| → 1 + 0. Such functions are called asymp-

totically conformal [21]. The problem is: what is the relation between the decay
of µ near the unit circle T and the boundary smoothness of f ? For example [21],
the asymptotic conformality itself is equivalent to the condition

β(z) = (1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣→ 0, |z| → 1 − 0.
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The other setting of the problem is due to Carleson [10]. Let Φ be a self-
mapping of C\D , Φ(∞) = ∞ , with a complex dilatation µ . How does the decay
of µ near T influence the smoothness of Φ|T ?

Let K be the monotonic majorant of µ , that is

K(t) = ess sup
1<|z|<1+t

|µ(z)|.

Carleson [10] proved that if

∫ 1

0

K(t)

t
dt < +∞

then Φ is a C1 -diffeomorphism of T , and if

∫ 1

0

K(t)2

t
dt < +∞

then Φ is absolutely continuous on the circle and its derivative belongs to L2(T) .
Becker [7] obtained, using Lehto’s [18] maximum principle, the following es-

timate of β in terms of K for univalent functions with asymptotically conformal
extensions:

sup
1−t<|z|<1

β(z) ≤ 4
[
K(t1−ε) + tε/(1−ε)

]
, 0 < t < 1.

It follows that f is C1 -smooth up to T if

∫ 1

0

K(t)

t
dt < +∞,

and Γ = f(T) is rectifiable if

∫ 1

0

K(t)2

t
dt < +∞.

Furthermore, Becker [7] has observed that there is a relation between the two
settings. For any quasiconformal self-mapping of C \ D there exists a conformal
welding [19]

Φ = g ◦ f,

where f is a univalent function in D admitting a quasiconformal extension with
the same µ outside D , and g is a Riemann mapping of C \ f(D) onto C \ D .
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Having some estimates for the univalent functions f and g , one can obtain the
desired information on Φ.

This program was carried out by Anderson, Becker and Lesley [2], who ob-
tained and refined Carleson’s results by this approach.

Anderson and Hinkkanen [3] obtained further results on higher boundary
smoothness of f or Φ in the case where µ decays faster. In particular, they
proved that if K(t) = O(tα) for some α > 0 then f and Φ belong to the Hölder
class Λβ for any β < α+ 1.

By a certain estimate of the Schwarzian derivative of f , Astala and Zinsmeis-
ter [5] obtained the following result: If µ satisfies the Carleson condition

1

|I|

∫

�(I)

|µ(z)|2
|z| − 1

dx dy ≤ A

for any arc I ⊂ T , then log f ′ ∈ BMOA(D) . Here

�(I) = {z = reiθ : eiθ ∈ I, 1 < r < 1 + |I|}.
Formerly, Semmes [22] showed that this condition, with A small enough, implies

that log Φ′ ∈ BMO(T) in the Carleson problem. If one replaces the O(1) estimate
in the Carleson condition by the o(1) then the corresponding functions belong to
VMO instead of BMO.

This paper presents a new universal approach to asymptotically conformal
mappings. It is based on a sharp estimate of the logarithmic derivative f ′′/f ′ of
a univalent function f with a quasiconformal extension in terms of its complex
dilatation µ . The approach covers all known estimates and provides new results
on boundary smoothness and rectifiability of the boundary curve.

In Section 0 necessary preliminary information on quasiconformal mappings,
smooth functions and BMO space is recalled.

In particular, in the Carleson problem framework, the following improvement
of Becker’s approach is presented. Starting with the decomposition Φ = g ◦ f ,
we construct a new quasiconformal extension of Φ from T to a neighborhood
of T . This extension has a complex dilatation of order β(z) (or β(1/z̄)), and its
derivatives are completely controllable. There are three steps in the construction.
First, we extend f to a neighborhood of T by Becker’s method [8]. Then, following
[13], we construct a special quasiconformal symmetry with respect to Γ = f(T) .
Finally, following [13], this symmetry is used to extend g to G = f(D) .

This extension provides a unified approach to various questions on the smooth-
ness of Φ|T in terms of µ .

The main theorem, Theorem 1, is proved in Section 1. This theorem gives a
sharp estimate of β in terms of µ . It asserts that for a univalent function f in D

with κ -quasiconformal extension one has

β(z) ≤ const · (1 − |z|)1−κ

[
1 +

∫ 1

1−|z|

ω(z, t)

t2−κ

dt

]
, |z| < 1,
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where

ω(z, t) =

(
1

πt2

∫

|ζ−z|≤t

|µ(ζ)|2
)1/2

is the square mean value of µ .

A similar estimate holds for higher order derivatives of f as well.
This inequality is sharp in terms of the monotonic majorant K . It strengthens

the above Becker estimate essentially.
The square mean can be replaced by the mean of power p , with some p < 2

in the general case, and any p > 1 in the asymptotically conformal case (when
µ(z) → 0 for |z| → 1 + 0), but it is not known whether one can take p = 1.

Remark. It will be clear from the discussion in Section 0.6 that one can
replace the exponent κ , which appears in Theorem 1, by ess sup1<|z|<R0

|µ(z)|
for any given R0 > 1. In particular, if lim|z|→1 µ(z) = 0 then κ in Theorem 1
can be made arbitrarily small.

In Section 2 we obtain various results on the boundary smoothness of f
and Φ.

We prove that log f ′ is continuous in the closed disc if the integral
∫ 1

0
ω(z, t) dt

t
converges uniformly in z ∈ T .

A similar condition for the C1 -smoothness of Φ|T in the Carleson problem
is proved as well.

Having the C1 -smoothness condition proved, one can obtain various other
smoothness conditions using the estimates of higher order derivatives from Sec-
tion 1 and the re-extension of Φ from Section 0.4.

In particular, for the case K(t) = O(tα) , α > 0, the main estimate leads to
the sharp result f ∈ Aα+1(D) and Φ|T ∈ Λα+1(T) . Here As and Λs are the
Hölder–Zygmund classes of order s (see Section 0 for precise definition).

The result is sharp. Indeed, if f is univalent, f ∈ Aα+1(D) and n > α , then
the formula

f(z) =

n∑

0

f (k)(z∗)(z − z∗)k, z∗ = 1/z̄, |z| > 1,

defines a quasiconformal extension of f to a neighborhood of the closed unit disc
with

µ(z) = O
(
(|z| − 1)α

)
.

Section 3 is devoted to the Luzin function

S(z) = Sα(z) =

(∫

Γα(z)

∣∣∣∣
f ′′(ζ)

f ′(ζ)

∣∣∣∣
2

dξ dη

)1/2

, z ∈ T,
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where
Γ(z) = Γα(z) =

{
ζ ∈ D : |ζ − z| ≤ (1 + α)(1 − |ζ|)

}

is the Luzin cone of aperture α with vertex z .
The main estimate enables us to bound S by the well-known Littlewood–

Paley quadratic function of µ :

Q(µ)(z) =

(∫

1<|ζ|<2

|µ(ζ)|2
|ζ − z|2 dξ dη

)1/2

.

It turns out that
S(z) ≤ constQ(µ)(z)

at any point z of T .
In Section 3 we apply this bound to obtain the following results:
1. If Q(µ) ∈ L1(T) then G = f(D) is a Smirnov domain. (It means that the

derivative f ′ is an outer function in D [16], [21].)
2. There exists a > 0 such that if exp aQ(µ)2 ∈ L1(T) then the curve

Γ = f(T) is rectifiable.

