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Abstract. Let φ(z) =
∑

anzn map the unit disk onto a bounded plane domain. Then (∗)
an = O(nγ−1+ε) for every ε > 0 , where γ is an unknown absolute constant. We show here that
γ < 0.4886 . Suppose now additionally that the boundary of the image domain has Minkowski
dimension ≤ M . It is shown that still no bound better than (∗) holds provided that Mc ≤ M ≤ 2
for some critical dimension Mc < 2 . The proof is based on the universal integral means spectrum,
the connection with Hölder continuity and the Carleson–Jones modification method.

1. Coefficients and boundary size

Let mdim denote the upper Minkowski (or box counting) dimension. In its
definition, in contrast to the Hausdorff dimension, only coverings by disks of the
same size are allowed. For 1 ≤ M ≤ 2, we denote by S(M) the class of bounded
(injective) conformal maps

ϕ(z) =

∞
∑

n=0

anzn

of the unit disk D such that

(1.1) mdim ∂ϕ(D) ≤ M.

In particular S(2) consists of all bounded conformal maps.

For 1 ≤ M ≤ 2, we define

(1.2) γ(M) = sup

{

lim sup
n→∞

log(n|an|)

log n
: ϕ ∈ S(M)

}

.

We write γ = γ(2) . Thus γ is the smallest exponent such that

(1.3) an = O(nγ+ε−1), (n → ∞), for every ε > 0,
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for all bounded univalent functions or, equivalently [CJ92], for all univalent func-
tions ϕ(z) = z + a0 + a1z

−1 + · · · in {|z| > 1} . At present the best lower bounds
are

(1.4)

{

γ > 0.17, analytic [P67],
γ > 0.24, experimental [CJ92], see also [K96].

Carleson and Jones have conjectured that γ = 1
4
.

The upper bound γ < 0.4910 [CP67], [P92, p. 183] will be slightly improved
below using a method of Carleson and Jones [CJ92].

Theorem. We have γ < 0.4886 . There exists a constant Mc with

(1.5) 1.2048 <
1

1 − γ
< Mc < 1 +

1

1 + γ2/(8π)
< 1.9989

such that

(1.6) γ(M) = γ for Mc ≤ M ≤ 2,

(1.7) γ(M) < γ for 1 ≤ M < Mc.

Furthermore, γ(1+δ) = δ − δ2 + O(δ3) as δ → 0 .

The critical dimension Mc is given by

(1.8) Mc = 1 +
B(1)

1 − B′(1+)
,

where B(t) is the universal integral means spectrum defined in (2.2) below. The
theorem shows that there is a phase transition at Mc : for dimensions M ≥ Mc

the additional information that mdim∂ϕ(D) ≤ M becomes irrelevant for the
coefficient problem.

Hölder domains will play an essential role in our proof; see Proposition 2.

We want to thank Steffen Rohde for our discussions.

2. The integral means spectrum and Hölder domains

The integral means spectrum of a conformal map ϕ of D into C is defined
by

(2.1) βϕ(t) = lim sup
r→1−

log
∫

T
|ϕ′(rζ)|t |dζ|

| log(1 − r)|
, −∞ < t < +∞,



On coefficients, boundary size and Hölder domains 307

where T = ∂D . The universal integral means spectrum, defined by

(2.2) B(t) = sup{βϕ(t) : ϕ bounded conformal map},

determines many growth properties. It is elementary that B(t) is convex and that
B(t) = t − 1 for t ≥ 2. It is furthermore known that

B(t) = |t| − 1 for t ≤ t0, [CM94],(2.3)

c1t
2 ≤ B(t) ≤ c2t

2 for |t| ≤ c3, [M86],[CP67],(2.4)

B(t) = t − 1 + O
(

(t − 2)2
)

as t → 2, [JM95, Thm. D].(2.5)

The constant t0 ≤ −2 in (2.3) is unknown and Brennan [B78] has conjectured
that t0 = −2. See [P92, p. 178] for quantitative estimates.