This result on rectifiability is stronger than all known before. For example,
according to the Astala–Zinsmeister theorem, the rectifiability of Γ follows from
the Carleson condition above with small A . It turns out, however, that under the
Carleson condition one has Q(µ)2 ∈ BMO(T) , and so exp aQ(µ)2 ∈ L1 due to
the John–Nirenberg theorem.

In Section 4 we obtain the cited Astala–Zinsmeister theorem on BMOA from
our main estimate without using the Schwarzian derivative of f .

At the end of the section we present an example of µ such that the rectifiability
condition from Section 3 holds for this µ , while the Carleson condition fails.

It is worth noting that Semmes’ result on log Φ′ ∈ BMO, cited above, can be
obtained from the main estimate as well.

Acknowledgement. I am deeply grateful to V.P. Havin and U. Srebro for
many helpful discussions.

0. Preliminaries

0.1. Notation. Complex variables are denoted by z = x + iy , ζ = ξ + iη
and s = σ + iτ .

D = {z : |z| < 1} is the unit disc, T = ∂D is the unit circle.
C and c with or without indices are various positive constants, not necessarily

the same throughout a formula.
ρ(z, E) is the distance from the point z to the set E .
For an arc I ⊂ T : zI ∈ T is its central point, |I| is its length, kI , k > 1, is

the arc with the same central point, but of the length k|I| .
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The interior and exterior upbuildings over I are

�i(I) = {z = reiθ : eiθ ∈ I, 1 − |I| ≤ r ≤ 1}
and

�e(I) = {z = reiθ : eiθ ∈ I, 1 ≤ r ≤ 1 + |I|}.

f ≍ g if
c |g| ≤ |f | ≤ C |g|

for some positive constants c and C .

0.2. Quasiconformal mappings. A quasiconformal self-mapping f of the
plane is called κ -quasiconformal if its complex dilatation µ(z) = fz̄/fz is bounded
by κ : |µ(z)| ≤ κ < 1 almost everywhere.

Given a disc ∆ = {z : |z − z0| < r} , then w0 = f(z0) is referred to as the
center of the quasidisc B = f(∆) and

R = inf
w∈∂B

|w − w0|

as its radius. It is known [1], [19] that

sup
w∈∂B

|w − w0| ≤ c1R,

where c1 depends on κ only.
If r1 < r2 then the corresponding numbers R1 and R2 satisfy the estimate

(0.1)
R2

R1
≤ c2

(r2
r1

)γ

,

where the exponent γ = γf > 0 depends on f . In general, γ ≤ (1 + κ)/(1 − κ) .
However, the value of γ for special mappings may be much smaller. In the next
section we discuss the possible values of γ for the univalent functions in D with
a quasiconformal extension and for their inverse mappings.

Let Γ = f(T) . One can transfer the standard symmetry ζ 7→ 1/ζ̄ with
respect to T to a neighborhood of Γ by the formula

z∗ = f(1/ζ̄), z = f(ζ).

This is a quasiconformal symmetry with respect to Γ and, according to the well-
known distortion theorems for conformal and quasiconformal mappings [16], [19],
[20],

ρ(z∗,Γ) ≍ |z∗ − z| ≍ ρ(z,Γ).
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0.3. Univalent functions with quasiconformal extension. Let f be a
univalent function in D , f(0) = 0, f ′(0) = 1, with a κ -quasiconformal exten-
sion to the whole plane such that f(∞) = ∞ , denoted by f also. Due to the
normalization, for any z , |z| ≤ 2,

(0.2) |f(z)| ≤ C,

where C depends only on κ .
Let z0 ∈ T . The following estimate is a corollary of the well-known Goluzin–

Kühnau inequality [20]:

(0.3) c1

(r
s

)
κ

≤
∣∣∣
f ′((1 − r)z0)

f ′((1 − s)z0)

∣∣∣ ≤ c2

(s
r

)
κ

, 0 < r < s < 1.

In particular

(0.4) c1(1 − |z|)κ ≤ |f ′(z)| ≤ c2(1 − |z|)−κ.

Furthermore, consider once again the quasidisc B = f({z : |z − z0| < r}) , 0 <
r < 1, and its radius R . Due to the Koebe distortion theorem

R ≍ |f(z0) − f((1 − r)z0)| ≍ r
∣∣f ′
(
(1 − r)z0

)∣∣.

Together with (0.3) this means that the estimate (0.1) holds for our f and any
z0 ∈ T with γ = γf = 1 + κ .

Throughout the article we use the notation

(0.5) β(z) = (1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣, z ∈ D.

One can try to extend f outside of T by the formula

(0.6) f(z) = f(1/z̄) + f ′(1/z̄)(z − 1/z̄), |z| > 1.

For this extension

fz = f ′(1/z̄) and fz̄ = − 1

z̄2
(z − 1/z̄)f ′′(1/z̄),

so the corresponding complex dilatation

(0.7)
∣∣∣
fz̄

fz

∣∣∣ ≍ 1

|z|2β(1/z̄).
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In general, the mapping (0.6) is not homeomorphic, but Becker and Pommerenke
[8] have proved that (0.6) is indeed a quasiconformal extension of f to a neigh-
borhood of T , if

(0.8) lim
|z|→1−0

β(z) < 1.

Unlike the initial quasiconformal extension of f , this new extension has a com-
pletely controllable gradient.

The image G = f(D) is a quasidisc with boundary Γ = f(T) , 0 ∈ G . The
inverse mapping g = f−1 is a univalent function in G , g(0) = 0, g′(0) = 1, with
a κ -quasiconformal extension onto the whole plane, g(∞) = ∞ . In general, a
possible exponent γ in the inequality (0.1) for g may be big. However, suppose
that

(0.9) lim
|ζ|→1−0

β(ζ) < ε < 1
2 .

Then, an analogue of the inequality (0.3) holds for f with the exponent ε instead
of κ if r and s are small enough.

Due to the Koebe distortion theorem this means that the inequality (0.1)
holds for g , z0 ∈ Γ and r small enough, with the exponent γ = γg = 1 + 2ε .

0.4. Self-mappings of C \ D. Let Φ be a κ -quasiconformal self-mapping
of C \ D , Φ(∞) = ∞ , with the complex dilatation µ .

We need the well-known decomposition Φ = g ◦ f , where f and g are two
conformal mappings of complementary domains [19]. Apparently, Becker [7] was
the first who applied it to the Carleson problem.

We may extend Φ to the whole plane by the formula

Φ(z) =
1

Φ(1/z̄)
, z ∈ D.

Now, µ is defined as the complex dilatation of Φ on the whole plane too.
Let f be a homeomorphic solution of the Beltrami equation [1], [19]

fz̄

fz
= µ(z), |z| > 1,

fz̄

fz
= 0, |z| < 1,

normalized by the conditions f(0) = 0, f ′(0) = 1, f(∞) = ∞ . This map f is a
conformal mapping of the unit disc with a κ -quasiconformal extension. It maps
D onto a quasidisc G .

Now, consider a homeomorphic solution g of the Beltrami equation

gz̄

gz
= µ(ζ)

f ′(ζ)

f ′(ζ)
, ζ = f−1(z), z ∈ G,

gz̄

gz
= 0, z /∈ G,
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with g(0) = 0 and g(∞) = ∞ . The composition g ◦ f is a quasiconformal map-
ping of the plane, and its complex dilatation coincides with µ almost everywhere.
Therefore [19],

Φ = F [ g ◦ f ]

for some entire function F . But this F must be one-to-one in the whole plane,
satisfy F (0) = 0 and F (∞) = ∞ . So, F (z) ≡ az for some constant a . Including
this a in the definition of g one can suppose that a = 1.

Thus, one obtains the decomposition

Φ = g ◦ f.

In particular, g maps conformally C \ G onto C \ D , which is an alternative
definition of g .

Suppose now that f satisfies the condition (0.8) and consider its extension
(0.6) to a neighborhood of the disc. As in Section 0.2, we can define a quasicon-
formal symmetry z 7→ z∗ with respect to Γ = f(T) (in a neighborhood of Γ) by
the rule

z∗ = f(1/ζ̄) = f(ζ) + f ′(ζ)(1/ζ̄ − ζ) ∈ C \G, for z = f(ζ), ζ ∈ D.

A straightforward calculation shows that in this case

∣∣∣
∂z∗

∂z̄

∣∣∣ ≍ 1,
∣∣∣
∂z∗

∂z

∣∣∣ ≍ β(ζ).

Using the symmetry we can define a new extension of g to some neighborhood
of Γ in G (see [13]):

g(z∗) =
1

g(z)
, z ∈ G.

For this extension, we have near Γ

(0.10)
∣∣∣
∂g

∂z

∣∣∣ ≍ |g′(z∗)|,
∣∣∣
∂g

∂z̄

∣∣∣ ≍ |g′(z∗)|β(ζ), z = f(ζ), ζ ∈ D.

In particular, this extension of g has a completely controllable gradient.
Combining these extensions of f and g we obtain a new quasiconformal

extension of Φ|T by the formula Φ(ζ) = g [f(ζ)] , defined in some neighborhood
of T . This re-extension does not coincide with the initial mapping, but it is
completely controllable and its complex dilatation is equivalent to β .

The re-extension constructed above is our main tool in the investigation of
the properties of Φ|T in terms of µ .
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0.5. Asymptotically conformal curves. Let G be a quasidisc with bound-
ary Γ, and f be the Riemann (conformal) mapping of the unit disc onto G .

The quasicircle Γ is called asymptotically conformal [21] if

max
z∈Γ(z1,z2)

|z − z1| + |z − z2|
|z1 − z2|

→ 1, |z1 − z2| → 0,

where Γ(z1, z2) stands for the shorter arc of Γ between two points z1, z2 ∈ Γ.
It is well known that the boundedness of this expression means exactly that the
curve is a quasicircle.

Γ is asymptotically conformal if and only if [21]

β(z) → 0, |z| → 1 − 0,

and if and only if f admits a quasiconformal extension to the whole plane such
that

µf (z) → 0, |z| → 1 + 0.

0.6. Localization of µ . The purpose of this article is to investigate the
boundary behaviour of a univalent function with a quasiconformal extension f
or of a quasiconformal self-mapping Φ of C \ D in terms of the corresponding
µ , provided µ vanishes at the boundary in a sense. We are interested in such
properties as smoothness of f |T or Φ|T , inclusion log f ′ ∈ BMO(T) and so on.

In what follows we may suppose that µ(z) = 0 outside the annulus {z :
1 ≤ |z| ≤ 2} . Indeed, let f be a univalent function in D with a quasiconformal
extension normalized as in Section 0.3. Consider the solution f̃ of the Beltrami
equation

f̃z̄

f̃z

= µ(z), 1 < |z| < 2,
f̃z̄

f̃z

= 0 otherwise,

such that f̃(0) = 0, f̃ ′(0) = 1, f̃(∞) = ∞ .
Then, f = F ◦ f̃ , where F is a univalent function in the quasidisc f̃({z :

|z| < 2}) , F (0) = 0, and F ′(0) = 1. It is clear that all interesting properties of
f and of f̃ near T are the same. We can replace f by f̃ in the whole problem
without loss of generality.

In the case of Φ, extend Φ by symmetry in the whole plane as in the beginning
of Section 0.4 and consider a solution Φ̃ of the Beltrami equation

Φ̃z̄

Φ̃z

= µΦ(z), 1
2
< |z| < 2,

Φ̃z̄

Φ̃z

= 0 otherwise,

such that Φ̃(0) = 0, Φ̃(1) = 1 and Φ̃(∞) = ∞ . Due to the assumed symmetry of
µΦ , Φ̃ maps D onto itself.

As before, Φ = F ◦ Φ̃ , where F is a univalent function in the quasiannulus
Φ̃({z : 1

2
< |z| < 2}) , and all interesting properties of Φ|T and Φ̃|T are the same.
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Remark. One can choose any fixed radius R0 > 1 instead of 2 in the above
construction and assume that µ = 0 outside the annulus {z : 1 < |z| < R0} .

If µ(z) → 0 uniformly as |z| → 1, that is, if our mapping is asymptotically
conformal in the simplest sense, this means that one can assume the parameter
κ = ess sup1<|z|<R0

|µ(z)| in question to be arbitrarily small.
This observation plays a crucial role in the work [3] by Anderson and Hinkka-

nen, because their approach depends heavily on the assumption that κ can be
made arbitrarily small. In our approach we do not need such an assumption.

0.7. Hölder–Zygmund classes. We need in this article smooth function
spaces on T of two different kinds—Hölder–Zygmund and Carleman classes.

Let s > 0 and n = [s] be its integral part. If s is not an integer, the Hölder–
Zygmund class Λs(T) consists of all functions ϕ(eiθ) on T with continuous nth

derivative

ϕ(n)(eiθ) =
( d
dθ

)n

ϕ(eiθ),

satisfying the Hölder condition of the order s− n :

|ϕ(n)(ei(θ+h)) − ϕ(n)(eiθ)| ≤ Chs−n, h > 0.

If s = n is an integer, Λs(T) consists of all functions with continuous (n − 1)th

derivative, satisfying the Zygmund condition

|ϕ(n−1)(ei(θ+h)) − 2ϕ(n−1)(eiθ) + ϕ(n−1)(ei(θ−h))| ≤ Ch, h > 0.

The classes Λs have the following description in terms of the pseudoanalytic
extension [12]: a continuous function ϕ on T belongs to Λs if and only if it admits
a continuous extension to the whole plane, C∞ -smooth outside T and such that

∂ϕ

∂z̄
= O[ ρ(z,T)s−1 ].

The “analytic” Hölder–Zygmund class As consists of all functions f , analytic
in D , such that f |T ∈ Λs .

The well-known Hardy–Littlewood criterion for an analytic in D function f
to belong to As asserts: f ∈ As if and only if there is an integer n > s such that

|f (n)(z)| = O

(
1

(1 − |z|)n−s

)
, z ∈ D.

Remark. The standard formulation of the criterion (see, e.g., [11, p. 74])
involves only the least possible value n = [s]+1. However, it is easy to check that
if the estimate above holds for one n > s then it holds for all such n . So, one can
use any convenient value of n > s .
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0.8. Carleman classes. A regular majorant is a strictly positive increasing
function h on [0, 1] , h(+0) = 0, with logarithm ψ = log 1/h , such that ψ(e−t) is a
convex function of t ≥ 0 and h(r)/r ≤ h(Q0r) , 0 < r < 1, for some constant Q0 .

Define a positive sequence {Mn} by the formula

Mn = n! sup
0<r<1

h(r)

rn
.

The Carleman class C{Mn} on T consists of all functions ϕ ∈ C∞(T) such that
for some C and Q

∣∣∣
( ∂
∂θ

)n

ϕ(eiθ)
∣∣∣ ≤ CQnMn, eiθ ∈ T, n = 0, 1, . . . .