We need the following characterization of the integral means spectra possible
for bounded univalent functions. See [M95, Theorem 5.2] for the proof by fractal
approximation.

Proposition 1. Let β: R → [0, +∞) be convex. Then β = βϕ for some

ϕ ∈ S(2) if and only if

(1) 0 ≤ β(t) ≤ B(t) , (t ∈ R) ,
(2) |t|β′(t±) ≤ 1 + β(t) , (t ∈ R) .

The condition (2) means that the tangents to the graph y = β(t) intersect
the y -axis in the interval [−1, 0] .

For 0 < η ≤ 1, let Sη denote the class of conformal maps ϕ such that

(2.6) ϕ′(z) = O
(

(1 − |z|)η−1
)

as |z| → 1.

This Hölder class Sη is much easier to handle than S(M) , for instance because
whether ϕ ∈ Sη is essentially determined by β′

ϕ(+∞) . We define

(2.7) Bη(t) = sup{βϕ(t) : ϕ ∈ Sη}, (t ∈ R).

Smith and Stegenga [SS91] have shown that Bη(2) < 2.

Proposition 2. Consider the tangent

(2.8) Tη(t) = (1 − η)t + min
τ

(

B(τ) − (1 − η)τ
)

of slope 1 − η to the graph y = B(t) and define tη by Tη(tη) = B(tη) . Then

(2.9) Bη(t) =

{

B(t), for −∞ < t ≤ tη,

Tη(t), for tη ≤ t < +∞.

Proof. Let B∗
η(t) denote the right-hand side of (2.9). If ϕ ∈ Sη , it follows

from (2.6) and (2.1) that

βϕ(t) ≤ min{βϕ(τ) + (1 − η)(t − τ) : τ ≤ t},

so that Bη(t) ≤ B∗
η(t) by (2.8).
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Conversely let ε > 0 be given. We may assume that η < 1. By Proposition 1
there exists ϕ ∈ S(2) such that βϕ(t) = (1 − ε)B∗

η(t) . The Koebe distortion

theorem shows that c1|ϕ
′(z)| ≤ |ϕ′(zeiθ)| for |z| = r < 1, |θ| ≤ 1 − r . Hence, for

t > 0,

(1 − r)ct
1 max
|z|=r

|ϕ′(z)|t ≤

∫

T

|ϕ′(rζ)|t| dζ| <
( 1

1 − r

)βϕ(t)+1

for r > r0(t) . Since B∗
η(t) = c2 + (1 − η)t for large t , it follows that

max
|z|=r

|ϕ′(z)| ≤ c3

( 1

1 − r

)(1−ε)(1−η)+c4/t

< c3

( 1

1 − r

)1−η

and thus ϕ ∈ Sη . Hence Bη(t) ≥ (1−ε)B∗
η(t) for every ε > 0 which implies (2.9).

Proposition 3. (i) If ϕ ∈ S(M) then

(2.10) βϕ(M) ≤ M − 1.

(ii) If (2.10) holds and if moreover ϕ(D) is a Hölder domain then ϕ ∈ S(M) .

See [P92, p. 241] for the proof of (i) and [M95, (3.3)] for the proof of (ii).
Note that (ii) is not true for arbitrary bounded domains [P92, p. 241].

3. The Carleson–Jones modification

We also need the following result [CJ92] that Carleson and Jones used to
prove

(3.1) γ ≡ γ(2) = B(1).

Proposition 4. Let ϕ(z) =
∑∞

k=0 akzk be univalent in D and consider the

Fejér-type means

(3.2) pn(z) =
1

2π

∫ π

−π

2n
∑

ν=0

(

1 −
|ν − n|

n + 1

)

zνei(n−ν)θ |ϕ
′(rneiθ)|

ϕ′(rneiθ)
dθ,

where rn = 1 − 1600/n , n > 1600 . If 0 < δ ≤ δ0 , then

(3.3) ϕn(z) = ϕ(rnz) +
δ

n
pn(z)ϕ′(rnz) =

∞
∑

k=0

ankzk

is univalent in D and satisfies

(3.4) |ann| ≥
δ

4πn

∫ π

−π

|ϕ′(rneiθ)| dθ − |an|.
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If moreover |ϕ′(z)| ≤ A(1 − |z|)η−1 , then

(3.5) |ϕ′
n(z)| ≤ (1 + 3δ)A(1 − |z|)η−1 for z ∈ D.