The Carleman classes have the following description in terms of the pseudo-
analytic extension [12]: ϕ ∈ C{Mn} if and only if ϕ admits a C∞ -extension to
the whole plane such that

∂ϕ

∂z̄
= O

[
h
(
Qρ(z,T)

)]

for some Q > 0.
For example, the well-known Gevrey class C{(n!)1+α} corresponds to

h(r) = exp(−1/r1/α).

As before, A{Mn} is the “analytic” subclass of C{Mn} . It consists of all
functions f , analytic in D , such that f |T belongs to C{Mn} .

0.9. Carleson condition and BMO. Let ν be a positive measure in D .
The Carleson condition on ν is the following estimate:

(0.11)
ν
(
�i(I)

)

|I| ≤ A

for any arc I ⊂ T .
The least A in (0.11) is called the Carleson constant of ν . The measure itself

is called a Carleson measure.
Furthermore, define the limit Carleson constant of ν :

N0(ν) = lim
δ→0

sup
|I|<δ

ν
(
�i(I)

)

|I| .

If the left-hand side of (0.11) tends to zero for |I| → 0, i.e. N0(ν) = 0, one
says that the measure satisfies the o(1)-Carleson condition.
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One can also formulate a similar condition in C \ D with �e(I) instead of
�i(I) .

A function ϕ ∈ L1(T) belongs to the space BMO(T) if there exists a constant
A > 0 such that for any arc I ⊂ T

1

|I|

∫

I

|ϕ− cI | ≤ A

for some constant cI . The least possible A in this inequality is called the BMO
norm ‖ϕ‖BMO of ϕ .

The subspace of all ϕ ∈ BMO with

lim
|I|→0

1

|I|

∫

I

|ϕ− cI | = 0

is called VMO(T) .
Analytic functions f ∈ H1(D) , whose boundary values belong to BMO(T)

or VMO(T) , form the spaces BMOA and VMOA respectively.
The following criterion [14] is used to check the inclusion of a function to BMO.
Let ϕ be an analytic function in D . If the measure

dν = (1 − |z|)|ϕ′(z)|2 dx dy
satisfies the Carleson condition (0.11) in D with some constant A , then ϕ ∈
BMOA .

Furthermore,

lim
r→1−0

‖ϕ(eiθ) − ϕ(reiθ)‖BMO ≤ CN0(ν)
1/2.

Therefore, if ν satisfies the o(1) -Carleson condition then ϕ(reiθ) converge in

BMO norm and the boundary function belongs to VMO .

1. Estimate for logarithmic derivative

1.1. The main theorem. The following estimate is the main technical tool
of this work.

Theorem 1. Let f be a univalent function in the unit disc, such that f(0) =
0 and f ′(0) = 1 . Suppose that f admits a κ -quasiconformal extension to the

whole plane with a complex dilatation µ . Then

(1.1) (1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣ ≤ C(1 − |z|)1−κ

[
1 +

∫ 1

1−|z|

ω(z, t)

t2−κ

dt

]
, |z| < 1,

where

(1.2) ω(z, t) =

(
1

πt2

∫

|ζ−z|<t

|µ(ζ)|2 dξ dη
)1/2

is the local square mean of |µ| . The constant C depends on κ only.
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Proof. Due to (0.4) it suffices to prove the estimate

(1.3) |f ′′(z)| ≤ C1|f ′(z)| 1

(1 − |z|)κ

∫ 1

1−|z|

ω(z, t)

t2−κ

dt+ C2.

Let r = 1 − |z| be small enough. By the Cauchy–Green formula and in view of
(0.2)

|f ′′(z)| ≤
∣∣∣∣
2

π

∫

1<|ζ|<2

∂f

∂ζ̄

dξ dη

(ζ − z)3

∣∣∣∣+ C2.

The contribution of the annulus

2kr < |ζ − z| < 2k+1r, k = 0, 1, . . . ,

to this integral does not exceed

1

(2kr)3

∫

|ζ−z|<2k+1r

∣∣∣
∂f

∂ζ̄

∣∣∣ dξ dη ≤ 1

(2kr)3

(∫

|ζ−z|<2k+1r

|µ(ζ)|2
)1/2

×
(∫

|ζ−z|<2k+1r

∣∣∣
∂f

∂ζ

∣∣∣
2
)1/2

≤ 2
√
π

(2kr)2
ω(z, 2k+1r)

(∫

|ζ−z|<2k+1r

∣∣∣
∂f

∂ζ

∣∣∣
2
)1/2

.

However
∫

|ζ−z|<2k+1r

∣∣∣
∂f

∂ζ

∣∣∣
2

≤ 1

1 − κ
2

∫
J(ζ) ≤ 1

1 − κ
2

mes f{|ζ − z0| < 2k+2r},

where J(z) is the Jacobian of the mapping f and z0 = z/|z| .
According to Section 0.3, the inequality (0.1) holds for f and z0 with the

exponent γ = 1 + κ . Therefore, due to the Koebe theorem,

mes f{|ζ− z0| < 2k+2r} ≤ c · (2k)2γ mes f{|ζ− z0| < r} ≤ c · (2k)2+2κ · |f ′(z)|2 · r2.

Collecting all the contributions we obtain

|f ′′(z)| ≤ C1|f ′(z)|
∑

2kr≤3

1

(2kr)2
ω(z, 2kr) · 2kκ2kr + C2

≤ C1
1

r
|f ′(z)|

∑ ω(z, 2kr)

2k(1−κ)
+ C2,

which implies (1.3).
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1.2. Higher derivatives. In the same way, one can prove estimates for
higher derivatives of f : under the assumptions of Theorem 1 ,

(1.4) (1 − |z|)n−1
∣∣∣
f (n)(z)

f ′(z)

∣∣∣ ≤ CQnn! (1− |z|)n−1−κ

[
1 +

∫ 1

1−|z|

ω(z, t)

tn−κ

dt

]

for any n . Here the constants C and Q do not depend on n .

1.3. Remarks. 1) We used in the proof the Schwarz inequality and the
square mean of µ . According to F. Gehring [15], the Jacobian J satisfies the
reverse Hölder inequality: there exists q > 1, depending on κ , such that

(
1

|∆|

∫

∆

Jq

)1/q

≤ C
1

|∆|

∫

∆

J

for any disc ∆. Using this result and applying Hölder’s inequality one can obtain
an exact analog of (1.1) for

(1.5) ωp(z, t) =

(
1

πt2

∫

|ζ−z|<t

|µ(ζ)|p dξ dη
)1/p

with some p < 2 instead of (1.2). This p depends on κ only.

Suppose now that our mapping is asymptotically conformal, i.e. µ(z) → 0
for |z| → 1 + 0. Then, according to Astala’s recent result [4], the reverse Hölder
inequality for J holds for any q > 1 if the disc ∆ lies in a sufficiently small
neighborhood of D (depending on q ). Applying this instead of Gehring’s result
one can obtain (1.1) in the asymptotically conformal case with ωp for any p > 1.
It is unknown whether this is true for p = 1, i.e. whether (1.1) holds with ω1

instead of ω = ω2 even for an asymptotically conformal mapping.

2) Let us assume that

1

t2

∫

|ζ−z|<t

|µ(ζ)| dξ dη → 0, t→ 0,

uniformly in z ∈ T . Then ω(z, t) → 0 uniformly as well, and by Theorem 1

β(z) = (1 − |z|)f
′′(z)

f ′(z)
→ 0, |z| → 1 − 0.

Therefore our mapping f is asymptotically conformal [21] (cf. [17]).
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3) Clearly, the right hand side of (1.1) is a sort of averaging of ω , that is of µ .
In the simplest special case consider the monotonic majorant of µ ,

(1.6) K(t) = ess sup{|µ(z)| : 1 < |z| < 1 + t}, t > 0.

Of course, ω(z, t) ≤ K(t) for any t when z ∈ D .
Now (1.1) becomes

(1.7) β(z) = (1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣ ≤ C(1 − |z|)1−κ

[
1 +

∫ 1

1−|z|

K(t)

t2−κ

dt

]
, |z| < 1.

In the asymptotically conformal case K(+0) = 0. Assuming for example that
K(t)/tε is nonincreasing for some ε < 1 − κ , one obtains from (1.7)

(1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣ ≤ C K(1 − |z|).

Conversely, let the right hand side of the last inequality tend to 0 as |z| → 1. Then
by the Becker–Pommerenke theorem [8], the extension (0.6) of f is quasiconformal
in some neighborhood of the disc. However, for such an extension

|µ(1/z̄)| ≍ |z|2(1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣, |z| < 1,

and therefore our estimate is sharp.
A weaker estimate

(1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣ ≤ 4
[
K(δ1−ε) + δε/(1−ε)

]
, δ = 1 − |z|,

where ε > 0 is arbitrary but unavoidable, was obtained by Becker [7] with the aid
of Lehto’s maximum principle [18].

4) κ in the formulation of Theorem 1 is a global parameter: κ = ‖µ‖L∞(C) .
However, according to Section 0.6, one can choose any R0 > 0 and factorize
f = F ◦ f̃ , where µf̃ (z) = µf (z) for 1 < |z| < R0 , µf̃ = 0 otherwise, and F

is conformal in f̃({z : |z| < R0}) . Evidently, βf ≍ βf̃ in D up to a constant,
depending on κ only. Thus, the main estimate (1.1) holds with the localized value
κ̃ = ess sup1<|z|<R0

|µ(z)| instead of global one. Particularly, in the asymptotically
conformal case lim|z|→1 µ(z) = 0, κ̃ can be made arbitrarily small. The constant
C in (1.1) depends both on R0 and on the initial κ .

1.4. Estimate for the inverse mapping. Let f satisfy the conditions
of Theorem 1 and g be its inverse. Then g is a κ -quasiconformal mapping of
the plane, conformal in the quasidisc G = f(D) , g(0) = 0, g′(0) = 1, and
g(∞) = ∞ . As before, let Γ = f(T) be the boundary of G . The mapping g has
its own complex dilatation µg and its own exponent γg in the inequality (0.1).
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Theorem 1 ′ . If γg < 2 then

(1.8) ρ(z,Γ)
∣∣∣
g′′(z)

g′(z)

∣∣∣ ≤ Cρ(z,Γ)2−γg

[
1 +

∫ 1

ρ(z,Γ)

ω̃(z, t)

t3−γg
dt

]
, z ∈ G, ρ(z,Γ) < 1,

where

(1.9) ω̃(z, t) =

(
1

πt2

∫

|ζ−z|<t

|µg(ζ)|2 dξ dη
)1/2

.

The constant C depends on κ and γg .

Proof. One can repeat the whole proof of Theorem 1, because the Koebe
theorem

1 − |g(z)| ≍ ρ(z,Γ)|g′(z)|, z ∈ G,

is valid for g as well.

In particular, if f satisfies the condition

(0.9) lim
|ζ|→1−0

β(ζ) < ε < 1
2

from Section 0.3, then one can take γg = 1 + 2ε and the estimate (1.8) holds.

2. Smoothness up to the boundary

2.1. C1 -smoothness in the univalent function case. Suppose that f is
a univalent function in D and f satisfies the assumptions of Theorem 1.

Theorem 2. If the integral

(2.1)

∫ 1

0

ω(z, t)
dt

t

converges uniformly in z ∈ T , then log f ′ (and thereby f ′ and 1/f ′ ) is continuous

in the closed disc.

Remarks. 1) If one replaces ω = ω2 by ω1 in (2.1) (see (1.5) for the
definition), then it turns to the very well-known expression

∫

|ζ−z|<1

|µ(ζ)|
|ζ − z|2 dξ dη.

The classical result of Teichmüller, Wittich and Belinskij [19] asserts that the
convergence of the last integral implies differentiability of the mapping f at the
point z . It is unknown whether its uniform convergence for z ∈ T implies C1 -
smoothness of f in the closed disc. No sharp condition of such smoothness in
terms of µ is known at all.
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2) Consider the monotonic majorant K(t) of µ defined in (1.6). Then Theo-
rem 2 gives in terms of K the following (cf. [7]):

The function f is C1 -smooth up to the boundary if

∫ 1

0

K(t)

t
dt < +∞.

3) Suppose that the integral (2.1) converges for one fixed z ∈ T only. Then
the proof of Theorem 2 below shows that the non-tangential limit of f ′ exists
at the point z . In other words, the function f has at the point z an angular
derivative.

Proof of Theorem 2. In view of f ′′/f ′ = (log f)′ , it is enough to prove that
the integral ∫ 1

0

β
(
(1 − r)z

)dr
r

converges uniformly in z ∈ T . Due to (1.1),

∫ 1

0

β
(
(1 − r)z

) dr
r

≤ C

∫ 1

0

dr

rκ

[
1 +

∫ 1

r

ω
(
(1 − r)z, t

)

t2−κ

dt

]
.

Furthermore, for t > r and z ∈ T

ω
(
(1 − r)z, t

)
≤ c ω(z, 2t),

so the integral does not exceed

C

[∫ 1

0

dr

rκ

+

∫ 1

0

ω(z, t)

t2−κ

dt

∫ t

0

dr

rκ

]
≤ C

[∫ 1

0

dr

rκ

+
1

1 − κ

∫ 1

0

ω(z, t)

t
dt

]
.

The last integral converges uniformly in z by assumption.

2.2. C1 -smoothness in the Carleson problem. Let Φ be a κ -quasicon-
formal self-mapping of C \ D , Φ(∞) = ∞ , with complex dilatation µ . In order
to investigate the C1 -smoothness of Φ|T we use the factorization

Φ = g ◦ f

of Section 0.4, where f is conformal in D (with the standard normalization),
µf = µ outside D , and g is a Riemann mapping of the complement of G = f(D)
onto the complement of D .

Suppose that the integral (2.1) converges uniformly in z ∈ T . Then, according
to Theorem 2, f is C1 -smooth in the closed unit disc. In order to prove the
boundary C1 -smoothness of g too, we need a slightly stronger condition.
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For z ∈ T , set

Ω(z, t) =

{
1

t2

∫

|ζ−z|<2t

|µ(ζ)|2 log
3t

|ζ| − 1
dξ dη+t1−κ

∫

2t<|ζ−z|<1

|µ(ζ)|2
|ζ − z|3−κ

dξ dη

}
1/2.

Lemma. For z ∈ T and t > 0

(
1

t2

∫

|ζ−z|<t

|β(ζ)|2 dξ dη
)1/2

≤ C1Ω(z, t) + C2t
1−κ.

Proof. In view of (1.1)

1

t2

∫

|ζ−z|<t

|β(ζ)|2 dξ dη ≤ C
1

t2

∫

|ζ−z|<t

[
(1 − |ζ|)1−κ

(
1 +

∫ 1

1−|ζ|

ω(ζ, r)

r2−κ

dr

)]2
dξ dη

≤ C1
1

t2

∫
|µ(s)|2dσ dτ

∫

H(s)

dξ dη dr

(1 − |ζ|)κ−1r4−κ

+ C2t
2−2κ,

where the domain of integration H(s) is given by

H(s) = {(ζ, r) : ζ ∈ D, r > 0, |ζ − s| < r, |ζ − z| < t}.