Only the final statement is not formulated in [CJ92]. The polynomial pn has
degree 2n and satisfies |pn(z)| ≤ 1 for |z| ≤ 1 by properties of the Fejér kernel.
Thus, Bernstein’s inequality [Z68, p. II.11] implies that |p′n(z)| ≤ 2n . Hence
by (3.3),

|ϕ′
n(z)| =

∣

∣rnϕ′(rnz) +
δ

n
p′n(z)ϕ′(rnz) +

δ

n
pn(z)rnϕ′′(rnz)

∣

∣

≤ (1 + 2δ)|ϕ′(rnz)| +
δ

n
|ϕ′′(rnz)|.

The distortion theorem shows that

|ϕ′′(rnz)| ≤
6

1 − rn
|ϕ′(rnz)| < n|ϕ′(rnz)|

and (3.5) follows from our assumption.

An immediate consequence is that

(3.6) Bη(1) = γη ≡ sup

{

lim sup
n→∞

log(n|an|)

log n
: ϕ ∈ Sη

}

;

see (3.4), (3.5) and the trivial estimate

(3.7) |an|r
n−1
n ≤

1

2π

∫

T

|f ′(rnζ)| |dζ|.

4. Estimates of integral means

The next estimates are easy consequences of known results, in particular of
Carleson and Jones [CJ92]. Let ϕ map D conformally onto a bounded domain.
We write

(4.1) A(r, α) =
{

ζ ∈ T : |ϕ′(rζ)| < (1 − r)−1+α
}

, (0 < r < 1, α > 0),

and we assume that

(4.2)

∫

A(r,α)

|ϕ′(rζ)|2| dζ| = O
(

(1 − r)−1+g(α)
)

, (r → 1),

where g(α) is a continuous function depending only on α . Carleson and Jones
have shown that one can choose

(4.3) g(α) = α3/(8π);

this is implicit in [CJ92, p. 204–205]. Their proof uses a Marcinkiewicz integral;
see also [M95, (4.3)].
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While (4.2) is useful for estimating βϕ(t) for t near to 2, the estimate [CP67],
[P92, p. 178]

(4.4) βϕ(t) ≤ t − 1
2 +

(

4t2 − t + 1
4

)1/2
≤ 3t2 + 7t3

is useful for small t . Let γ again be defined by (1.3); compare (3.1).

Proposition 5. Let (4.2) be satisfied for all bounded univalent functions ϕ .

Then

(4.5) B(1) = γ ≤ max[α, 0.4908− 0.482g(α)]

for each α > 0 and

(4.6) B(t) ≤ max
[

α + (1 − α)(t − 1), γ +
(

1 − γ − g(α)
)

(t − 1)
]

for 1 ≤ t ≤ 2 , α > 0 . Furthermore,

(4.7) γ < B′(1+) ≤ 1 − γ − g(γ).

Proof. It follows from (4.1) that, for 0 < t < 2,

(4.8)

∫

T\A(r,α)

|ϕ′(rζ)|t |dζ| ≤ (1 − r)(1−α)(2−t)

∫

T

|ϕ′(rζ)|2 |dζ|

= O
(

(1 − r)(1−α)(2−t)−1
)

because ϕ(D) is bounded and thus has finite area.

Writing 1 = a + (1− a) with 0 < a < 1, we see from Hölder’s inequality that

∫

A(r,α)

|ϕ′(rζ)| |dζ| ≤

(
∫

T

|ϕ′|2a/(1+a)| dζ|

)(1+a)/2(∫

A(r,α)

|ϕ′|2 |dζ|

)(1−a)/2

.