The integration in r shows that the inner integral is less than

C

∫

|ζ−z|<t

(1 − |ζ|)1−κ

|ζ − s|3−κ

dξ dη.

Therefore, if |s− z| < 2t the inner integral does not exceed

C

∫

|s|−1<|ζ−s|<3t

dξ dη

|ζ − s|2 = C log
3t

|s| − 1
,

because |ζ − s| ≥ (1 − |ζ|) + (|s| − 1).
If |s− z| > 2t then |ζ − s| ≍ |z − s| and the inner integral does not exceed

C
t3−κ

|s− z|3−κ

.

Theorem 3. If the integral

∫ 1

0

Ω(z, t)
dt

t

converges uniformly in z ∈ T then Φ is C1 -smooth on T .
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Proof. Evidently ω(z, t) ≤ Ω(z, t) . Therefore, (2.1) holds and f is C1 -
smooth. We have to prove that g is C1 -smooth up to Γ as well.

The extension (0.6) of f is a diffeomorphism of a neighborhood of D̄ onto
a neighborhood of Ḡ . In Section 0.4 we constructed a quasiconformal symmetry,
which was related to f , and a quasiconformal extension of g to a neighborhood
of Γ. For this extension, according to (0.10),

|µg(z)| ≍ β(ζ), z = f(ζ) ∈ G.

Furthermore, lim|ζ|→1 β(ζ) = 0 in our case. Therefore, Γ is asymptotically con-
formal (See Section 0.5), and for g , the condition (0.9) holds with any ε > 0.
Thus, γg < 2, hence one can apply Theorem 1′ and repeat the whole proof of
Theorem 3 for g . The uniform convergence of the analogue of the integral (2.1),
which appears in the proof, follows from lemma.

Consider once again the monotonic majorant K(t) of µ defined in (1.6). Then
Theorem 3 leads to the well-known condition for C1 -smoothness of Φ in terms of
K [10]. Evidently

(2.2) Ω(z, t) ≤ C

(
t1−κ

∫ 2

t

K(τ)2

τ2−κ

dτ

)1/2

, 0 < t < 1.

Corollary 1. If

(2.3)

∫ 1

0

K(t)

t
dt < +∞

then Φ is C1 -smooth on T .

Proof. We have to check the assumptions of Theorem 3 in this case. Set
ak = K(2−k) , k = 0, 1, . . . . Then (2.3) yields

∑
ak < +∞.

Now, (2.2) gives, for any n > 0,

Ω(z, 2−n)2 ≤ C2−n(1−κ)

[
1+

n∑

0

a2
k2k(1−κ)

]
≤ C2−n(1−κ)

[
1+

( n∑

0

ak2k(1−κ)/2

)2]
.

Therefore

Ω(z, 2−n) ≤ C2−n(1−κ)/2 + C
n∑

0

ak2(k−n)(1−κ)/2,

and
∞∑

0

Ω(z, 2−n) ≤ C
∞∑

0

2−n(1−κ)/2+C
∞∑

k=0

ak

∞∑

n=k

2(k−n)(1−κ)/2 ≤ C+C
∞∑

0

ak < +∞.

This estimate does not depend on z , so the integral
∫ 1

0
Ω(z, t) dt/t converges

uniformly.
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2.3. Smoothness of higher order. Let f be a univalent function in D ,
and Φ a quasiconformal self-mapping of C \ D . Suppose that f and Φ satisfy
the conditions of Section 2.1 and 2.2, respectively.

For simplicity, we consider here only the monotonic majorant (1.6) of µ .
Fix α > 0 and a regular majorant h (see Section 0.8). Consider the cor-

responding Hölder classes Λα+1 and Aα+1 (Section 0.7), and the corresponding
Carleman classes C{Mn} and A{Mn} (Section 0.8).

Theorem 4. (i) If K(t) = O(tα) , t→ 0 , then f ∈ Aα+1 .

(ii) If K(t) = O[h(t)] , t→ 0 , then f ∈ A{Mn} .

Proof. (i) For any n > α+ 2, (1.4) gives

|f (n)(z)| ≤ C
|f ′(z)|

(1 − |z|)κ

∫ ∞

1−|z|

tα

tn−κ

dt ≤ C|f ′(z)|(1 − |z|)n−(α+1).

However, f ′ is uniformly bounded due to Theorem 2, and our claim on Aα+1

follows from the Hardy–Littlewood criterion (Section 0.7).
(ii) In the case of the Carleman class, it follows again from (1.4) and from the

boundedness of f ′ that

|f (n+1)(z)| ≤ CQn+1 (n+ 1)!

{
1 +

1

(1 − |z|)κ

∫ 1

1−|z|

h(t)

tn+1−κ

dt

}

≤ CQn+1 (n+ 1)!

(1 − |z|)κ

{
1 + sup

0<t<1

h(t)

tn

}

and the desired result follows by integration.

Theorem 5. (i) If K(t) = O(tα) , t→ 0 , then Φ|T ∈ Λα+1 .

(ii) If K(t) = O[h(t)] , t→ 0 , then Φ|T ∈ C{Mn} .

Proof. We will use the factorization Φ = g ◦ f discussed in Section 2.2.
(i) It is known from Theorem 4 that in our case f ∈ Aα+1(D) and f ′ does

not vanish on the circle. Therefore ([12]) f admits a C1 -extension to some neigh-
borhood of D with the estimate

∣∣∣
∂f

∂ζ̄

∣∣∣ = O[ρ(ζ,T)α].

The extension is a diffeomorphism of the neighborhood.
According to [13], this means that one can construct a quasiconformal sym-

metry z 7→ z∗ in a neighborhood of Γ = f(T) satisfying the estimate

∣∣∣
∂z∗

∂z

∣∣∣ = O[ρ(z,Γ)α].
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Following [13], the existence of such symmetry implies that g , in its turn, admits
an extension to a neighborhood of Γ such that

∣∣∣
∂g

∂z̄

∣∣∣ = O[ρ(z,Γ)α].

Now g ◦ f is a new extension of Φ from T to a neighborhood of T satisfying the
estimate ∣∣∣

∂Φ

∂ζ̄

∣∣∣ = O[ρ(ζ,T)α].

Therefore Φ|T ∈ Λα+1 by [12].

(ii) We know from Theorem 4 that in the present case f ∈ C∞(D̄) and
f |T ∈ C{Mn} . Therefore, by [12], f admits a C1 -extension to a neighborhood of
D with the estimate ∣∣∣

∂f

∂ζ̄

∣∣∣ = O
[
h
(
Qρ(ζ,T)

)]

for some Q . According to [13], one can construct a quasiconformal symmetry
z 7→ z∗ in a neighborhood of Γ = f(T) satisfying the estimate

∣∣∣
∂z∗

∂z

∣∣∣ = O
[
h
(
Qρ(z,Γ)

)]
.

Following [13], the existence of such symmetry implies that g admits an extension
to a neighborhood of Γ such that

∣∣∣
∂g

∂z̄

∣∣∣ = O
[
h
(
Qρ(z,Γ)

)]
.

Now g ◦ f is a new extension of Φ from T to a neighborhood of T satisfying the
estimate ∣∣∣

∂Φ

∂ζ̄

∣∣∣ = O
[
h
(
Qρ(ζ,T)

)]
.

Therefore Φ|T ∈ C{Mn} according to [12].

Remarks. 1) Anderson and Hinkkanen [3] have proved in another way that
f ∈ A{Mn} and Φ|T ∈ C{Mn} if K(t) = O[h(t)] . They have proved also that if
K(t) = O(tα) then f ∈ Aβ and Φ|T ∈ Λβ for any β < α + 1. Apparently, their
approach cannot give the sharp result with Aα+1 . Moreover, they conjectured in
[3] that this sharp inclusion is not true in general. However, Theorems 4 and 5
show that the conjecture fails and the sharp inclusion holds.

2) Evidently, one can replace K(t) in Theorems 4 and 5 by the square mean
value of µ : if

sup
z∈T

ω(z, t) = O(tα), t→ +0,

then f ∈ Aα+1 and so on. For example, one can treat this way the case of a
uniform but not monotonic estimate on µ .
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3. Estimate for the Luzin function

Assume again that f is a univalent function in the unit disc admitting a κ -
quasiconformal extension with the complex dilatation µ . According to Section 0.6,
we suppose in what follows that µ vanishes outside the annulus {z : 1 < |z| < 2} .

3.1. The estimate. Let α > 0 and z ∈ T . Consider the Luzin function for
log f ′

S(z) = Sα(z) =

(∫

Γα(z)

∣∣∣∣
f ′′(ζ)

f ′(ζ)

∣∣∣∣
2

dξ dη

)1/2

, z ∈ T,

where
Γ(z) = Γα(z) = {ζ ∈ D : |ζ − z| ≤ (1 + α)(1 − |ζ|)}

is the Luzin cone of aperture α with vertex z .
Furthermore, consider the following well-known quadratic function for µ :

Q(µ)(z) =

(∫

1<|ζ|<2

|µ(ζ)|2
|ζ − z|2 dξ dη

)1/2

.

Theorem 6. For any z ∈ T

S(z) ≤ C1 + C2Q(µ)(z).

Here the constants C1 and C2 depend on κ and on α in the definition of S .

Proof. It suffices to estimate S(1). According to (1.1)

S(1)2 ≤ C

∫

Γ(1)

dx dy

(1 − |z|)2κ

[
1 +

∫ 1

1−|z|

ω(z, t)

t2−κ

dt

]2

≤ C1 + C2

∫

Γ(1)

dx dy

(1 − |z|)1+κ

∫ 1

1−|z|

ω(z, t)2

t2−κ

dt

≤ C1 + C2

∫

1<|ζ|<2

|µ(ζ)|2 dξ dη
∫

Ω(ζ)

dx dy dt

(1 − |z|)1+κ t4−κ

,

where the domain of integration is

Ω(ζ) = {(z, t) : z ∈ Γ(1), |ζ − z| < t}.

The integration in t reduces the inner integral to

∫

Γ(1)

dx dy

(1 − |z|)1+κ|z − ζ|3−κ

.
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If 1 − |z| < 1
2 |ζ − 1| then |z − ζ| ≍ |ζ − 1| and the corresponding contribution to

the integral is less than

C

|ζ − 1|3−κ

∫

z∈Γ(1),1−|z|<|ζ−1|

dx dy

(1 − |z|)1+κ

≤ C

|ζ − 1|2 .

If, on the contrary, 1− |z| > 1
2 |ζ − 1| then |z− ζ| > 1− |z| and the corresponding

contribution is less than

C

∫

z∈Γ(1),1−|z|>1/2 |ζ−1|

dx dy

(1 − |z|)4 ≤ C

|ζ − 1|2 .

Therefore, the whole inner integral does not exceed C/|ζ − 1|2 which gives imme-
diately S(1) ≤ C1 + C2Q(µ)(1).

3.2. Smirnov domains. Recall ([16], [21]) that the domain G = f(D) is a

Smirnov domain if f ′ is an outer function in the disc in the Beurling sense.

Corollary 2. If Q(µ) ∈ L1(T) then G = f(D) is a Smirnov domain.

Proof. According to Theorem 6, S ∈ L1(T) . By the well-known Calderon
result ([14], [23]) this means that log f ′ belongs to the Hardy space H1(D) . Thus,
f ′ is an outer function ([14], [16]).

3.3. Rectifiability of the boundary. Under which condition on µ does
the image G = f(D) of f have a rectifiable boundary Γ = ∂f(D) = f(T)? This
property is equivalent to the inclusion f ′ ∈ H1(D) .

It is known ([7]) that ∂f(D) is rectifiable if

(3.1)

∫ 1

0

K(t)2

t
dt < +∞,

where K is defined by (1.6).
A more general rectifiability condition follows from Astala–Zinsmeister’s re-

sult [5]. It requires that the measure

(3.2)
|µ(z)|2
|z| − 1

dx dy

satisfies the Carleson condition in C \ D with a small constant.
Evidently, (3.1) implies the Carleson condition on the measure (3.2).
Here, we prove a stronger result, providing a new condition of the rectifiability

of Γ.

Theorem 7. There exists a > 0 such that if exp aQ(µ)2 ∈ L1(T) , then

f ′ ∈ H1(D) and the boundary of G = f(D) is rectifiable.
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Proof. According to Theorem 6, exp bS2 ∈ L1(T) with b = a/C2
2 .

Bañuelos and Moore ([6]) proved the following “good λ-inequality” between
S = Sα , α > 1, and the non-tangential maximal function

N(z) = sup{| log f ′(ζ)| : ζ ∈ Γ1(z)}.

For any ε > 0 and λ > 0

mes{z ∈ T : N(z) > 2λ, S(z) < ελ} ≤ c1e
−c2/ε2

mes{z ∈ T : N(z) > λ}.

Set here

ε = ε(λ) =
( c2
λ+ c3

)1/2

,

where c3 > 1 is large enough. Then
∫

T

(eN − 1) =

∫ ∞

0

eλ mes{N > λ} dλ = 2

∫ ∞

0

e2λ mes{N > 2λ} dλ

≤ 2

∫ ∞

0

e2λ mes{S > ελ} dλ+ 2c1

∫ ∞

0

e−c2/ε2

e2λ mes{N > λ} dλ.

The last integral does not exceed

2c1e
−c3

∫ ∞

0

eλ mes{N > λ} dλ = 2c1e
−c3

∫

T

(eN − 1)

due to the definition of ε . Choosing c3 so large that 4c1e
−c3 < 1 one obtains

∫

T

(eN − 1) ≤ 4

∫ ∞

0

e2λ mes{S > ελ} dλ

if the left-hand side is finite. The latter is true for the truncated function f(rz) ,
r < 1. But both sides of the estimate are monotonic in r in this case and so
the estimate holds for the initial function f as well. However, a straightforward
calculation shows that the last integral does not exceed C

∫
T

exp bS2 , where b =
2c3/c2 . Therefore if expaQ(µ)2 ∈ L1 , a = C2

2b , then
∫
T

expN < +∞ , and so
f ′ ∈ H1(D) .

The case where (3.1) holds corresponds to bounded Q(µ) .
In the next section, we shall prove that under the Carleson condition with

a small constant, on the measure (3.2), the quadratic function Q(µ)2 belongs to
BMO(T) with small BMO norm. Therefore, exp aQ(µ)2 is integrable in this case
by the John–Nirenberg theorem. So, Theorem 7 covers both known cases of the
rectifiability.

Furthermore, we present, at the end of the following section, an example of a
function µ , which satisfies the assumptions of Theorem 7 and does not satisfy the
Carleson condition.
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3.4. Absolute continuity in the Carleson problem. Theorem 7 has
a corollary in the Carleson problem setting. Again, let Φ be a quasiconformal
self-mapping of C \D , Φ(∞) = ∞ , with the complex dilatation µ . According to
Section 0.6 we may assume that µ vanishes outside the annulus {z : 1 < |z| < 2} .