We estimate the first factor by (4.4) and the second factor by (4.2) and obtain the
bound O

(

(1 − r)−δ
)

, where

δ =
6a2

1 + a
+

28a3

(1 + a)2
+

(

1 − g(α)
)1 − a

2
,

and (4.5) follows from (4.8) (with t = 1) if we choose a = 0.036.

Writing t = (2 − t) + 2(t − 1) with 1 < t < 2, we also see from Hölder’s
inequality that

∫

A(r,α)

|ϕ′(rζ)|t |dζ| ≤

(
∫

T

|ϕ′| |dζ|

)2−t(∫

A(r,α)

|ϕ′|2 |dζ|

)t−1

.

Using (3.1) and (4.2) we obtain the bound O
(

(1 − r)−δ
)

with

δ = (γ + ε)(2 − t) +
(

1 − g(α)
)

(t − 1)

for every ε > 0, and (4.6) now follows from (4.8).
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Finally, if 0 < α < γ , then by (4.6) we have

B(t) − B(1)

t − 1
≤ max

[

α − γ

t − 1
+ 1 − α, 1 − γ − g(α)

]

= 1 − γ − g(α)

for small t−1 > 0. Hence B′(1+) ≤ 1−γ−g(α) for α < γ and thus ≤ 1−γ−g(γ) .
The estimate B′(1+) > γ follows by convexity from B(0) = 0 and B(1) = γ .

5. Proof of the theorem

(a) If follows from (4.5) and the Carleson–Jones estimate (4.3) that

γ ≤ max[α, 0.4908− 0.482α3/(8π)] < 0.4886

if we choose α slightly smaller than 0.4886.

(b) Let Mc be defined by (1.8). It follows from (4.7) and the Carleson–Jones
estimate (4.3) that

1 − γ > 1 − B′(1+) ≥ γ + γ3/(8π),

and (1.5) follows from (1.8) and the bound γ > 0.17 in (1.4); the experimental
bound γ > 0.24 would give 1.3157 < Mc < 1.9978.

(c) Let 1 ≤ M < 2. The tangent from the point (M, M − 1) to the graph
y = B(t) is given by (2.8), where η > 0 is chosen such that

(5.1) min
τ

[B(τ) + (1 − η)(M − τ)] = M − 1.

The point tη determined by Tη(tη) = B(tη) satisfies tη ≤ M . If ϕ ∈ Sη then
βϕ(M) ≤ Bη(M) = Tη(M) = M − 1 by Proposition 2, and thus ϕ ∈ S(M) by
Proposition 3(ii). Hence

(5.2) Bη(1) = γη ≤ γ(M) ≤ B(M)(1)

by (3.6), (1.2) and (3.7).
Assume first that tη ≥ 1. Then

(5.3) B(M)(1) ≤ B(1) = γ = Bη(1)

by (2.9). Hence equality holds everywhere in (5.2) and (5.3), in particular we have
γ(M) = γ .

Assume now that tη < 1. Since B(M)(tη) ≤ B(tη) = Tη(tη) and also
B(M)(M) ≤ M − 1 = Tη(M) by Proposition 3(i) and (5.1), it follows from the
convexity of B(M) that

(5.4) B(M)(1) ≤ Tη(1) = Bη(1).

Hence we have equality everywhere in (5.2) and (5.4) so that γ(M) = Tη(1) <
B(1) = γ .

The phase transition occurs when tη = 1. In this case, the tangent T (t) =
B′(1+)(t − 1) + B(1) to the graph y = B(t) at 1 intersects the line y = t − 1 at
the point t = Mc given by (1.8).
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(d) Finally let M = 1 + δ and δ → 0+. The tangent is

(5.5) Tη(t) = B(tη) + B′(tη+)(t − tη),

where tη is given by

(5.6) δ = Tη(1 + δ) = B(tη) + B′(tη+)(1 + δ − tη).

Since B′(tη+) > c1t by (2.4), it follows first that tη = O(δ) and next that
B′(tη+) = δ + O(δ2) . Hence (5.5) and (5.6) imply that

γ(1+δ) = Tη(1) = δ
(

1 − B′(tη+)
)

= δ − δ2 + O(δ3).
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