Corollary 3. There exists a > 0 such that if expaQ(µ)2 ∈ L1(T) then Φ is

absolutely continuous on T .

Proof. In view of Theorem 7, Γ = f(T) is rectifiable in this case. According
to the well-known properties of conformal mappings ([16], [21]) both f and g are
absolutely continuous at the boundary. Therefore, Φ = g ◦ f is also absolutely
continuous on T .

4. The inclusion log f ′ ∈ BMOA

4.1. Astala–Zinsmeister’s theorem. Theorem 1 leads to a new proof
of Astala–Zinsmeister’s result [5], proved originally by a certain estimate for the
Schwarzian derivative of f .

As before, let f be a univalent function in D admitting a quasiconformal
extension with complex dilatation µ , vanishing outside the annulus {z : 1 < |z| <
2} .

Theorem 8 [5]. If µ satisfies in C \ D the Carleson condition

(4.1)
1

|I|

∫

�e(I)

|µ(z)|2
|z| − 1

dx dy ≤ A,

for any arc I ⊂ T , then

log f ′ ∈ BMOA(D).

Remark. It follows from the proof that if the left hand side of (4.1) tends to
0 as |I| → 0 then log f ′ ∈ VMOA(D) .

Proof. According to Section 0.9, we have to prove that the measure

(1 − |z|)
∣∣∣
f ′′(z)

f ′(z)

∣∣∣
2

dx dy

in the unit disc is a Carleson measure.
Let I ⊂ T be an arc. In view of (1.1)

(4.2)∫

�i(I)

(1 − |z|)
∣∣∣
f ′′

f ′

∣∣∣
2

dx dy ≤ C

∫

�i(I)

(1 − |z|)
{

1

(1 − |z|)κ

[
1 +

∫ 1

1−|z|

ω(z, t)

t2−κ

dt

]}2

dx dy

≤ C|I|3−2κ + C

∫

I

dθ

∫ |I|

0

r−κ dr

∫ ∞

r

ω((1 − r)eiθ, t)2

t2−κ

dt

≤ C|I|3−2κ + C

∫

1<|ζ|<2

|µ(ζ)|2 dξ dη
∫

Ω(ζ)

dx dy dt

(1 − |z|)κt4−κ

,
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where the domain of integration is

Ω(ζ) = {(z, t) : z ∈ �i(I), t > |ζ − z|}.

If ζ /∈ �e(4I) then a straightforward calculation (similar to those from Sections 2.2
and 3.1) shows that the inner integral does not exceed C · (|I|2−κ)/(|ζ − zI |3−κ) ,
where zI is the central point of I . Therefore, the corresponding contribution to
(4.2) does not exceed

C |I|2−κ

∫

{1<|ζ|<2}\�e(4I)

|µ(ζ)|2
|ζ − zI |3−κ

dξ dη

≤ C |I|2−κ

∞∑

k=2

1

(2k|I|)3−κ

· 2k|I|
∫

�e(2kI)

|µ(ζ)|2
|ζ| − 1

dξ dη.

In view of (4.1) this is less than

C ·A
∞∑

2

1

(2k)2−κ

2k|I| ≤ CA|I|.

If now ζ ∈ �e(4I) then, in the same way, the inner integral in (4.2) does not
exceed C/(|ζ| − 1), and the corresponding contribution to (4.2) is less than

C

∫

�e(4I)

|µ(ζ)|2
|ζ| − 1

dξ dη ≤ CA|I|.

4.2. Rectifiability. Suppose that A in (4.1) is small enough. Then, due to
Section 0.9 and to the John–Nirenberg theorem, f ′ ∈ H1(D) and the boundary
of f(D) is rectifiable.

This rectifiability result is weaker, however, than Theorem 7 of the previous
section, as the following lemma shows.

Lemma. If (4.1) holds then the quadratic function Q(µ)2 belongs to

BMO(T) and its BMO -norm does not exceed CA .

Now, if A in (4.1) is small enough, then by the John–Nirenberg theorem
exp aQ(µ)2 belongs to L1(T) and so (4.1) implies the assumption of Theorem 7.

Proof of the lemma. Let I ∈ T be an arc centered at a point zI . Set

cI =

∫

{1<|ζ|<2}\�e(2I)

|µ(ζ)|2
|ζ − zI |2

dξ dη.
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Now for any z ∈ I

|Q(µ)(z)2 − cI | ≤
∫

�e(2I)

|µ(ζ)|2
|ζ − z|2 dξ dη

+

∫

{1<|ζ|<2}\�e(2I)

∣∣∣
|µ(ζ)|2
|ζ − z|2 − |µ(ζ)|2

|ζ − zI |2
∣∣∣ dξ dη = P (z) +R(z).

Furthermore, in view of (4.1)

1

|I|

∫

I

P (z) |dz| ≤ C

|I|

∫

�e(2I)

|µ(ζ)|2
|ζ| − 1

dξ dη ≤ CA.

As to R , we have

R(z) ≤ C

∫

{1<|ζ|<2}\�e(2I)

|µ(ζ)|2 |I|
|ζ − zI |3

dξ dη ≤ C

∞∑

1

∫

�e(2k+1I)\�e(2kI)

≤ C
∞∑

1

|I|
(2k|I|)2

∫

�e(2k+1I)

|µ(ζ)|2
|ζ| − 1

dξ dη ≤ CA
∞∑

1

1

22k|I| · 2
k|I| ≤ CA.

4.3. An example. In this section, an example of a function µ , satisfying
the assumptions of Theorem 7 but not the Carleson condition (4.1), is given.

Let E be a closed subset of T of zero Lebesgue measure. Consider the
following function µ :

(4.3) µ(z) = b
( |z| − 1

ρ(z, E)

)1/2

, 1 < |z| < 2, µ(z) = 0 otherwise.

Here the small constant b is to be chosen later.
For this µ

|µ(z)|2
|z| − 1

dx dy = b2
dx dy

ρ(z, E)
.

It is known (see, for example, [9]) that such a measure satisfies the Carleson
condition if and only if the following porosity condition on E holds: there exists
a constant q > 0 such that for any arc I ⊂ T , supz∈I ρ(z, E) ≥ q|I| . On the
other hand, if z ∈ T then the contribution of the disc {ζ : |ζ − z| < 1

2ρ(z, E)} to
Q(µ)(z)2 is less than

4b2

ρ(z, E)

∫

|ζ−z|<ρ(z,E)/2

|ζ| − 1

|ζ − z|2 dξ dη ≤ 4πb2.
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The contribution of the rest of the annulus {1 < |ζ| < 2} does not exceed

b2
∫

ρ(z,E)/2<|ζ−z|<3

dξ dη

|ζ − z|2 ≤ 2πb2 log
6

ρ(z, E)
.

Therefore, for our µ

Q(µ)2 ≤ 2πb2 · (2 + log 6 + log
1

ρ(z, E)
),

and exp aQ(µ)2 ∈ L1(T) provided (1/ρ(z, E)2πab2) ∈ L1(T) .
Suppose now that the set E does not satisfy the porosity condition above but,

nevertheless, there exists ε > 0 such that (1/ρ(z, E)ε) ∈ L1 . A possible example
of such a set is

E = {ei/n : n = 1, 2, . . .} ∪ {1},
where any ε < 1

2
fits.

Then the function µ (4.3) with b <
(
ε/2πa

)1/2
meets the rectifiability con-

dition of Theorem 7 and does not meet the Carleson condition (4.1).
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